src/Pure/thm.ML
author wenzelm
Thu Sep 15 17:16:56 2005 +0200 (2005-09-15)
changeset 17412 e26cb20ef0cc
parent 17345 9ea1e2179786
child 17708 6c6ecafd8c0e
permissions -rw-r--r--
TableFun/Symtab: curried lookup and update;
wenzelm@250
     1
(*  Title:      Pure/thm.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@250
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
lcp@229
     4
    Copyright   1994  University of Cambridge
lcp@229
     5
wenzelm@16425
     6
The very core of Isabelle's Meta Logic: certified types and terms,
wenzelm@16425
     7
meta theorems, meta rules (including lifting and resolution).
clasohm@0
     8
*)
clasohm@0
     9
wenzelm@6089
    10
signature BASIC_THM =
paulson@1503
    11
  sig
wenzelm@1160
    12
  (*certified types*)
wenzelm@387
    13
  type ctyp
wenzelm@16656
    14
  val rep_ctyp: ctyp ->
wenzelm@16656
    15
   {thy: theory,
wenzelm@16656
    16
    sign: theory,       (*obsolete*)
wenzelm@16656
    17
    T: typ,
wenzelm@16656
    18
    sorts: sort list}
wenzelm@16425
    19
  val theory_of_ctyp: ctyp -> theory
wenzelm@16425
    20
  val typ_of: ctyp -> typ
wenzelm@16425
    21
  val ctyp_of: theory -> typ -> ctyp
wenzelm@16425
    22
  val read_ctyp: theory -> string -> ctyp
wenzelm@1160
    23
wenzelm@1160
    24
  (*certified terms*)
wenzelm@1160
    25
  type cterm
clasohm@1493
    26
  exception CTERM of string
wenzelm@16601
    27
  val rep_cterm: cterm ->
wenzelm@16656
    28
   {thy: theory,
wenzelm@16656
    29
    sign: theory,       (*obsolete*)
wenzelm@16656
    30
    t: term,
wenzelm@16656
    31
    T: typ,
wenzelm@16656
    32
    maxidx: int,
wenzelm@16656
    33
    sorts: sort list}
wenzelm@16601
    34
  val crep_cterm: cterm ->
wenzelm@16601
    35
    {thy: theory, sign: theory, t: term, T: ctyp, maxidx: int, sorts: sort list}
wenzelm@16425
    36
  val theory_of_cterm: cterm -> theory
wenzelm@16425
    37
  val sign_of_cterm: cterm -> theory    (*obsolete*)
wenzelm@16425
    38
  val term_of: cterm -> term
wenzelm@16425
    39
  val cterm_of: theory -> term -> cterm
wenzelm@16425
    40
  val ctyp_of_term: cterm -> ctyp
wenzelm@16425
    41
  val read_cterm: theory -> string * typ -> cterm
wenzelm@16425
    42
  val adjust_maxidx: cterm -> cterm
wenzelm@16425
    43
  val read_def_cterm:
wenzelm@16425
    44
    theory * (indexname -> typ option) * (indexname -> sort option) ->
wenzelm@1160
    45
    string list -> bool -> string * typ -> cterm * (indexname * typ) list
wenzelm@16425
    46
  val read_def_cterms:
wenzelm@16425
    47
    theory * (indexname -> typ option) * (indexname -> sort option) ->
nipkow@4281
    48
    string list -> bool -> (string * typ)list
nipkow@4281
    49
    -> cterm list * (indexname * typ)list
wenzelm@1160
    50
wenzelm@16425
    51
  type tag              (* = string * string list *)
paulson@1529
    52
wenzelm@1160
    53
  (*meta theorems*)
wenzelm@1160
    54
  type thm
wenzelm@16425
    55
  val rep_thm: thm ->
wenzelm@16656
    56
   {thy: theory,
wenzelm@16656
    57
    sign: theory,       (*obsolete*)
wenzelm@16425
    58
    der: bool * Proofterm.proof,
wenzelm@16425
    59
    maxidx: int,
wenzelm@16425
    60
    shyps: sort list,
wenzelm@16425
    61
    hyps: term list,
wenzelm@16425
    62
    tpairs: (term * term) list,
wenzelm@16425
    63
    prop: term}
wenzelm@16425
    64
  val crep_thm: thm ->
wenzelm@16656
    65
   {thy: theory,
wenzelm@16656
    66
    sign: theory,       (*obsolete*)
wenzelm@16425
    67
    der: bool * Proofterm.proof,
wenzelm@16425
    68
    maxidx: int,
wenzelm@16425
    69
    shyps: sort list,
wenzelm@16425
    70
    hyps: cterm list,
wenzelm@16425
    71
    tpairs: (cterm * cterm) list,
wenzelm@16425
    72
    prop: cterm}
wenzelm@6089
    73
  exception THM of string * int * thm list
wenzelm@16425
    74
  type 'a attribute     (* = 'a * thm -> 'a * thm *)
wenzelm@16425
    75
  val eq_thm: thm * thm -> bool
wenzelm@16425
    76
  val eq_thms: thm list * thm list -> bool
wenzelm@16425
    77
  val theory_of_thm: thm -> theory
wenzelm@16425
    78
  val sign_of_thm: thm -> theory    (*obsolete*)
wenzelm@16425
    79
  val prop_of: thm -> term
wenzelm@16425
    80
  val proof_of: thm -> Proofterm.proof
wenzelm@16425
    81
  val tpairs_of: thm -> (term * term) list
wenzelm@16656
    82
  val concl_of: thm -> term
wenzelm@16425
    83
  val prems_of: thm -> term list
wenzelm@16425
    84
  val nprems_of: thm -> int
wenzelm@16425
    85
  val cprop_of: thm -> cterm
wenzelm@16656
    86
  val transfer: theory -> thm -> thm
wenzelm@16945
    87
  val weaken: cterm -> thm -> thm
wenzelm@16425
    88
  val extra_shyps: thm -> sort list
wenzelm@16425
    89
  val strip_shyps: thm -> thm
wenzelm@16425
    90
  val get_axiom_i: theory -> string -> thm
wenzelm@16425
    91
  val get_axiom: theory -> xstring -> thm
wenzelm@16425
    92
  val def_name: string -> string
wenzelm@16425
    93
  val get_def: theory -> xstring -> thm
wenzelm@16425
    94
  val axioms_of: theory -> (string * thm) list
wenzelm@1160
    95
wenzelm@1160
    96
  (*meta rules*)
wenzelm@16425
    97
  val assume: cterm -> thm
wenzelm@16425
    98
  val implies_intr: cterm -> thm -> thm
wenzelm@16425
    99
  val implies_elim: thm -> thm -> thm
wenzelm@16425
   100
  val forall_intr: cterm -> thm -> thm
wenzelm@16425
   101
  val forall_elim: cterm -> thm -> thm
wenzelm@16425
   102
  val reflexive: cterm -> thm
wenzelm@16425
   103
  val symmetric: thm -> thm
wenzelm@16425
   104
  val transitive: thm -> thm -> thm
wenzelm@16425
   105
  val beta_conversion: bool -> cterm -> thm
wenzelm@16425
   106
  val eta_conversion: cterm -> thm
wenzelm@16425
   107
  val abstract_rule: string -> cterm -> thm -> thm
wenzelm@16425
   108
  val combination: thm -> thm -> thm
wenzelm@16425
   109
  val equal_intr: thm -> thm -> thm
wenzelm@16425
   110
  val equal_elim: thm -> thm -> thm
wenzelm@16425
   111
  val flexflex_rule: thm -> thm Seq.seq
wenzelm@16425
   112
  val instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@16425
   113
  val trivial: cterm -> thm
wenzelm@16425
   114
  val class_triv: theory -> class -> thm
wenzelm@16425
   115
  val varifyT: thm -> thm
wenzelm@16425
   116
  val varifyT': (string * sort) list -> thm -> thm * ((string * sort) * indexname) list
wenzelm@16425
   117
  val freezeT: thm -> thm
wenzelm@16425
   118
  val dest_state: thm * int -> (term * term) list * term list * term * term
wenzelm@16425
   119
  val lift_rule: (thm * int) -> thm -> thm
wenzelm@16425
   120
  val incr_indexes: int -> thm -> thm
wenzelm@16425
   121
  val assumption: int -> thm -> thm Seq.seq
wenzelm@16425
   122
  val eq_assumption: int -> thm -> thm
wenzelm@16425
   123
  val rotate_rule: int -> int -> thm -> thm
wenzelm@16425
   124
  val permute_prems: int -> int -> thm -> thm
wenzelm@1160
   125
  val rename_params_rule: string list * int -> thm -> thm
wenzelm@16425
   126
  val bicompose: bool -> bool * thm * int -> int -> thm -> thm Seq.seq
wenzelm@16425
   127
  val biresolution: bool -> (bool * thm) list -> int -> thm -> thm Seq.seq
wenzelm@16425
   128
  val invoke_oracle: theory -> xstring -> theory * Object.T -> thm
wenzelm@16425
   129
  val invoke_oracle_i: theory -> string -> theory * Object.T -> thm
wenzelm@250
   130
end;
clasohm@0
   131
wenzelm@6089
   132
signature THM =
wenzelm@6089
   133
sig
wenzelm@6089
   134
  include BASIC_THM
wenzelm@16425
   135
  val dest_ctyp: ctyp -> ctyp list
wenzelm@16425
   136
  val dest_comb: cterm -> cterm * cterm
wenzelm@16425
   137
  val dest_abs: string option -> cterm -> cterm * cterm
wenzelm@16425
   138
  val capply: cterm -> cterm -> cterm
wenzelm@16425
   139
  val cabs: cterm -> cterm -> cterm
wenzelm@16425
   140
  val major_prem_of: thm -> term
wenzelm@16425
   141
  val no_prems: thm -> bool
wenzelm@17345
   142
  val no_attributes: 'a -> 'a * 'b list
wenzelm@17345
   143
  val simple_fact: 'a -> ('a * 'b list) list
wenzelm@16945
   144
  val apply_attributes: ('a * thm) * 'a attribute list -> 'a * thm
wenzelm@16945
   145
  val applys_attributes: ('a * thm list) * 'a attribute list -> 'a * thm list
wenzelm@16945
   146
  val terms_of_tpairs: (term * term) list -> term list
wenzelm@16945
   147
  val full_prop_of: thm -> term
wenzelm@16425
   148
  val get_name_tags: thm -> string * tag list
wenzelm@16425
   149
  val put_name_tags: string * tag list -> thm -> thm
wenzelm@16425
   150
  val name_of_thm: thm -> string
wenzelm@16425
   151
  val tags_of_thm: thm -> tag list
wenzelm@16425
   152
  val name_thm: string * thm -> thm
wenzelm@16945
   153
  val compress: thm -> thm
wenzelm@16945
   154
  val adjust_maxidx_thm: thm -> thm
wenzelm@16425
   155
  val rename_boundvars: term -> term -> thm -> thm
wenzelm@16425
   156
  val cterm_match: cterm * cterm -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@16425
   157
  val cterm_first_order_match: cterm * cterm -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@16425
   158
  val cterm_incr_indexes: int -> cterm -> cterm
wenzelm@6089
   159
end;
wenzelm@6089
   160
wenzelm@3550
   161
structure Thm: THM =
clasohm@0
   162
struct
wenzelm@250
   163
wenzelm@16656
   164
wenzelm@387
   165
(*** Certified terms and types ***)
wenzelm@387
   166
wenzelm@16656
   167
(** collect occurrences of sorts -- unless all sorts non-empty **)
wenzelm@16656
   168
wenzelm@16679
   169
fun may_insert_typ_sorts thy T = if Sign.all_sorts_nonempty thy then I else Sorts.insert_typ T;
wenzelm@16679
   170
fun may_insert_term_sorts thy t = if Sign.all_sorts_nonempty thy then I else Sorts.insert_term t;
wenzelm@16656
   171
wenzelm@16656
   172
(*NB: type unification may invent new sorts*)
wenzelm@16656
   173
fun may_insert_env_sorts thy (env as Envir.Envir {iTs, ...}) =
wenzelm@16656
   174
  if Sign.all_sorts_nonempty thy then I
wenzelm@16656
   175
  else Vartab.fold (fn (_, (_, T)) => Sorts.insert_typ T) iTs;
wenzelm@16656
   176
wenzelm@16656
   177
wenzelm@16656
   178
wenzelm@250
   179
(** certified types **)
wenzelm@250
   180
wenzelm@16656
   181
datatype ctyp = Ctyp of {thy_ref: theory_ref, T: typ, sorts: sort list};
wenzelm@250
   182
wenzelm@16656
   183
fun rep_ctyp (Ctyp {thy_ref, T, sorts}) =
wenzelm@16425
   184
  let val thy = Theory.deref thy_ref
wenzelm@16656
   185
  in {thy = thy, sign = thy, T = T, sorts = sorts} end;
wenzelm@250
   186
wenzelm@16656
   187
fun theory_of_ctyp (Ctyp {thy_ref, ...}) = Theory.deref thy_ref;
wenzelm@16425
   188
wenzelm@250
   189
fun typ_of (Ctyp {T, ...}) = T;
wenzelm@250
   190
wenzelm@16656
   191
fun ctyp_of thy raw_T =
wenzelm@16656
   192
  let val T = Sign.certify_typ thy raw_T
wenzelm@16656
   193
  in Ctyp {thy_ref = Theory.self_ref thy, T = T, sorts = may_insert_typ_sorts thy T []} end;
wenzelm@250
   194
wenzelm@16425
   195
fun read_ctyp thy s =
wenzelm@16656
   196
  let val T = Sign.read_typ (thy, K NONE) s
wenzelm@16656
   197
  in Ctyp {thy_ref = Theory.self_ref thy, T = T, sorts = may_insert_typ_sorts thy T []} end;
lcp@229
   198
wenzelm@16656
   199
fun dest_ctyp (Ctyp {thy_ref, T = Type (s, Ts), sorts}) =
wenzelm@16656
   200
      map (fn T => Ctyp {thy_ref = thy_ref, T = T, sorts = sorts}) Ts
wenzelm@16679
   201
  | dest_ctyp cT = raise TYPE ("dest_ctyp", [typ_of cT], []);
berghofe@15087
   202
lcp@229
   203
lcp@229
   204
wenzelm@250
   205
(** certified terms **)
lcp@229
   206
wenzelm@16601
   207
(*certified terms with checked typ, maxidx, and sorts*)
wenzelm@16601
   208
datatype cterm = Cterm of
wenzelm@16601
   209
 {thy_ref: theory_ref,
wenzelm@16601
   210
  t: term,
wenzelm@16601
   211
  T: typ,
wenzelm@16601
   212
  maxidx: int,
wenzelm@16601
   213
  sorts: sort list};
wenzelm@16425
   214
wenzelm@16679
   215
exception CTERM of string;
wenzelm@16679
   216
wenzelm@16601
   217
fun rep_cterm (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16425
   218
  let val thy =  Theory.deref thy_ref
wenzelm@16601
   219
  in {thy = thy, sign = thy, t = t, T = T, maxidx = maxidx, sorts = sorts} end;
lcp@229
   220
wenzelm@16601
   221
fun crep_cterm (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16425
   222
  let val thy = Theory.deref thy_ref in
wenzelm@16656
   223
   {thy = thy, sign = thy, t = t, T = Ctyp {thy_ref = thy_ref, T = T, sorts = sorts},
wenzelm@16601
   224
    maxidx = maxidx, sorts = sorts}
wenzelm@16425
   225
  end;
wenzelm@3967
   226
wenzelm@16425
   227
fun theory_of_cterm (Cterm {thy_ref, ...}) = Theory.deref thy_ref;
wenzelm@16425
   228
val sign_of_cterm = theory_of_cterm;
wenzelm@9461
   229
wenzelm@250
   230
fun term_of (Cterm {t, ...}) = t;
lcp@229
   231
wenzelm@16656
   232
fun ctyp_of_term (Cterm {thy_ref, T, sorts, ...}) =
wenzelm@16656
   233
  Ctyp {thy_ref = thy_ref, T = T, sorts = sorts};
paulson@2671
   234
wenzelm@16425
   235
fun cterm_of thy tm =
wenzelm@16601
   236
  let
wenzelm@16601
   237
    val (t, T, maxidx) = Sign.certify_term (Sign.pp thy) thy tm;
wenzelm@16656
   238
    val sorts = may_insert_term_sorts thy t [];
wenzelm@16601
   239
  in Cterm {thy_ref = Theory.self_ref thy, t = t, T = T, maxidx = maxidx, sorts = sorts} end;
lcp@229
   240
wenzelm@16656
   241
fun merge_thys0 (Cterm {thy_ref = r1, ...}) (Cterm {thy_ref = r2, ...}) =
wenzelm@16656
   242
  Theory.merge_refs (r1, r2);
wenzelm@16656
   243
clasohm@1493
   244
(*Destruct application in cterms*)
wenzelm@16679
   245
fun dest_comb (Cterm {t = t $ u, T, thy_ref, maxidx, sorts}) =
wenzelm@16679
   246
      let val A = Term.argument_type_of t in
wenzelm@16679
   247
        (Cterm {t = t, T = A --> T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts},
wenzelm@16679
   248
         Cterm {t = u, T = A, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts})
clasohm@1493
   249
      end
clasohm@1493
   250
  | dest_comb _ = raise CTERM "dest_comb";
clasohm@1493
   251
clasohm@1493
   252
(*Destruct abstraction in cterms*)
wenzelm@16679
   253
fun dest_abs a (Cterm {t = Abs (x, T, t), T = Type ("fun", [_, U]), thy_ref, maxidx, sorts}) =
wenzelm@16679
   254
      let val (y', t') = Term.dest_abs (if_none a x, T, t) in
wenzelm@16679
   255
        (Cterm {t = Free (y', T), T = T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts},
wenzelm@16679
   256
          Cterm {t = t', T = U, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts})
clasohm@1493
   257
      end
berghofe@10416
   258
  | dest_abs _ _ = raise CTERM "dest_abs";
clasohm@1493
   259
paulson@2147
   260
(*Makes maxidx precise: it is often too big*)
wenzelm@16601
   261
fun adjust_maxidx (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16425
   262
  if maxidx = ~1 then ct
wenzelm@16601
   263
  else Cterm {thy_ref = thy_ref, t = t, T = T, maxidx = maxidx_of_term t, sorts = sorts};
clasohm@1703
   264
clasohm@1516
   265
(*Form cterm out of a function and an argument*)
wenzelm@16601
   266
fun capply
wenzelm@16656
   267
  (cf as Cterm {t = f, T = Type ("fun", [dty, rty]), maxidx = maxidx1, sorts = sorts1, ...})
wenzelm@16656
   268
  (cx as Cterm {t = x, T, maxidx = maxidx2, sorts = sorts2, ...}) =
wenzelm@16601
   269
    if T = dty then
wenzelm@16656
   270
      Cterm {thy_ref = merge_thys0 cf cx,
wenzelm@16656
   271
        t = f $ x,
wenzelm@16656
   272
        T = rty,
wenzelm@16656
   273
        maxidx = Int.max (maxidx1, maxidx2),
wenzelm@16601
   274
        sorts = Sorts.union sorts1 sorts2}
clasohm@1516
   275
      else raise CTERM "capply: types don't agree"
clasohm@1516
   276
  | capply _ _ = raise CTERM "capply: first arg is not a function"
wenzelm@250
   277
wenzelm@16601
   278
fun cabs
wenzelm@16656
   279
  (ct1 as Cterm {t = t1, T = T1, maxidx = maxidx1, sorts = sorts1, ...})
wenzelm@16656
   280
  (ct2 as Cterm {t = t2, T = T2, maxidx = maxidx2, sorts = sorts2, ...}) =
wenzelm@16601
   281
    let val t = lambda t1 t2 handle TERM _ => raise CTERM "cabs: first arg is not a variable" in
wenzelm@16656
   282
      Cterm {thy_ref = merge_thys0 ct1 ct2,
wenzelm@16656
   283
        t = t, T = T1 --> T2,
wenzelm@16656
   284
        maxidx = Int.max (maxidx1, maxidx2),
wenzelm@16656
   285
        sorts = Sorts.union sorts1 sorts2}
wenzelm@16601
   286
    end;
lcp@229
   287
berghofe@10416
   288
(*Matching of cterms*)
wenzelm@16656
   289
fun gen_cterm_match match
wenzelm@16656
   290
    (ct1 as Cterm {t = t1, maxidx = maxidx1, sorts = sorts1, ...},
wenzelm@16656
   291
     ct2 as Cterm {t = t2, maxidx = maxidx2, sorts = sorts2, ...}) =
berghofe@10416
   292
  let
wenzelm@16656
   293
    val thy_ref = merge_thys0 ct1 ct2;
wenzelm@17203
   294
    val (Tinsts, tinsts) = match (Theory.deref thy_ref) (t1, t2);
berghofe@10416
   295
    val maxidx = Int.max (maxidx1, maxidx2);
wenzelm@16601
   296
    val sorts = Sorts.union sorts1 sorts2;
wenzelm@16656
   297
    fun mk_cTinst (ixn, (S, T)) =
wenzelm@16656
   298
      (Ctyp {T = TVar (ixn, S), thy_ref = thy_ref, sorts = sorts},
wenzelm@16656
   299
       Ctyp {T = T, thy_ref = thy_ref, sorts = sorts});
wenzelm@16656
   300
    fun mk_ctinst (ixn, (T, t)) =
wenzelm@16601
   301
      let val T = Envir.typ_subst_TVars Tinsts T in
wenzelm@16656
   302
        (Cterm {t = Var (ixn, T), T = T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts},
wenzelm@16656
   303
         Cterm {t = t, T = T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts})
berghofe@10416
   304
      end;
wenzelm@16656
   305
  in (Vartab.fold (cons o mk_cTinst) Tinsts [], Vartab.fold (cons o mk_ctinst) tinsts []) end;
berghofe@10416
   306
berghofe@10416
   307
val cterm_match = gen_cterm_match Pattern.match;
berghofe@10416
   308
val cterm_first_order_match = gen_cterm_match Pattern.first_order_match;
berghofe@10416
   309
berghofe@10416
   310
(*Incrementing indexes*)
wenzelm@16601
   311
fun cterm_incr_indexes i (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16601
   312
  if i < 0 then raise CTERM "negative increment"
wenzelm@16601
   313
  else if i = 0 then ct
wenzelm@16601
   314
  else Cterm {thy_ref = thy_ref, t = Logic.incr_indexes ([], i) t,
wenzelm@16884
   315
    T = Logic.incr_tvar i T, maxidx = maxidx + i, sorts = sorts};
berghofe@10416
   316
wenzelm@2509
   317
wenzelm@2509
   318
wenzelm@574
   319
(** read cterms **)   (*exception ERROR*)
wenzelm@250
   320
nipkow@4281
   321
(*read terms, infer types, certify terms*)
wenzelm@16425
   322
fun read_def_cterms (thy, types, sorts) used freeze sTs =
wenzelm@250
   323
  let
wenzelm@16425
   324
    val (ts', tye) = Sign.read_def_terms (thy, types, sorts) used freeze sTs;
wenzelm@16425
   325
    val cts = map (cterm_of thy) ts'
wenzelm@2979
   326
      handle TYPE (msg, _, _) => error msg
wenzelm@2386
   327
           | TERM (msg, _) => error msg;
nipkow@4281
   328
  in (cts, tye) end;
nipkow@4281
   329
nipkow@4281
   330
(*read term, infer types, certify term*)
nipkow@4281
   331
fun read_def_cterm args used freeze aT =
nipkow@4281
   332
  let val ([ct],tye) = read_def_cterms args used freeze [aT]
nipkow@4281
   333
  in (ct,tye) end;
lcp@229
   334
wenzelm@16425
   335
fun read_cterm thy = #1 o read_def_cterm (thy, K NONE, K NONE) [] true;
lcp@229
   336
wenzelm@250
   337
wenzelm@6089
   338
(*tags provide additional comment, apart from the axiom/theorem name*)
wenzelm@6089
   339
type tag = string * string list;
wenzelm@6089
   340
wenzelm@2509
   341
wenzelm@387
   342
(*** Meta theorems ***)
lcp@229
   343
berghofe@11518
   344
structure Pt = Proofterm;
berghofe@11518
   345
clasohm@0
   346
datatype thm = Thm of
wenzelm@16425
   347
 {thy_ref: theory_ref,         (*dynamic reference to theory*)
berghofe@11518
   348
  der: bool * Pt.proof,        (*derivation*)
wenzelm@3967
   349
  maxidx: int,                 (*maximum index of any Var or TVar*)
wenzelm@16601
   350
  shyps: sort list,            (*sort hypotheses as ordered list*)
wenzelm@16601
   351
  hyps: term list,             (*hypotheses as ordered list*)
berghofe@13658
   352
  tpairs: (term * term) list,  (*flex-flex pairs*)
wenzelm@3967
   353
  prop: term};                 (*conclusion*)
clasohm@0
   354
wenzelm@16725
   355
(*errors involving theorems*)
wenzelm@16725
   356
exception THM of string * int * thm list;
berghofe@13658
   357
wenzelm@16425
   358
fun rep_thm (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16425
   359
  let val thy = Theory.deref thy_ref in
wenzelm@16425
   360
   {thy = thy, sign = thy, der = der, maxidx = maxidx,
wenzelm@16425
   361
    shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop}
wenzelm@16425
   362
  end;
clasohm@0
   363
wenzelm@16425
   364
(*version of rep_thm returning cterms instead of terms*)
wenzelm@16425
   365
fun crep_thm (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16425
   366
  let
wenzelm@16425
   367
    val thy = Theory.deref thy_ref;
wenzelm@16601
   368
    fun cterm max t = Cterm {thy_ref = thy_ref, t = t, T = propT, maxidx = max, sorts = shyps};
wenzelm@16425
   369
  in
wenzelm@16425
   370
   {thy = thy, sign = thy, der = der, maxidx = maxidx, shyps = shyps,
wenzelm@16425
   371
    hyps = map (cterm ~1) hyps,
wenzelm@16425
   372
    tpairs = map (pairself (cterm maxidx)) tpairs,
wenzelm@16425
   373
    prop = cterm maxidx prop}
clasohm@1517
   374
  end;
clasohm@1517
   375
wenzelm@16725
   376
fun terms_of_tpairs tpairs = fold_rev (fn (t, u) => cons t o cons u) tpairs [];
wenzelm@16725
   377
wenzelm@16725
   378
fun eq_tpairs ((t, u), (t', u')) = t aconv t' andalso u aconv u';
wenzelm@16725
   379
val union_tpairs = gen_merge_lists eq_tpairs;
wenzelm@16884
   380
val maxidx_tpairs = fold (fn (t, u) => Term.maxidx_term t #> Term.maxidx_term u);
wenzelm@16725
   381
wenzelm@16725
   382
fun attach_tpairs tpairs prop =
wenzelm@16725
   383
  Logic.list_implies (map Logic.mk_equals tpairs, prop);
wenzelm@16725
   384
wenzelm@16725
   385
fun full_prop_of (Thm {tpairs, prop, ...}) = attach_tpairs tpairs prop;
wenzelm@16945
   386
wenzelm@16945
   387
wenzelm@16945
   388
(* merge theories of cterms/thms; raise exception if incompatible *)
wenzelm@16945
   389
wenzelm@16945
   390
fun merge_thys1 (Cterm {thy_ref = r1, ...}) (th as Thm {thy_ref = r2, ...}) =
wenzelm@16945
   391
  Theory.merge_refs (r1, r2) handle TERM (msg, _) => raise THM (msg, 0, [th]);
wenzelm@16945
   392
wenzelm@16945
   393
fun merge_thys2 (th1 as Thm {thy_ref = r1, ...}) (th2 as Thm {thy_ref = r2, ...}) =
wenzelm@16945
   394
  Theory.merge_refs (r1, r2) handle TERM (msg, _) => raise THM (msg, 0, [th1, th2]);
wenzelm@16945
   395
clasohm@0
   396
wenzelm@16425
   397
(*attributes subsume any kind of rules or context modifiers*)
wenzelm@6089
   398
type 'a attribute = 'a * thm -> 'a * thm;
wenzelm@16945
   399
  
wenzelm@6089
   400
fun no_attributes x = (x, []);
wenzelm@17345
   401
fun simple_fact x = [(x, [])];
wenzelm@6089
   402
fun apply_attributes (x_th, atts) = Library.apply atts x_th;
wenzelm@6089
   403
fun applys_attributes (x_ths, atts) = foldl_map (Library.apply atts) x_ths;
wenzelm@6089
   404
wenzelm@16601
   405
wenzelm@16656
   406
(* hyps *)
wenzelm@16601
   407
wenzelm@16945
   408
val insert_hyps = OrdList.insert Term.fast_term_ord;
wenzelm@16679
   409
val remove_hyps = OrdList.remove Term.fast_term_ord;
wenzelm@16679
   410
val union_hyps = OrdList.union Term.fast_term_ord;
wenzelm@16679
   411
val eq_set_hyps = OrdList.eq_set Term.fast_term_ord;
wenzelm@16601
   412
wenzelm@16601
   413
wenzelm@16601
   414
(* eq_thm(s) *)
wenzelm@16601
   415
wenzelm@3994
   416
fun eq_thm (th1, th2) =
wenzelm@3994
   417
  let
wenzelm@16425
   418
    val {thy = thy1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1, prop = prop1, ...} =
wenzelm@9031
   419
      rep_thm th1;
wenzelm@16425
   420
    val {thy = thy2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2, prop = prop2, ...} =
wenzelm@9031
   421
      rep_thm th2;
wenzelm@3994
   422
  in
wenzelm@16601
   423
    Context.joinable (thy1, thy2) andalso
wenzelm@16601
   424
    Sorts.eq_set (shyps1, shyps2) andalso
wenzelm@16601
   425
    eq_set_hyps (hyps1, hyps2) andalso
wenzelm@16656
   426
    equal_lists eq_tpairs (tpairs1, tpairs2) andalso
wenzelm@3994
   427
    prop1 aconv prop2
wenzelm@3994
   428
  end;
wenzelm@387
   429
wenzelm@16135
   430
val eq_thms = Library.equal_lists eq_thm;
wenzelm@16135
   431
wenzelm@16425
   432
fun theory_of_thm (Thm {thy_ref, ...}) = Theory.deref thy_ref;
wenzelm@16425
   433
val sign_of_thm = theory_of_thm;
wenzelm@16425
   434
wenzelm@12803
   435
fun prop_of (Thm {prop, ...}) = prop;
wenzelm@13528
   436
fun proof_of (Thm {der = (_, proof), ...}) = proof;
wenzelm@16601
   437
fun tpairs_of (Thm {tpairs, ...}) = tpairs;
clasohm@0
   438
wenzelm@16601
   439
val concl_of = Logic.strip_imp_concl o prop_of;
wenzelm@16601
   440
val prems_of = Logic.strip_imp_prems o prop_of;
wenzelm@16601
   441
fun nprems_of th = Logic.count_prems (prop_of th, 0);
wenzelm@16601
   442
val no_prems = equal 0 o nprems_of;
wenzelm@16601
   443
wenzelm@16601
   444
fun major_prem_of th =
wenzelm@16601
   445
  (case prems_of th of
wenzelm@16601
   446
    prem :: _ => Logic.strip_assums_concl prem
wenzelm@16601
   447
  | [] => raise THM ("major_prem_of: rule with no premises", 0, [th]));
wenzelm@16601
   448
wenzelm@16601
   449
(*the statement of any thm is a cterm*)
wenzelm@16601
   450
fun cprop_of (Thm {thy_ref, maxidx, shyps, prop, ...}) =
wenzelm@16601
   451
  Cterm {thy_ref = thy_ref, maxidx = maxidx, T = propT, t = prop, sorts = shyps};
wenzelm@16601
   452
wenzelm@16656
   453
(*explicit transfer to a super theory*)
wenzelm@16425
   454
fun transfer thy' thm =
wenzelm@3895
   455
  let
wenzelm@16425
   456
    val Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop} = thm;
wenzelm@16425
   457
    val thy = Theory.deref thy_ref;
wenzelm@3895
   458
  in
wenzelm@16945
   459
    if not (subthy (thy, thy')) then
wenzelm@16945
   460
      raise THM ("transfer: not a super theory", 0, [thm])
wenzelm@16945
   461
    else if eq_thy (thy, thy') then thm
wenzelm@16945
   462
    else
wenzelm@16945
   463
      Thm {thy_ref = Theory.self_ref thy',
wenzelm@16945
   464
        der = der,
wenzelm@16945
   465
        maxidx = maxidx,
wenzelm@16945
   466
        shyps = shyps,
wenzelm@16945
   467
        hyps = hyps,
wenzelm@16945
   468
        tpairs = tpairs,
wenzelm@16945
   469
        prop = prop}
wenzelm@3895
   470
  end;
wenzelm@387
   471
wenzelm@16945
   472
(*explicit weakening: maps |- B to A |- B*)
wenzelm@16945
   473
fun weaken raw_ct th =
wenzelm@16945
   474
  let
wenzelm@16945
   475
    val ct as Cterm {t = A, T, sorts, maxidx = maxidxA, ...} = adjust_maxidx raw_ct;
wenzelm@16945
   476
    val Thm {der, maxidx, shyps, hyps, tpairs, prop, ...} = th;
wenzelm@16945
   477
  in
wenzelm@16945
   478
    if T <> propT then
wenzelm@16945
   479
      raise THM ("weaken: assumptions must have type prop", 0, [])
wenzelm@16945
   480
    else if maxidxA <> ~1 then
wenzelm@16945
   481
      raise THM ("weaken: assumptions may not contain schematic variables", maxidxA, [])
wenzelm@16945
   482
    else
wenzelm@16945
   483
      Thm {thy_ref = merge_thys1 ct th,
wenzelm@16945
   484
        der = der,
wenzelm@16945
   485
        maxidx = maxidx,
wenzelm@16945
   486
        shyps = Sorts.union sorts shyps,
wenzelm@16945
   487
        hyps = insert_hyps A hyps,
wenzelm@16945
   488
        tpairs = tpairs,
wenzelm@16945
   489
        prop = prop}
wenzelm@16945
   490
  end;
wenzelm@16656
   491
wenzelm@16656
   492
clasohm@0
   493
wenzelm@1238
   494
(** sort contexts of theorems **)
wenzelm@1238
   495
wenzelm@16656
   496
fun present_sorts (Thm {hyps, tpairs, prop, ...}) =
wenzelm@16656
   497
  fold (fn (t, u) => Sorts.insert_term t o Sorts.insert_term u) tpairs
wenzelm@16656
   498
    (Sorts.insert_terms hyps (Sorts.insert_term prop []));
wenzelm@1238
   499
wenzelm@7642
   500
(*remove extra sorts that are non-empty by virtue of type signature information*)
wenzelm@7642
   501
fun strip_shyps (thm as Thm {shyps = [], ...}) = thm
wenzelm@16425
   502
  | strip_shyps (thm as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@7642
   503
      let
wenzelm@16425
   504
        val thy = Theory.deref thy_ref;
wenzelm@16656
   505
        val shyps' =
wenzelm@16656
   506
          if Sign.all_sorts_nonempty thy then []
wenzelm@16656
   507
          else
wenzelm@16656
   508
            let
wenzelm@16656
   509
              val present = present_sorts thm;
wenzelm@16656
   510
              val extra = Sorts.subtract present shyps;
wenzelm@16656
   511
              val witnessed = map #2 (Sign.witness_sorts thy present extra);
wenzelm@16656
   512
            in Sorts.subtract witnessed shyps end;
wenzelm@7642
   513
      in
wenzelm@16425
   514
        Thm {thy_ref = thy_ref, der = der, maxidx = maxidx,
wenzelm@16656
   515
          shyps = shyps', hyps = hyps, tpairs = tpairs, prop = prop}
wenzelm@7642
   516
      end;
wenzelm@1238
   517
wenzelm@16656
   518
(*dangling sort constraints of a thm*)
wenzelm@16656
   519
fun extra_shyps (th as Thm {shyps, ...}) = Sorts.subtract (present_sorts th) shyps;
wenzelm@16656
   520
wenzelm@1238
   521
wenzelm@1238
   522
paulson@1529
   523
(** Axioms **)
wenzelm@387
   524
wenzelm@16425
   525
(*look up the named axiom in the theory or its ancestors*)
wenzelm@15672
   526
fun get_axiom_i theory name =
wenzelm@387
   527
  let
wenzelm@16425
   528
    fun get_ax thy =
wenzelm@17412
   529
      Symtab.lookup (#2 (#axioms (Theory.rep_theory thy))) name
wenzelm@16601
   530
      |> Option.map (fn prop =>
wenzelm@16601
   531
          Thm {thy_ref = Theory.self_ref thy,
wenzelm@16601
   532
            der = Pt.infer_derivs' I (false, Pt.axm_proof name prop),
wenzelm@16601
   533
            maxidx = maxidx_of_term prop,
wenzelm@16656
   534
            shyps = may_insert_term_sorts thy prop [],
wenzelm@16601
   535
            hyps = [],
wenzelm@16601
   536
            tpairs = [],
wenzelm@16601
   537
            prop = prop});
wenzelm@387
   538
  in
wenzelm@16425
   539
    (case get_first get_ax (theory :: Theory.ancestors_of theory) of
skalberg@15531
   540
      SOME thm => thm
skalberg@15531
   541
    | NONE => raise THEORY ("No axiom " ^ quote name, [theory]))
wenzelm@387
   542
  end;
wenzelm@387
   543
wenzelm@16352
   544
fun get_axiom thy =
wenzelm@16425
   545
  get_axiom_i thy o NameSpace.intern (Theory.axiom_space thy);
wenzelm@15672
   546
wenzelm@6368
   547
fun def_name name = name ^ "_def";
wenzelm@6368
   548
fun get_def thy = get_axiom thy o def_name;
wenzelm@4847
   549
paulson@1529
   550
wenzelm@776
   551
(*return additional axioms of this theory node*)
wenzelm@776
   552
fun axioms_of thy =
wenzelm@776
   553
  map (fn (s, _) => (s, get_axiom thy s))
wenzelm@16352
   554
    (Symtab.dest (#2 (#axioms (Theory.rep_theory thy))));
wenzelm@776
   555
wenzelm@6089
   556
wenzelm@6089
   557
(* name and tags -- make proof objects more readable *)
wenzelm@6089
   558
wenzelm@12923
   559
fun get_name_tags (Thm {hyps, prop, der = (_, prf), ...}) =
wenzelm@12923
   560
  Pt.get_name_tags hyps prop prf;
wenzelm@4018
   561
wenzelm@16425
   562
fun put_name_tags x (Thm {thy_ref, der = (ora, prf), maxidx,
wenzelm@16425
   563
      shyps, hyps, tpairs = [], prop}) = Thm {thy_ref = thy_ref,
wenzelm@16425
   564
        der = (ora, Pt.thm_proof (Theory.deref thy_ref) x hyps prop prf),
berghofe@13658
   565
        maxidx = maxidx, shyps = shyps, hyps = hyps, tpairs = [], prop = prop}
berghofe@13658
   566
  | put_name_tags _ thm =
berghofe@13658
   567
      raise THM ("put_name_tags: unsolved flex-flex constraints", 0, [thm]);
wenzelm@6089
   568
wenzelm@6089
   569
val name_of_thm = #1 o get_name_tags;
wenzelm@6089
   570
val tags_of_thm = #2 o get_name_tags;
wenzelm@6089
   571
wenzelm@6089
   572
fun name_thm (name, thm) = put_name_tags (name, tags_of_thm thm) thm;
clasohm@0
   573
clasohm@0
   574
paulson@1529
   575
(*Compression of theorems -- a separate rule, not integrated with the others,
paulson@1529
   576
  as it could be slow.*)
wenzelm@16425
   577
fun compress (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16991
   578
  let val thy = Theory.deref thy_ref in
wenzelm@16991
   579
    Thm {thy_ref = thy_ref,
wenzelm@16991
   580
      der = der,
wenzelm@16991
   581
      maxidx = maxidx,
wenzelm@16991
   582
      shyps = shyps,
wenzelm@16991
   583
      hyps = map (Compress.term thy) hyps,
wenzelm@16991
   584
      tpairs = map (pairself (Compress.term thy)) tpairs,
wenzelm@16991
   585
      prop = Compress.term thy prop}
wenzelm@16991
   586
  end;
wenzelm@16945
   587
wenzelm@16945
   588
fun adjust_maxidx_thm (Thm {thy_ref, der, shyps, hyps, tpairs, prop, ...}) =
wenzelm@16945
   589
  Thm {thy_ref = thy_ref,
wenzelm@16945
   590
    der = der,
wenzelm@16945
   591
    maxidx = maxidx_tpairs tpairs (maxidx_of_term prop),
wenzelm@16945
   592
    shyps = shyps,
wenzelm@16945
   593
    hyps = hyps,
wenzelm@16945
   594
    tpairs = tpairs,
wenzelm@16945
   595
    prop = prop};
wenzelm@564
   596
wenzelm@387
   597
wenzelm@2509
   598
paulson@1529
   599
(*** Meta rules ***)
clasohm@0
   600
wenzelm@16601
   601
(** primitive rules **)
clasohm@0
   602
wenzelm@16656
   603
(*The assumption rule A |- A*)
wenzelm@16601
   604
fun assume raw_ct =
wenzelm@16601
   605
  let val Cterm {thy_ref, t = prop, T, maxidx, sorts} = adjust_maxidx raw_ct in
wenzelm@16601
   606
    if T <> propT then
wenzelm@16601
   607
      raise THM ("assume: assumptions must have type prop", 0, [])
wenzelm@16601
   608
    else if maxidx <> ~1 then
wenzelm@16601
   609
      raise THM ("assume: assumptions may not contain schematic variables", maxidx, [])
wenzelm@16601
   610
    else Thm {thy_ref = thy_ref,
wenzelm@16601
   611
      der = Pt.infer_derivs' I (false, Pt.Hyp prop),
wenzelm@16601
   612
      maxidx = ~1,
wenzelm@16601
   613
      shyps = sorts,
wenzelm@16601
   614
      hyps = [prop],
wenzelm@16601
   615
      tpairs = [],
wenzelm@16601
   616
      prop = prop}
clasohm@0
   617
  end;
clasohm@0
   618
wenzelm@1220
   619
(*Implication introduction
wenzelm@3529
   620
    [A]
wenzelm@3529
   621
     :
wenzelm@3529
   622
     B
wenzelm@1220
   623
  -------
wenzelm@1220
   624
  A ==> B
wenzelm@1220
   625
*)
wenzelm@16601
   626
fun implies_intr
wenzelm@16679
   627
    (ct as Cterm {t = A, T, maxidx = maxidxA, sorts, ...})
wenzelm@16679
   628
    (th as Thm {der, maxidx, hyps, shyps, tpairs, prop, ...}) =
wenzelm@16601
   629
  if T <> propT then
wenzelm@16601
   630
    raise THM ("implies_intr: assumptions must have type prop", 0, [th])
wenzelm@16601
   631
  else
wenzelm@16601
   632
    Thm {thy_ref = merge_thys1 ct th,
wenzelm@16601
   633
      der = Pt.infer_derivs' (Pt.implies_intr_proof A) der,
wenzelm@16601
   634
      maxidx = Int.max (maxidxA, maxidx),
wenzelm@16601
   635
      shyps = Sorts.union sorts shyps,
wenzelm@16601
   636
      hyps = remove_hyps A hyps,
wenzelm@16601
   637
      tpairs = tpairs,
wenzelm@16601
   638
      prop = implies $ A $ prop};
clasohm@0
   639
paulson@1529
   640
wenzelm@1220
   641
(*Implication elimination
wenzelm@1220
   642
  A ==> B    A
wenzelm@1220
   643
  ------------
wenzelm@1220
   644
        B
wenzelm@1220
   645
*)
wenzelm@16601
   646
fun implies_elim thAB thA =
wenzelm@16601
   647
  let
wenzelm@16601
   648
    val Thm {maxidx = maxA, der = derA, hyps = hypsA, shyps = shypsA, tpairs = tpairsA,
wenzelm@16601
   649
      prop = propA, ...} = thA
wenzelm@16601
   650
    and Thm {der, maxidx, hyps, shyps, tpairs, prop, ...} = thAB;
wenzelm@16601
   651
    fun err () = raise THM ("implies_elim: major premise", 0, [thAB, thA]);
wenzelm@16601
   652
  in
wenzelm@16601
   653
    case prop of
wenzelm@16601
   654
      imp $ A $ B =>
wenzelm@16601
   655
        if imp = Term.implies andalso A aconv propA then
wenzelm@16656
   656
          Thm {thy_ref = merge_thys2 thAB thA,
wenzelm@16601
   657
            der = Pt.infer_derivs (curry Pt.%%) der derA,
wenzelm@16601
   658
            maxidx = Int.max (maxA, maxidx),
wenzelm@16601
   659
            shyps = Sorts.union shypsA shyps,
wenzelm@16601
   660
            hyps = union_hyps hypsA hyps,
wenzelm@16601
   661
            tpairs = union_tpairs tpairsA tpairs,
wenzelm@16601
   662
            prop = B}
wenzelm@16601
   663
        else err ()
wenzelm@16601
   664
    | _ => err ()
wenzelm@16601
   665
  end;
wenzelm@250
   666
wenzelm@1220
   667
(*Forall introduction.  The Free or Var x must not be free in the hypotheses.
wenzelm@16656
   668
    [x]
wenzelm@16656
   669
     :
wenzelm@16656
   670
     A
wenzelm@16656
   671
  ------
wenzelm@16656
   672
  !!x. A
wenzelm@1220
   673
*)
wenzelm@16601
   674
fun forall_intr
wenzelm@16601
   675
    (ct as Cterm {t = x, T, sorts, ...})
wenzelm@16679
   676
    (th as Thm {der, maxidx, shyps, hyps, tpairs, prop, ...}) =
wenzelm@16601
   677
  let
wenzelm@16601
   678
    fun result a =
wenzelm@16601
   679
      Thm {thy_ref = merge_thys1 ct th,
wenzelm@16601
   680
        der = Pt.infer_derivs' (Pt.forall_intr_proof x a) der,
wenzelm@16601
   681
        maxidx = maxidx,
wenzelm@16601
   682
        shyps = Sorts.union sorts shyps,
wenzelm@16601
   683
        hyps = hyps,
wenzelm@16601
   684
        tpairs = tpairs,
wenzelm@16601
   685
        prop = all T $ Abs (a, T, abstract_over (x, prop))};
wenzelm@16601
   686
    fun check_occs x ts =
wenzelm@16847
   687
      if exists (fn t => Logic.occs (x, t)) ts then
wenzelm@16601
   688
        raise THM("forall_intr: variable free in assumptions", 0, [th])
wenzelm@16601
   689
      else ();
wenzelm@16601
   690
  in
wenzelm@16601
   691
    case x of
wenzelm@16601
   692
      Free (a, _) => (check_occs x hyps; check_occs x (terms_of_tpairs tpairs); result a)
wenzelm@16601
   693
    | Var ((a, _), _) => (check_occs x (terms_of_tpairs tpairs); result a)
wenzelm@16601
   694
    | _ => raise THM ("forall_intr: not a variable", 0, [th])
clasohm@0
   695
  end;
clasohm@0
   696
wenzelm@1220
   697
(*Forall elimination
wenzelm@16656
   698
  !!x. A
wenzelm@1220
   699
  ------
wenzelm@1220
   700
  A[t/x]
wenzelm@1220
   701
*)
wenzelm@16601
   702
fun forall_elim
wenzelm@16601
   703
    (ct as Cterm {t, T, maxidx = maxt, sorts, ...})
wenzelm@16601
   704
    (th as Thm {der, maxidx, shyps, hyps, tpairs, prop, ...}) =
wenzelm@16601
   705
  (case prop of
wenzelm@16601
   706
    Const ("all", Type ("fun", [Type ("fun", [qary, _]), _])) $ A =>
wenzelm@16601
   707
      if T <> qary then
wenzelm@16601
   708
        raise THM ("forall_elim: type mismatch", 0, [th])
wenzelm@16601
   709
      else
wenzelm@16601
   710
        Thm {thy_ref = merge_thys1 ct th,
wenzelm@16601
   711
          der = Pt.infer_derivs' (Pt.% o rpair (SOME t)) der,
wenzelm@16601
   712
          maxidx = Int.max (maxidx, maxt),
wenzelm@16601
   713
          shyps = Sorts.union sorts shyps,
wenzelm@16601
   714
          hyps = hyps,
wenzelm@16601
   715
          tpairs = tpairs,
wenzelm@16601
   716
          prop = Term.betapply (A, t)}
wenzelm@16601
   717
  | _ => raise THM ("forall_elim: not quantified", 0, [th]));
clasohm@0
   718
clasohm@0
   719
wenzelm@1220
   720
(* Equality *)
clasohm@0
   721
wenzelm@16601
   722
(*Reflexivity
wenzelm@16601
   723
  t == t
wenzelm@16601
   724
*)
wenzelm@16601
   725
fun reflexive (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16656
   726
  Thm {thy_ref = thy_ref,
wenzelm@16601
   727
    der = Pt.infer_derivs' I (false, Pt.reflexive),
wenzelm@16601
   728
    maxidx = maxidx,
wenzelm@16601
   729
    shyps = sorts,
wenzelm@16601
   730
    hyps = [],
wenzelm@16601
   731
    tpairs = [],
wenzelm@16601
   732
    prop = Logic.mk_equals (t, t)};
clasohm@0
   733
wenzelm@16601
   734
(*Symmetry
wenzelm@16601
   735
  t == u
wenzelm@16601
   736
  ------
wenzelm@16601
   737
  u == t
wenzelm@1220
   738
*)
wenzelm@16601
   739
fun symmetric (th as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16601
   740
  (case prop of
wenzelm@16601
   741
    (eq as Const ("==", Type (_, [T, _]))) $ t $ u =>
wenzelm@16601
   742
      Thm {thy_ref = thy_ref,
wenzelm@16601
   743
        der = Pt.infer_derivs' Pt.symmetric der,
wenzelm@16601
   744
        maxidx = maxidx,
wenzelm@16601
   745
        shyps = shyps,
wenzelm@16601
   746
        hyps = hyps,
wenzelm@16601
   747
        tpairs = tpairs,
wenzelm@16601
   748
        prop = eq $ u $ t}
wenzelm@16601
   749
    | _ => raise THM ("symmetric", 0, [th]));
clasohm@0
   750
wenzelm@16601
   751
(*Transitivity
wenzelm@16601
   752
  t1 == u    u == t2
wenzelm@16601
   753
  ------------------
wenzelm@16601
   754
       t1 == t2
wenzelm@1220
   755
*)
clasohm@0
   756
fun transitive th1 th2 =
wenzelm@16601
   757
  let
wenzelm@16601
   758
    val Thm {der = der1, maxidx = max1, hyps = hyps1, shyps = shyps1, tpairs = tpairs1,
wenzelm@16601
   759
      prop = prop1, ...} = th1
wenzelm@16601
   760
    and Thm {der = der2, maxidx = max2, hyps = hyps2, shyps = shyps2, tpairs = tpairs2,
wenzelm@16601
   761
      prop = prop2, ...} = th2;
wenzelm@16601
   762
    fun err msg = raise THM ("transitive: " ^ msg, 0, [th1, th2]);
wenzelm@16601
   763
  in
wenzelm@16601
   764
    case (prop1, prop2) of
wenzelm@16601
   765
      ((eq as Const ("==", Type (_, [T, _]))) $ t1 $ u, Const ("==", _) $ u' $ t2) =>
wenzelm@16601
   766
        if not (u aconv u') then err "middle term"
wenzelm@16601
   767
        else
wenzelm@16656
   768
          Thm {thy_ref = merge_thys2 th1 th2,
wenzelm@16601
   769
            der = Pt.infer_derivs (Pt.transitive u T) der1 der2,
wenzelm@16601
   770
            maxidx = Int.max (max1, max2),
wenzelm@16601
   771
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   772
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   773
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@16601
   774
            prop = eq $ t1 $ t2}
wenzelm@16601
   775
     | _ =>  err "premises"
clasohm@0
   776
  end;
clasohm@0
   777
wenzelm@16601
   778
(*Beta-conversion
wenzelm@16656
   779
  (%x. t)(u) == t[u/x]
wenzelm@16601
   780
  fully beta-reduces the term if full = true
berghofe@10416
   781
*)
wenzelm@16601
   782
fun beta_conversion full (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16601
   783
  let val t' =
wenzelm@16601
   784
    if full then Envir.beta_norm t
wenzelm@16601
   785
    else
wenzelm@16601
   786
      (case t of Abs (_, _, bodt) $ u => subst_bound (u, bodt)
wenzelm@16601
   787
      | _ => raise THM ("beta_conversion: not a redex", 0, []));
wenzelm@16601
   788
  in
wenzelm@16601
   789
    Thm {thy_ref = thy_ref,
wenzelm@16601
   790
      der = Pt.infer_derivs' I (false, Pt.reflexive),
wenzelm@16601
   791
      maxidx = maxidx,
wenzelm@16601
   792
      shyps = sorts,
wenzelm@16601
   793
      hyps = [],
wenzelm@16601
   794
      tpairs = [],
wenzelm@16601
   795
      prop = Logic.mk_equals (t, t')}
berghofe@10416
   796
  end;
berghofe@10416
   797
wenzelm@16601
   798
fun eta_conversion (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16601
   799
  Thm {thy_ref = thy_ref,
wenzelm@16601
   800
    der = Pt.infer_derivs' I (false, Pt.reflexive),
wenzelm@16601
   801
    maxidx = maxidx,
wenzelm@16601
   802
    shyps = sorts,
wenzelm@16601
   803
    hyps = [],
wenzelm@16601
   804
    tpairs = [],
wenzelm@16601
   805
    prop = Logic.mk_equals (t, Pattern.eta_contract t)};
clasohm@0
   806
clasohm@0
   807
(*The abstraction rule.  The Free or Var x must not be free in the hypotheses.
clasohm@0
   808
  The bound variable will be named "a" (since x will be something like x320)
wenzelm@16601
   809
      t == u
wenzelm@16601
   810
  --------------
wenzelm@16601
   811
  %x. t == %x. u
wenzelm@1220
   812
*)
wenzelm@16601
   813
fun abstract_rule a
wenzelm@16601
   814
    (Cterm {t = x, T, sorts, ...})
wenzelm@16601
   815
    (th as Thm {thy_ref, der, maxidx, hyps, shyps, tpairs, prop}) =
wenzelm@16601
   816
  let
wenzelm@16601
   817
    val (t, u) = Logic.dest_equals prop
wenzelm@16601
   818
      handle TERM _ => raise THM ("abstract_rule: premise not an equality", 0, [th]);
wenzelm@16601
   819
    val result =
wenzelm@16601
   820
      Thm {thy_ref = thy_ref,
wenzelm@16601
   821
        der = Pt.infer_derivs' (Pt.abstract_rule x a) der,
wenzelm@16601
   822
        maxidx = maxidx,
wenzelm@16601
   823
        shyps = Sorts.union sorts shyps,
wenzelm@16601
   824
        hyps = hyps,
wenzelm@16601
   825
        tpairs = tpairs,
wenzelm@16601
   826
        prop = Logic.mk_equals
wenzelm@16601
   827
          (Abs (a, T, abstract_over (x, t)), Abs (a, T, abstract_over (x, u)))};
wenzelm@16601
   828
    fun check_occs x ts =
wenzelm@16847
   829
      if exists (fn t => Logic.occs (x, t)) ts then
wenzelm@16601
   830
        raise THM ("abstract_rule: variable free in assumptions", 0, [th])
wenzelm@16601
   831
      else ();
wenzelm@16601
   832
  in
wenzelm@16601
   833
    case x of
wenzelm@16601
   834
      Free _ => (check_occs x hyps; check_occs x (terms_of_tpairs tpairs); result)
wenzelm@16601
   835
    | Var _ => (check_occs x (terms_of_tpairs tpairs); result)
wenzelm@16601
   836
    | _ => raise THM ("abstract_rule: not a variable", 0, [th])
clasohm@0
   837
  end;
clasohm@0
   838
clasohm@0
   839
(*The combination rule
wenzelm@3529
   840
  f == g  t == u
wenzelm@3529
   841
  --------------
wenzelm@16601
   842
    f t == g u
wenzelm@1220
   843
*)
clasohm@0
   844
fun combination th1 th2 =
wenzelm@16601
   845
  let
wenzelm@16601
   846
    val Thm {der = der1, maxidx = max1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1,
wenzelm@16601
   847
      prop = prop1, ...} = th1
wenzelm@16601
   848
    and Thm {der = der2, maxidx = max2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2,
wenzelm@16601
   849
      prop = prop2, ...} = th2;
wenzelm@16601
   850
    fun chktypes fT tT =
wenzelm@16601
   851
      (case fT of
wenzelm@16601
   852
        Type ("fun", [T1, T2]) =>
wenzelm@16601
   853
          if T1 <> tT then
wenzelm@16601
   854
            raise THM ("combination: types", 0, [th1, th2])
wenzelm@16601
   855
          else ()
wenzelm@16601
   856
      | _ => raise THM ("combination: not function type", 0, [th1, th2]));
wenzelm@16601
   857
  in
wenzelm@16601
   858
    case (prop1, prop2) of
wenzelm@16601
   859
      (Const ("==", Type ("fun", [fT, _])) $ f $ g,
wenzelm@16601
   860
       Const ("==", Type ("fun", [tT, _])) $ t $ u) =>
wenzelm@16601
   861
        (chktypes fT tT;
wenzelm@16601
   862
          Thm {thy_ref = merge_thys2 th1 th2,
wenzelm@16601
   863
            der = Pt.infer_derivs (Pt.combination f g t u fT) der1 der2,
wenzelm@16601
   864
            maxidx = Int.max (max1, max2),
wenzelm@16601
   865
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   866
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   867
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@16601
   868
            prop = Logic.mk_equals (f $ t, g $ u)})
wenzelm@16601
   869
     | _ => raise THM ("combination: premises", 0, [th1, th2])
clasohm@0
   870
  end;
clasohm@0
   871
wenzelm@16601
   872
(*Equality introduction
wenzelm@3529
   873
  A ==> B  B ==> A
wenzelm@3529
   874
  ----------------
wenzelm@3529
   875
       A == B
wenzelm@1220
   876
*)
clasohm@0
   877
fun equal_intr th1 th2 =
wenzelm@16601
   878
  let
wenzelm@16601
   879
    val Thm {der = der1, maxidx = max1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1,
wenzelm@16601
   880
      prop = prop1, ...} = th1
wenzelm@16601
   881
    and Thm {der = der2, maxidx = max2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2,
wenzelm@16601
   882
      prop = prop2, ...} = th2;
wenzelm@16601
   883
    fun err msg = raise THM ("equal_intr: " ^ msg, 0, [th1, th2]);
wenzelm@16601
   884
  in
wenzelm@16601
   885
    case (prop1, prop2) of
wenzelm@16601
   886
      (Const("==>", _) $ A $ B, Const("==>", _) $ B' $ A') =>
wenzelm@16601
   887
        if A aconv A' andalso B aconv B' then
wenzelm@16601
   888
          Thm {thy_ref = merge_thys2 th1 th2,
wenzelm@16601
   889
            der = Pt.infer_derivs (Pt.equal_intr A B) der1 der2,
wenzelm@16601
   890
            maxidx = Int.max (max1, max2),
wenzelm@16601
   891
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   892
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   893
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@16601
   894
            prop = Logic.mk_equals (A, B)}
wenzelm@16601
   895
        else err "not equal"
wenzelm@16601
   896
    | _ =>  err "premises"
paulson@1529
   897
  end;
paulson@1529
   898
paulson@1529
   899
(*The equal propositions rule
wenzelm@3529
   900
  A == B  A
paulson@1529
   901
  ---------
paulson@1529
   902
      B
paulson@1529
   903
*)
paulson@1529
   904
fun equal_elim th1 th2 =
wenzelm@16601
   905
  let
wenzelm@16601
   906
    val Thm {der = der1, maxidx = max1, shyps = shyps1, hyps = hyps1,
wenzelm@16601
   907
      tpairs = tpairs1, prop = prop1, ...} = th1
wenzelm@16601
   908
    and Thm {der = der2, maxidx = max2, shyps = shyps2, hyps = hyps2,
wenzelm@16601
   909
      tpairs = tpairs2, prop = prop2, ...} = th2;
wenzelm@16601
   910
    fun err msg = raise THM ("equal_elim: " ^ msg, 0, [th1, th2]);
wenzelm@16601
   911
  in
wenzelm@16601
   912
    case prop1 of
wenzelm@16601
   913
      Const ("==", _) $ A $ B =>
wenzelm@16601
   914
        if prop2 aconv A then
wenzelm@16601
   915
          Thm {thy_ref = merge_thys2 th1 th2,
wenzelm@16601
   916
            der = Pt.infer_derivs (Pt.equal_elim A B) der1 der2,
wenzelm@16601
   917
            maxidx = Int.max (max1, max2),
wenzelm@16601
   918
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   919
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   920
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@16601
   921
            prop = B}
wenzelm@16601
   922
        else err "not equal"
paulson@1529
   923
     | _ =>  err"major premise"
paulson@1529
   924
  end;
clasohm@0
   925
wenzelm@1220
   926
wenzelm@1220
   927
clasohm@0
   928
(**** Derived rules ****)
clasohm@0
   929
wenzelm@16601
   930
(*Smash unifies the list of term pairs leaving no flex-flex pairs.
wenzelm@250
   931
  Instantiates the theorem and deletes trivial tpairs.
clasohm@0
   932
  Resulting sequence may contain multiple elements if the tpairs are
clasohm@0
   933
    not all flex-flex. *)
wenzelm@16601
   934
fun flexflex_rule (th as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16601
   935
  Unify.smash_unifiers (Theory.deref thy_ref, Envir.empty maxidx, tpairs)
wenzelm@16601
   936
  |> Seq.map (fn env =>
wenzelm@16601
   937
      if Envir.is_empty env then th
wenzelm@16601
   938
      else
wenzelm@16601
   939
        let
wenzelm@16601
   940
          val tpairs' = tpairs |> map (pairself (Envir.norm_term env))
wenzelm@16601
   941
            (*remove trivial tpairs, of the form t==t*)
wenzelm@16884
   942
            |> filter_out (op aconv);
wenzelm@16601
   943
          val prop' = Envir.norm_term env prop;
wenzelm@16601
   944
        in
wenzelm@16601
   945
          Thm {thy_ref = thy_ref,
wenzelm@16601
   946
            der = Pt.infer_derivs' (Pt.norm_proof' env) der,
wenzelm@16711
   947
            maxidx = maxidx_tpairs tpairs' (maxidx_of_term prop'),
wenzelm@16656
   948
            shyps = may_insert_env_sorts (Theory.deref thy_ref) env shyps,
wenzelm@16601
   949
            hyps = hyps,
wenzelm@16601
   950
            tpairs = tpairs',
wenzelm@16601
   951
            prop = prop'}
wenzelm@16601
   952
        end);
wenzelm@16601
   953
clasohm@0
   954
clasohm@0
   955
(*Instantiation of Vars
wenzelm@16656
   956
           A
wenzelm@16656
   957
  --------------------
wenzelm@16656
   958
  A[t1/v1, ..., tn/vn]
wenzelm@1220
   959
*)
clasohm@0
   960
wenzelm@6928
   961
local
wenzelm@6928
   962
wenzelm@16425
   963
fun pretty_typing thy t T =
wenzelm@16425
   964
  Pretty.block [Sign.pretty_term thy t, Pretty.str " ::", Pretty.brk 1, Sign.pretty_typ thy T];
berghofe@15797
   965
wenzelm@16884
   966
fun add_inst (ct, cu) (thy_ref, sorts) =
wenzelm@6928
   967
  let
wenzelm@16884
   968
    val Cterm {t = t, T = T, ...} = ct
wenzelm@16884
   969
    and Cterm {t = u, T = U, sorts = sorts_u, ...} = cu;
wenzelm@16884
   970
    val thy_ref' = Theory.merge_refs (thy_ref, merge_thys0 ct cu);
wenzelm@16884
   971
    val sorts' = Sorts.union sorts_u sorts;
wenzelm@3967
   972
  in
wenzelm@16884
   973
    (case t of Var v =>
wenzelm@16884
   974
      if T = U then ((v, u), (thy_ref', sorts'))
wenzelm@16884
   975
      else raise TYPE (Pretty.string_of (Pretty.block
wenzelm@16884
   976
       [Pretty.str "instantiate: type conflict",
wenzelm@16884
   977
        Pretty.fbrk, pretty_typing (Theory.deref thy_ref') t T,
wenzelm@16884
   978
        Pretty.fbrk, pretty_typing (Theory.deref thy_ref') u U]), [T, U], [t, u])
wenzelm@16884
   979
    | _ => raise TYPE (Pretty.string_of (Pretty.block
wenzelm@16884
   980
       [Pretty.str "instantiate: not a variable",
wenzelm@16884
   981
        Pretty.fbrk, Sign.pretty_term (Theory.deref thy_ref') t]), [], [t]))
clasohm@0
   982
  end;
clasohm@0
   983
wenzelm@16884
   984
fun add_instT (cT, cU) (thy_ref, sorts) =
wenzelm@16656
   985
  let
wenzelm@16884
   986
    val Ctyp {T, thy_ref = thy_ref1, ...} = cT
wenzelm@16884
   987
    and Ctyp {T = U, thy_ref = thy_ref2, sorts = sorts_U, ...} = cU;
wenzelm@16884
   988
    val thy_ref' = Theory.merge_refs (thy_ref, Theory.merge_refs (thy_ref1, thy_ref2));
wenzelm@16884
   989
    val thy' = Theory.deref thy_ref';
wenzelm@16884
   990
    val sorts' = Sorts.union sorts_U sorts;
wenzelm@16656
   991
  in
wenzelm@16884
   992
    (case T of TVar (v as (_, S)) =>
wenzelm@17203
   993
      if Sign.of_sort thy' (U, S) then ((v, U), (thy_ref', sorts'))
wenzelm@16656
   994
      else raise TYPE ("Type not of sort " ^ Sign.string_of_sort thy' S, [U], [])
wenzelm@16656
   995
    | _ => raise TYPE (Pretty.string_of (Pretty.block
berghofe@15797
   996
        [Pretty.str "instantiate: not a type variable",
wenzelm@16656
   997
         Pretty.fbrk, Sign.pretty_typ thy' T]), [T], []))
wenzelm@16656
   998
  end;
clasohm@0
   999
wenzelm@6928
  1000
in
wenzelm@6928
  1001
wenzelm@16601
  1002
(*Left-to-right replacements: ctpairs = [..., (vi, ti), ...].
clasohm@0
  1003
  Instantiates distinct Vars by terms of same type.
wenzelm@16601
  1004
  Does NOT normalize the resulting theorem!*)
paulson@1529
  1005
fun instantiate ([], []) th = th
wenzelm@16884
  1006
  | instantiate (instT, inst) th =
wenzelm@16656
  1007
      let
wenzelm@16884
  1008
        val Thm {thy_ref, der, hyps, shyps, tpairs, prop, ...} = th;
wenzelm@16884
  1009
        val (inst', (instT', (thy_ref', shyps'))) =
wenzelm@16884
  1010
          (thy_ref, shyps) |> fold_map add_inst inst ||> fold_map add_instT instT;
wenzelm@16884
  1011
        val subst = Term.instantiate (instT', inst');
wenzelm@16656
  1012
        val prop' = subst prop;
wenzelm@16884
  1013
        val tpairs' = map (pairself subst) tpairs;
wenzelm@16656
  1014
      in
wenzelm@16884
  1015
        if has_duplicates (fn ((v, _), (v', _)) => Term.eq_var (v, v')) inst' then
wenzelm@16656
  1016
          raise THM ("instantiate: variables not distinct", 0, [th])
wenzelm@16884
  1017
        else if has_duplicates (fn ((v, _), (v', _)) => Term.eq_tvar (v, v')) instT' then
wenzelm@16656
  1018
          raise THM ("instantiate: type variables not distinct", 0, [th])
wenzelm@16656
  1019
        else
wenzelm@16884
  1020
          Thm {thy_ref = thy_ref',
wenzelm@16884
  1021
            der = Pt.infer_derivs' (Pt.instantiate (instT', inst')) der,
wenzelm@16884
  1022
            maxidx = maxidx_tpairs tpairs' (maxidx_of_term prop'),
wenzelm@16656
  1023
            shyps = shyps',
wenzelm@16656
  1024
            hyps = hyps,
wenzelm@16884
  1025
            tpairs = tpairs',
wenzelm@16656
  1026
            prop = prop'}
wenzelm@16656
  1027
      end
wenzelm@16656
  1028
      handle TYPE (msg, _, _) => raise THM (msg, 0, [th]);
wenzelm@6928
  1029
wenzelm@6928
  1030
end;
wenzelm@6928
  1031
clasohm@0
  1032
wenzelm@16601
  1033
(*The trivial implication A ==> A, justified by assume and forall rules.
wenzelm@16601
  1034
  A can contain Vars, not so for assume!*)
wenzelm@16601
  1035
fun trivial (Cterm {thy_ref, t =A, T, maxidx, sorts}) =
wenzelm@16601
  1036
  if T <> propT then
wenzelm@16601
  1037
    raise THM ("trivial: the term must have type prop", 0, [])
wenzelm@16601
  1038
  else
wenzelm@16601
  1039
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1040
      der = Pt.infer_derivs' I (false, Pt.AbsP ("H", NONE, Pt.PBound 0)),
wenzelm@16601
  1041
      maxidx = maxidx,
wenzelm@16601
  1042
      shyps = sorts,
wenzelm@16601
  1043
      hyps = [],
wenzelm@16601
  1044
      tpairs = [],
wenzelm@16601
  1045
      prop = implies $ A $ A};
clasohm@0
  1046
paulson@1503
  1047
(*Axiom-scheme reflecting signature contents: "OFCLASS(?'a::c, c_class)" *)
wenzelm@16425
  1048
fun class_triv thy c =
wenzelm@16601
  1049
  let val Cterm {thy_ref, t, maxidx, sorts, ...} =
wenzelm@16425
  1050
    cterm_of thy (Logic.mk_inclass (TVar (("'a", 0), [c]), c))
wenzelm@6368
  1051
      handle TERM (msg, _) => raise THM ("class_triv: " ^ msg, 0, []);
wenzelm@399
  1052
  in
wenzelm@16601
  1053
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1054
      der = Pt.infer_derivs' I (false, Pt.PAxm ("ProtoPure.class_triv:" ^ c, t, SOME [])),
wenzelm@16601
  1055
      maxidx = maxidx,
wenzelm@16601
  1056
      shyps = sorts,
wenzelm@16601
  1057
      hyps = [],
wenzelm@16601
  1058
      tpairs = [],
wenzelm@16601
  1059
      prop = t}
wenzelm@399
  1060
  end;
wenzelm@399
  1061
wenzelm@399
  1062
wenzelm@6786
  1063
(* Replace all TFrees not fixed or in the hyps by new TVars *)
wenzelm@16601
  1064
fun varifyT' fixed (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@12500
  1065
  let
berghofe@15797
  1066
    val tfrees = foldr add_term_tfrees fixed hyps;
berghofe@13658
  1067
    val prop1 = attach_tpairs tpairs prop;
berghofe@13658
  1068
    val (prop2, al) = Type.varify (prop1, tfrees);
wenzelm@16601
  1069
    val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2);
wenzelm@16601
  1070
  in
wenzelm@16601
  1071
    (Thm {thy_ref = thy_ref,
wenzelm@16601
  1072
      der = Pt.infer_derivs' (Pt.varify_proof prop tfrees) der,
wenzelm@16601
  1073
      maxidx = Int.max (0, maxidx),
wenzelm@16601
  1074
      shyps = shyps,
wenzelm@16601
  1075
      hyps = hyps,
wenzelm@16601
  1076
      tpairs = rev (map Logic.dest_equals ts),
wenzelm@16601
  1077
      prop = prop3}, al)
clasohm@0
  1078
  end;
clasohm@0
  1079
wenzelm@12500
  1080
val varifyT = #1 o varifyT' [];
wenzelm@6786
  1081
clasohm@0
  1082
(* Replace all TVars by new TFrees *)
wenzelm@16601
  1083
fun freezeT (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
berghofe@13658
  1084
  let
berghofe@13658
  1085
    val prop1 = attach_tpairs tpairs prop;
wenzelm@16287
  1086
    val prop2 = Type.freeze prop1;
wenzelm@16601
  1087
    val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2);
wenzelm@16601
  1088
  in
wenzelm@16601
  1089
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1090
      der = Pt.infer_derivs' (Pt.freezeT prop1) der,
wenzelm@16601
  1091
      maxidx = maxidx_of_term prop2,
wenzelm@16601
  1092
      shyps = shyps,
wenzelm@16601
  1093
      hyps = hyps,
wenzelm@16601
  1094
      tpairs = rev (map Logic.dest_equals ts),
wenzelm@16601
  1095
      prop = prop3}
wenzelm@1220
  1096
  end;
clasohm@0
  1097
clasohm@0
  1098
clasohm@0
  1099
(*** Inference rules for tactics ***)
clasohm@0
  1100
clasohm@0
  1101
(*Destruct proof state into constraints, other goals, goal(i), rest *)
berghofe@13658
  1102
fun dest_state (state as Thm{prop,tpairs,...}, i) =
berghofe@13658
  1103
  (case  Logic.strip_prems(i, [], prop) of
berghofe@13658
  1104
      (B::rBs, C) => (tpairs, rev rBs, B, C)
berghofe@13658
  1105
    | _ => raise THM("dest_state", i, [state]))
clasohm@0
  1106
  handle TERM _ => raise THM("dest_state", i, [state]);
clasohm@0
  1107
lcp@309
  1108
(*Increment variables and parameters of orule as required for
clasohm@0
  1109
  resolution with goal i of state. *)
clasohm@0
  1110
fun lift_rule (state, i) orule =
wenzelm@16601
  1111
  let
wenzelm@16679
  1112
    val Thm {shyps = sshyps, prop = sprop, maxidx = smax, ...} = state;
wenzelm@16601
  1113
    val (Bi :: _, _) = Logic.strip_prems (i, [], sprop)
wenzelm@16601
  1114
      handle TERM _ => raise THM ("lift_rule", i, [orule, state]);
wenzelm@16601
  1115
    val (lift_abs, lift_all) = Logic.lift_fns (Bi, smax + 1);
wenzelm@16601
  1116
    val (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) = orule;
wenzelm@16601
  1117
    val (As, B) = Logic.strip_horn prop;
wenzelm@16601
  1118
  in
wenzelm@16601
  1119
    Thm {thy_ref = merge_thys2 state orule,
wenzelm@16601
  1120
      der = Pt.infer_derivs' (Pt.lift_proof Bi (smax + 1) prop) der,
wenzelm@16601
  1121
      maxidx = maxidx + smax + 1,
wenzelm@16601
  1122
      shyps = Sorts.union sshyps shyps,
wenzelm@16601
  1123
      hyps = hyps,
wenzelm@16601
  1124
      tpairs = map (pairself lift_abs) tpairs,
wenzelm@16601
  1125
      prop = Logic.list_implies (map lift_all As, lift_all B)}
clasohm@0
  1126
  end;
clasohm@0
  1127
wenzelm@16425
  1128
fun incr_indexes i (thm as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16601
  1129
  if i < 0 then raise THM ("negative increment", 0, [thm])
wenzelm@16601
  1130
  else if i = 0 then thm
wenzelm@16601
  1131
  else
wenzelm@16425
  1132
    Thm {thy_ref = thy_ref,
wenzelm@16884
  1133
      der = Pt.infer_derivs'
wenzelm@16884
  1134
        (Pt.map_proof_terms (Logic.incr_indexes ([], i)) (Logic.incr_tvar i)) der,
wenzelm@16601
  1135
      maxidx = maxidx + i,
wenzelm@16601
  1136
      shyps = shyps,
wenzelm@16601
  1137
      hyps = hyps,
wenzelm@16601
  1138
      tpairs = map (pairself (Logic.incr_indexes ([], i))) tpairs,
wenzelm@16601
  1139
      prop = Logic.incr_indexes ([], i) prop};
berghofe@10416
  1140
clasohm@0
  1141
(*Solve subgoal Bi of proof state B1...Bn/C by assumption. *)
clasohm@0
  1142
fun assumption i state =
wenzelm@16601
  1143
  let
wenzelm@16601
  1144
    val Thm {thy_ref, der, maxidx, shyps, hyps, prop, ...} = state;
wenzelm@16656
  1145
    val thy = Theory.deref thy_ref;
wenzelm@16601
  1146
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1147
    fun newth n (env as Envir.Envir {maxidx, ...}, tpairs) =
wenzelm@16601
  1148
      Thm {thy_ref = thy_ref,
wenzelm@16601
  1149
        der = Pt.infer_derivs'
wenzelm@16601
  1150
          ((if Envir.is_empty env then I else (Pt.norm_proof' env)) o
wenzelm@16601
  1151
            Pt.assumption_proof Bs Bi n) der,
wenzelm@16601
  1152
        maxidx = maxidx,
wenzelm@16656
  1153
        shyps = may_insert_env_sorts thy env shyps,
wenzelm@16601
  1154
        hyps = hyps,
wenzelm@16601
  1155
        tpairs =
wenzelm@16601
  1156
          if Envir.is_empty env then tpairs
wenzelm@16601
  1157
          else map (pairself (Envir.norm_term env)) tpairs,
wenzelm@16601
  1158
        prop =
wenzelm@16601
  1159
          if Envir.is_empty env then (*avoid wasted normalizations*)
wenzelm@16601
  1160
            Logic.list_implies (Bs, C)
wenzelm@16601
  1161
          else (*normalize the new rule fully*)
wenzelm@16601
  1162
            Envir.norm_term env (Logic.list_implies (Bs, C))};
wenzelm@16601
  1163
    fun addprfs [] _ = Seq.empty
wenzelm@16601
  1164
      | addprfs ((t, u) :: apairs) n = Seq.make (fn () => Seq.pull
wenzelm@16601
  1165
          (Seq.mapp (newth n)
wenzelm@16656
  1166
            (Unify.unifiers (thy, Envir.empty maxidx, (t, u) :: tpairs))
wenzelm@16601
  1167
            (addprfs apairs (n + 1))))
wenzelm@16601
  1168
  in addprfs (Logic.assum_pairs (~1, Bi)) 1 end;
clasohm@0
  1169
wenzelm@250
  1170
(*Solve subgoal Bi of proof state B1...Bn/C by assumption.
clasohm@0
  1171
  Checks if Bi's conclusion is alpha-convertible to one of its assumptions*)
clasohm@0
  1172
fun eq_assumption i state =
wenzelm@16601
  1173
  let
wenzelm@16601
  1174
    val Thm {thy_ref, der, maxidx, shyps, hyps, prop, ...} = state;
wenzelm@16601
  1175
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1176
  in
wenzelm@16601
  1177
    (case find_index (op aconv) (Logic.assum_pairs (~1, Bi)) of
wenzelm@16601
  1178
      ~1 => raise THM ("eq_assumption", 0, [state])
wenzelm@16601
  1179
    | n =>
wenzelm@16601
  1180
        Thm {thy_ref = thy_ref,
wenzelm@16601
  1181
          der = Pt.infer_derivs' (Pt.assumption_proof Bs Bi (n + 1)) der,
wenzelm@16601
  1182
          maxidx = maxidx,
wenzelm@16601
  1183
          shyps = shyps,
wenzelm@16601
  1184
          hyps = hyps,
wenzelm@16601
  1185
          tpairs = tpairs,
wenzelm@16601
  1186
          prop = Logic.list_implies (Bs, C)})
clasohm@0
  1187
  end;
clasohm@0
  1188
clasohm@0
  1189
paulson@2671
  1190
(*For rotate_tac: fast rotation of assumptions of subgoal i*)
paulson@2671
  1191
fun rotate_rule k i state =
wenzelm@16601
  1192
  let
wenzelm@16601
  1193
    val Thm {thy_ref, der, maxidx, shyps, hyps, prop, ...} = state;
wenzelm@16601
  1194
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1195
    val params = Term.strip_all_vars Bi
wenzelm@16601
  1196
    and rest   = Term.strip_all_body Bi;
wenzelm@16601
  1197
    val asms   = Logic.strip_imp_prems rest
wenzelm@16601
  1198
    and concl  = Logic.strip_imp_concl rest;
wenzelm@16601
  1199
    val n = length asms;
wenzelm@16601
  1200
    val m = if k < 0 then n + k else k;
wenzelm@16601
  1201
    val Bi' =
wenzelm@16601
  1202
      if 0 = m orelse m = n then Bi
wenzelm@16601
  1203
      else if 0 < m andalso m < n then
wenzelm@16601
  1204
        let val (ps, qs) = splitAt (m, asms)
wenzelm@16601
  1205
        in list_all (params, Logic.list_implies (qs @ ps, concl)) end
wenzelm@16601
  1206
      else raise THM ("rotate_rule", k, [state]);
wenzelm@16601
  1207
  in
wenzelm@16601
  1208
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1209
      der = Pt.infer_derivs' (Pt.rotate_proof Bs Bi m) der,
wenzelm@16601
  1210
      maxidx = maxidx,
wenzelm@16601
  1211
      shyps = shyps,
wenzelm@16601
  1212
      hyps = hyps,
wenzelm@16601
  1213
      tpairs = tpairs,
wenzelm@16601
  1214
      prop = Logic.list_implies (Bs @ [Bi'], C)}
paulson@2671
  1215
  end;
paulson@2671
  1216
paulson@2671
  1217
paulson@7248
  1218
(*Rotates a rule's premises to the left by k, leaving the first j premises
paulson@7248
  1219
  unchanged.  Does nothing if k=0 or if k equals n-j, where n is the
wenzelm@16656
  1220
  number of premises.  Useful with etac and underlies defer_tac*)
paulson@7248
  1221
fun permute_prems j k rl =
wenzelm@16601
  1222
  let
wenzelm@16601
  1223
    val Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop} = rl;
wenzelm@16601
  1224
    val prems = Logic.strip_imp_prems prop
wenzelm@16601
  1225
    and concl = Logic.strip_imp_concl prop;
wenzelm@16601
  1226
    val moved_prems = List.drop (prems, j)
wenzelm@16601
  1227
    and fixed_prems = List.take (prems, j)
wenzelm@16601
  1228
      handle Subscript => raise THM ("permute_prems: j", j, [rl]);
wenzelm@16601
  1229
    val n_j = length moved_prems;
wenzelm@16601
  1230
    val m = if k < 0 then n_j + k else k;
wenzelm@16601
  1231
    val prop' =
wenzelm@16601
  1232
      if 0 = m orelse m = n_j then prop
wenzelm@16601
  1233
      else if 0 < m andalso m < n_j then
wenzelm@16601
  1234
        let val (ps, qs) = splitAt (m, moved_prems)
wenzelm@16601
  1235
        in Logic.list_implies (fixed_prems @ qs @ ps, concl) end
wenzelm@16725
  1236
      else raise THM ("permute_prems: k", k, [rl]);
wenzelm@16601
  1237
  in
wenzelm@16601
  1238
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1239
      der = Pt.infer_derivs' (Pt.permute_prems_prf prems j m) der,
wenzelm@16601
  1240
      maxidx = maxidx,
wenzelm@16601
  1241
      shyps = shyps,
wenzelm@16601
  1242
      hyps = hyps,
wenzelm@16601
  1243
      tpairs = tpairs,
wenzelm@16601
  1244
      prop = prop'}
paulson@7248
  1245
  end;
paulson@7248
  1246
paulson@7248
  1247
clasohm@0
  1248
(** User renaming of parameters in a subgoal **)
clasohm@0
  1249
clasohm@0
  1250
(*Calls error rather than raising an exception because it is intended
clasohm@0
  1251
  for top-level use -- exception handling would not make sense here.
clasohm@0
  1252
  The names in cs, if distinct, are used for the innermost parameters;
clasohm@0
  1253
   preceding parameters may be renamed to make all params distinct.*)
clasohm@0
  1254
fun rename_params_rule (cs, i) state =
wenzelm@16601
  1255
  let
wenzelm@16601
  1256
    val Thm {thy_ref, der, maxidx, shyps, hyps, ...} = state;
wenzelm@16601
  1257
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1258
    val iparams = map #1 (Logic.strip_params Bi);
wenzelm@16601
  1259
    val short = length iparams - length cs;
wenzelm@16601
  1260
    val newnames =
wenzelm@16601
  1261
      if short < 0 then error "More names than abstractions!"
wenzelm@16601
  1262
      else variantlist (Library.take (short, iparams), cs) @ cs;
wenzelm@16601
  1263
    val freenames = map (#1 o dest_Free) (term_frees Bi);
wenzelm@16601
  1264
    val newBi = Logic.list_rename_params (newnames, Bi);
wenzelm@250
  1265
  in
wenzelm@16601
  1266
    case findrep cs of
wenzelm@16601
  1267
      c :: _ => (warning ("Can't rename.  Bound variables not distinct: " ^ c); state)
wenzelm@16601
  1268
    | [] =>
wenzelm@16601
  1269
      (case cs inter_string freenames of
wenzelm@16601
  1270
        a :: _ => (warning ("Can't rename.  Bound/Free variable clash: " ^ a); state)
wenzelm@16601
  1271
      | [] =>
wenzelm@16601
  1272
        Thm {thy_ref = thy_ref,
wenzelm@16601
  1273
          der = der,
wenzelm@16601
  1274
          maxidx = maxidx,
wenzelm@16601
  1275
          shyps = shyps,
wenzelm@16601
  1276
          hyps = hyps,
wenzelm@16601
  1277
          tpairs = tpairs,
wenzelm@16601
  1278
          prop = Logic.list_implies (Bs @ [newBi], C)})
clasohm@0
  1279
  end;
clasohm@0
  1280
wenzelm@12982
  1281
clasohm@0
  1282
(*** Preservation of bound variable names ***)
clasohm@0
  1283
wenzelm@16601
  1284
fun rename_boundvars pat obj (thm as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@12982
  1285
  (case Term.rename_abs pat obj prop of
skalberg@15531
  1286
    NONE => thm
skalberg@15531
  1287
  | SOME prop' => Thm
wenzelm@16425
  1288
      {thy_ref = thy_ref,
wenzelm@12982
  1289
       der = der,
wenzelm@12982
  1290
       maxidx = maxidx,
wenzelm@12982
  1291
       hyps = hyps,
wenzelm@12982
  1292
       shyps = shyps,
berghofe@13658
  1293
       tpairs = tpairs,
wenzelm@12982
  1294
       prop = prop'});
berghofe@10416
  1295
clasohm@0
  1296
wenzelm@16656
  1297
(* strip_apply f (A, B) strips off all assumptions/parameters from A
clasohm@0
  1298
   introduced by lifting over B, and applies f to remaining part of A*)
clasohm@0
  1299
fun strip_apply f =
clasohm@0
  1300
  let fun strip(Const("==>",_)$ A1 $ B1,
wenzelm@250
  1301
                Const("==>",_)$ _  $ B2) = implies $ A1 $ strip(B1,B2)
wenzelm@250
  1302
        | strip((c as Const("all",_)) $ Abs(a,T,t1),
wenzelm@250
  1303
                      Const("all",_)  $ Abs(_,_,t2)) = c$Abs(a,T,strip(t1,t2))
wenzelm@250
  1304
        | strip(A,_) = f A
clasohm@0
  1305
  in strip end;
clasohm@0
  1306
clasohm@0
  1307
(*Use the alist to rename all bound variables and some unknowns in a term
clasohm@0
  1308
  dpairs = current disagreement pairs;  tpairs = permanent ones (flexflex);
clasohm@0
  1309
  Preserves unknowns in tpairs and on lhs of dpairs. *)
clasohm@0
  1310
fun rename_bvs([],_,_,_) = I
clasohm@0
  1311
  | rename_bvs(al,dpairs,tpairs,B) =
skalberg@15574
  1312
    let val vars = foldr add_term_vars []
skalberg@15574
  1313
                        (map fst dpairs @ map fst tpairs @ map snd tpairs)
wenzelm@250
  1314
        (*unknowns appearing elsewhere be preserved!*)
wenzelm@250
  1315
        val vids = map (#1 o #1 o dest_Var) vars;
wenzelm@250
  1316
        fun rename(t as Var((x,i),T)) =
wenzelm@17184
  1317
                (case AList.lookup (op =) al x of
skalberg@15531
  1318
                   SOME(y) => if x mem_string vids orelse y mem_string vids then t
wenzelm@250
  1319
                              else Var((y,i),T)
skalberg@15531
  1320
                 | NONE=> t)
clasohm@0
  1321
          | rename(Abs(x,T,t)) =
wenzelm@17184
  1322
              Abs (if_none (AList.lookup (op =) al x) x, T, rename t)
clasohm@0
  1323
          | rename(f$t) = rename f $ rename t
clasohm@0
  1324
          | rename(t) = t;
wenzelm@250
  1325
        fun strip_ren Ai = strip_apply rename (Ai,B)
clasohm@0
  1326
    in strip_ren end;
clasohm@0
  1327
clasohm@0
  1328
(*Function to rename bounds/unknowns in the argument, lifted over B*)
clasohm@0
  1329
fun rename_bvars(dpairs, tpairs, B) =
skalberg@15574
  1330
        rename_bvs(foldr Term.match_bvars [] dpairs, dpairs, tpairs, B);
clasohm@0
  1331
clasohm@0
  1332
clasohm@0
  1333
(*** RESOLUTION ***)
clasohm@0
  1334
lcp@721
  1335
(** Lifting optimizations **)
lcp@721
  1336
clasohm@0
  1337
(*strip off pairs of assumptions/parameters in parallel -- they are
clasohm@0
  1338
  identical because of lifting*)
wenzelm@250
  1339
fun strip_assums2 (Const("==>", _) $ _ $ B1,
wenzelm@250
  1340
                   Const("==>", _) $ _ $ B2) = strip_assums2 (B1,B2)
clasohm@0
  1341
  | strip_assums2 (Const("all",_)$Abs(a,T,t1),
wenzelm@250
  1342
                   Const("all",_)$Abs(_,_,t2)) =
clasohm@0
  1343
      let val (B1,B2) = strip_assums2 (t1,t2)
clasohm@0
  1344
      in  (Abs(a,T,B1), Abs(a,T,B2))  end
clasohm@0
  1345
  | strip_assums2 BB = BB;
clasohm@0
  1346
clasohm@0
  1347
lcp@721
  1348
(*Faster normalization: skip assumptions that were lifted over*)
lcp@721
  1349
fun norm_term_skip env 0 t = Envir.norm_term env t
lcp@721
  1350
  | norm_term_skip env n (Const("all",_)$Abs(a,T,t)) =
lcp@721
  1351
        let val Envir.Envir{iTs, ...} = env
berghofe@15797
  1352
            val T' = Envir.typ_subst_TVars iTs T
wenzelm@1238
  1353
            (*Must instantiate types of parameters because they are flattened;
lcp@721
  1354
              this could be a NEW parameter*)
lcp@721
  1355
        in  all T' $ Abs(a, T', norm_term_skip env n t)  end
lcp@721
  1356
  | norm_term_skip env n (Const("==>", _) $ A $ B) =
wenzelm@1238
  1357
        implies $ A $ norm_term_skip env (n-1) B
lcp@721
  1358
  | norm_term_skip env n t = error"norm_term_skip: too few assumptions??";
lcp@721
  1359
lcp@721
  1360
clasohm@0
  1361
(*Composition of object rule r=(A1...Am/B) with proof state s=(B1...Bn/C)
wenzelm@250
  1362
  Unifies B with Bi, replacing subgoal i    (1 <= i <= n)
clasohm@0
  1363
  If match then forbid instantiations in proof state
clasohm@0
  1364
  If lifted then shorten the dpair using strip_assums2.
clasohm@0
  1365
  If eres_flg then simultaneously proves A1 by assumption.
wenzelm@250
  1366
  nsubgoal is the number of new subgoals (written m above).
clasohm@0
  1367
  Curried so that resolution calls dest_state only once.
clasohm@0
  1368
*)
wenzelm@4270
  1369
local exception COMPOSE
clasohm@0
  1370
in
wenzelm@250
  1371
fun bicompose_aux match (state, (stpairs, Bs, Bi, C), lifted)
clasohm@0
  1372
                        (eres_flg, orule, nsubgoal) =
paulson@1529
  1373
 let val Thm{der=sder, maxidx=smax, shyps=sshyps, hyps=shyps, ...} = state
wenzelm@16425
  1374
     and Thm{der=rder, maxidx=rmax, shyps=rshyps, hyps=rhyps,
berghofe@13658
  1375
             tpairs=rtpairs, prop=rprop,...} = orule
paulson@1529
  1376
         (*How many hyps to skip over during normalization*)
wenzelm@1238
  1377
     and nlift = Logic.count_prems(strip_all_body Bi,
wenzelm@1238
  1378
                                   if eres_flg then ~1 else 0)
wenzelm@16601
  1379
     val thy_ref = merge_thys2 state orule;
wenzelm@16425
  1380
     val thy = Theory.deref thy_ref;
clasohm@0
  1381
     (** Add new theorem with prop = '[| Bs; As |] ==> C' to thq **)
berghofe@11518
  1382
     fun addth A (As, oldAs, rder', n) ((env as Envir.Envir {maxidx, ...}, tpairs), thq) =
wenzelm@250
  1383
       let val normt = Envir.norm_term env;
wenzelm@250
  1384
           (*perform minimal copying here by examining env*)
berghofe@13658
  1385
           val (ntpairs, normp) =
berghofe@13658
  1386
             if Envir.is_empty env then (tpairs, (Bs @ As, C))
wenzelm@250
  1387
             else
wenzelm@250
  1388
             let val ntps = map (pairself normt) tpairs
paulson@2147
  1389
             in if Envir.above (smax, env) then
wenzelm@1238
  1390
                  (*no assignments in state; normalize the rule only*)
wenzelm@1238
  1391
                  if lifted
berghofe@13658
  1392
                  then (ntps, (Bs @ map (norm_term_skip env nlift) As, C))
berghofe@13658
  1393
                  else (ntps, (Bs @ map normt As, C))
paulson@1529
  1394
                else if match then raise COMPOSE
wenzelm@250
  1395
                else (*normalize the new rule fully*)
berghofe@13658
  1396
                  (ntps, (map normt (Bs @ As), normt C))
wenzelm@250
  1397
             end
wenzelm@16601
  1398
           val th =
wenzelm@16425
  1399
             Thm{thy_ref = thy_ref,
berghofe@11518
  1400
                 der = Pt.infer_derivs
berghofe@11518
  1401
                   ((if Envir.is_empty env then I
berghofe@11518
  1402
                     else if Envir.above (smax, env) then
berghofe@11518
  1403
                       (fn f => fn der => f (Pt.norm_proof' env der))
berghofe@11518
  1404
                     else
berghofe@11518
  1405
                       curry op oo (Pt.norm_proof' env))
berghofe@11518
  1406
                    (Pt.bicompose_proof Bs oldAs As A n)) rder' sder,
wenzelm@2386
  1407
                 maxidx = maxidx,
wenzelm@16656
  1408
                 shyps = may_insert_env_sorts thy env (Sorts.union rshyps sshyps),
wenzelm@16601
  1409
                 hyps = union_hyps rhyps shyps,
berghofe@13658
  1410
                 tpairs = ntpairs,
berghofe@13658
  1411
                 prop = Logic.list_implies normp}
berghofe@11518
  1412
        in  Seq.cons(th, thq)  end  handle COMPOSE => thq;
berghofe@13658
  1413
     val (rAs,B) = Logic.strip_prems(nsubgoal, [], rprop)
clasohm@0
  1414
       handle TERM _ => raise THM("bicompose: rule", 0, [orule,state]);
clasohm@0
  1415
     (*Modify assumptions, deleting n-th if n>0 for e-resolution*)
clasohm@0
  1416
     fun newAs(As0, n, dpairs, tpairs) =
berghofe@11518
  1417
       let val (As1, rder') =
berghofe@11518
  1418
         if !Logic.auto_rename orelse not lifted then (As0, rder)
berghofe@11518
  1419
         else (map (rename_bvars(dpairs,tpairs,B)) As0,
berghofe@11518
  1420
           Pt.infer_derivs' (Pt.map_proof_terms
berghofe@11518
  1421
             (rename_bvars (dpairs, tpairs, Bound 0)) I) rder);
berghofe@11518
  1422
       in (map (Logic.flatten_params n) As1, As1, rder', n)
wenzelm@250
  1423
          handle TERM _ =>
wenzelm@250
  1424
          raise THM("bicompose: 1st premise", 0, [orule])
clasohm@0
  1425
       end;
paulson@2147
  1426
     val env = Envir.empty(Int.max(rmax,smax));
clasohm@0
  1427
     val BBi = if lifted then strip_assums2(B,Bi) else (B,Bi);
clasohm@0
  1428
     val dpairs = BBi :: (rtpairs@stpairs);
clasohm@0
  1429
     (*elim-resolution: try each assumption in turn.  Initially n=1*)
berghofe@11518
  1430
     fun tryasms (_, _, _, []) = Seq.empty
berghofe@11518
  1431
       | tryasms (A, As, n, (t,u)::apairs) =
wenzelm@16425
  1432
          (case Seq.pull(Unify.unifiers(thy, env, (t,u)::dpairs))  of
wenzelm@16425
  1433
              NONE                   => tryasms (A, As, n+1, apairs)
wenzelm@16425
  1434
            | cell as SOME((_,tpairs),_) =>
wenzelm@16425
  1435
                Seq.it_right (addth A (newAs(As, n, [BBi,(u,t)], tpairs)))
wenzelm@16425
  1436
                    (Seq.make(fn()=> cell),
wenzelm@16425
  1437
                     Seq.make(fn()=> Seq.pull (tryasms(A, As, n+1, apairs)))))
clasohm@0
  1438
     fun eres [] = raise THM("bicompose: no premises", 0, [orule,state])
skalberg@15531
  1439
       | eres (A1::As) = tryasms(SOME A1, As, 1, Logic.assum_pairs(nlift+1,A1))
clasohm@0
  1440
     (*ordinary resolution*)
skalberg@15531
  1441
     fun res(NONE) = Seq.empty
skalberg@15531
  1442
       | res(cell as SOME((_,tpairs),_)) =
skalberg@15531
  1443
             Seq.it_right (addth NONE (newAs(rev rAs, 0, [BBi], tpairs)))
wenzelm@4270
  1444
                       (Seq.make (fn()=> cell), Seq.empty)
clasohm@0
  1445
 in  if eres_flg then eres(rev rAs)
wenzelm@16425
  1446
     else res(Seq.pull(Unify.unifiers(thy, env, dpairs)))
clasohm@0
  1447
 end;
wenzelm@7528
  1448
end;
clasohm@0
  1449
clasohm@0
  1450
clasohm@0
  1451
fun bicompose match arg i state =
clasohm@0
  1452
    bicompose_aux match (state, dest_state(state,i), false) arg;
clasohm@0
  1453
clasohm@0
  1454
(*Quick test whether rule is resolvable with the subgoal with hyps Hs
clasohm@0
  1455
  and conclusion B.  If eres_flg then checks 1st premise of rule also*)
clasohm@0
  1456
fun could_bires (Hs, B, eres_flg, rule) =
wenzelm@16847
  1457
    let fun could_reshyp (A1::_) = exists (fn H => could_unify (A1, H)) Hs
wenzelm@250
  1458
          | could_reshyp [] = false;  (*no premise -- illegal*)
wenzelm@250
  1459
    in  could_unify(concl_of rule, B) andalso
wenzelm@250
  1460
        (not eres_flg  orelse  could_reshyp (prems_of rule))
clasohm@0
  1461
    end;
clasohm@0
  1462
clasohm@0
  1463
(*Bi-resolution of a state with a list of (flag,rule) pairs.
clasohm@0
  1464
  Puts the rule above:  rule/state.  Renames vars in the rules. *)
wenzelm@250
  1465
fun biresolution match brules i state =
clasohm@0
  1466
    let val lift = lift_rule(state, i);
wenzelm@250
  1467
        val (stpairs, Bs, Bi, C) = dest_state(state,i)
wenzelm@250
  1468
        val B = Logic.strip_assums_concl Bi;
wenzelm@250
  1469
        val Hs = Logic.strip_assums_hyp Bi;
wenzelm@250
  1470
        val comp = bicompose_aux match (state, (stpairs, Bs, Bi, C), true);
wenzelm@4270
  1471
        fun res [] = Seq.empty
wenzelm@250
  1472
          | res ((eres_flg, rule)::brules) =
nipkow@13642
  1473
              if !Pattern.trace_unify_fail orelse
nipkow@13642
  1474
                 could_bires (Hs, B, eres_flg, rule)
wenzelm@4270
  1475
              then Seq.make (*delay processing remainder till needed*)
skalberg@15531
  1476
                  (fn()=> SOME(comp (eres_flg, lift rule, nprems_of rule),
wenzelm@250
  1477
                               res brules))
wenzelm@250
  1478
              else res brules
wenzelm@4270
  1479
    in  Seq.flat (res brules)  end;
clasohm@0
  1480
clasohm@0
  1481
wenzelm@2509
  1482
(*** Oracles ***)
wenzelm@2509
  1483
wenzelm@16425
  1484
fun invoke_oracle_i thy1 name =
wenzelm@3812
  1485
  let
wenzelm@3812
  1486
    val oracle =
wenzelm@17412
  1487
      (case Symtab.lookup (#2 (#oracles (Theory.rep_theory thy1))) name of
skalberg@15531
  1488
        NONE => raise THM ("Unknown oracle: " ^ name, 0, [])
skalberg@15531
  1489
      | SOME (f, _) => f);
wenzelm@16847
  1490
    val thy_ref1 = Theory.self_ref thy1;
wenzelm@3812
  1491
  in
wenzelm@16425
  1492
    fn (thy2, data) =>
wenzelm@3812
  1493
      let
wenzelm@16847
  1494
        val thy' = Theory.merge (Theory.deref thy_ref1, thy2);
wenzelm@14828
  1495
        val (prop, T, maxidx) =
wenzelm@16425
  1496
          Sign.certify_term (Sign.pp thy') thy' (oracle (thy', data));
wenzelm@3812
  1497
      in
wenzelm@3812
  1498
        if T <> propT then
wenzelm@3812
  1499
          raise THM ("Oracle's result must have type prop: " ^ name, 0, [])
wenzelm@16601
  1500
        else
wenzelm@16601
  1501
          Thm {thy_ref = Theory.self_ref thy',
berghofe@11518
  1502
            der = (true, Pt.oracle_proof name prop),
wenzelm@3812
  1503
            maxidx = maxidx,
wenzelm@16656
  1504
            shyps = may_insert_term_sorts thy' prop [],
wenzelm@16425
  1505
            hyps = [],
berghofe@13658
  1506
            tpairs = [],
wenzelm@16601
  1507
            prop = prop}
wenzelm@3812
  1508
      end
wenzelm@3812
  1509
  end;
wenzelm@3812
  1510
wenzelm@15672
  1511
fun invoke_oracle thy =
wenzelm@16425
  1512
  invoke_oracle_i thy o NameSpace.intern (Theory.oracle_space thy);
wenzelm@15672
  1513
clasohm@0
  1514
end;
paulson@1503
  1515
wenzelm@6089
  1516
structure BasicThm: BASIC_THM = Thm;
wenzelm@6089
  1517
open BasicThm;