src/HOL/Power.thy
author ballarin
Fri Aug 26 10:01:06 2005 +0200 (2005-08-26)
changeset 17149 e2b19c92ef51
parent 16796 140f1e0ea846
child 21199 2d83f93c3580
permissions -rw-r--r--
Lemmas on dvd, power and finite summation added or strengthened.
paulson@3390
     1
(*  Title:      HOL/Power.thy
paulson@3390
     2
    ID:         $Id$
paulson@3390
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@3390
     4
    Copyright   1997  University of Cambridge
paulson@3390
     5
paulson@3390
     6
*)
paulson@3390
     7
nipkow@16733
     8
header{*Exponentiation*}
paulson@14348
     9
nipkow@15131
    10
theory Power
nipkow@15140
    11
imports Divides
nipkow@15131
    12
begin
paulson@14348
    13
paulson@15066
    14
subsection{*Powers for Arbitrary Semirings*}
paulson@14348
    15
paulson@15004
    16
axclass recpower \<subseteq> comm_semiring_1_cancel, power
paulson@15004
    17
  power_0 [simp]: "a ^ 0       = 1"
paulson@15004
    18
  power_Suc:      "a ^ (Suc n) = a * (a ^ n)"
paulson@14348
    19
paulson@15004
    20
lemma power_0_Suc [simp]: "(0::'a::recpower) ^ (Suc n) = 0"
paulson@14348
    21
by (simp add: power_Suc)
paulson@14348
    22
paulson@14348
    23
text{*It looks plausible as a simprule, but its effect can be strange.*}
paulson@15004
    24
lemma power_0_left: "0^n = (if n=0 then 1 else (0::'a::recpower))"
paulson@15251
    25
by (induct "n", auto)
paulson@14348
    26
paulson@15004
    27
lemma power_one [simp]: "1^n = (1::'a::recpower)"
paulson@15251
    28
apply (induct "n")
wenzelm@14577
    29
apply (auto simp add: power_Suc)
paulson@14348
    30
done
paulson@14348
    31
paulson@15004
    32
lemma power_one_right [simp]: "(a::'a::recpower) ^ 1 = a"
paulson@14348
    33
by (simp add: power_Suc)
paulson@14348
    34
paulson@15004
    35
lemma power_add: "(a::'a::recpower) ^ (m+n) = (a^m) * (a^n)"
paulson@15251
    36
apply (induct "n")
paulson@14348
    37
apply (simp_all add: power_Suc mult_ac)
paulson@14348
    38
done
paulson@14348
    39
paulson@15004
    40
lemma power_mult: "(a::'a::recpower) ^ (m*n) = (a^m) ^ n"
paulson@15251
    41
apply (induct "n")
paulson@14348
    42
apply (simp_all add: power_Suc power_add)
paulson@14348
    43
done
paulson@14348
    44
paulson@15004
    45
lemma power_mult_distrib: "((a::'a::recpower) * b) ^ n = (a^n) * (b^n)"
paulson@15251
    46
apply (induct "n")
paulson@14348
    47
apply (auto simp add: power_Suc mult_ac)
paulson@14348
    48
done
paulson@14348
    49
paulson@14348
    50
lemma zero_less_power:
paulson@15004
    51
     "0 < (a::'a::{ordered_semidom,recpower}) ==> 0 < a^n"
paulson@15251
    52
apply (induct "n")
avigad@16775
    53
apply (simp_all add: power_Suc zero_less_one mult_pos_pos)
paulson@14348
    54
done
paulson@14348
    55
paulson@14348
    56
lemma zero_le_power:
paulson@15004
    57
     "0 \<le> (a::'a::{ordered_semidom,recpower}) ==> 0 \<le> a^n"
paulson@14348
    58
apply (simp add: order_le_less)
wenzelm@14577
    59
apply (erule disjE)
paulson@14348
    60
apply (simp_all add: zero_less_power zero_less_one power_0_left)
paulson@14348
    61
done
paulson@14348
    62
paulson@14348
    63
lemma one_le_power:
paulson@15004
    64
     "1 \<le> (a::'a::{ordered_semidom,recpower}) ==> 1 \<le> a^n"
paulson@15251
    65
apply (induct "n")
paulson@14348
    66
apply (simp_all add: power_Suc)
wenzelm@14577
    67
apply (rule order_trans [OF _ mult_mono [of 1 _ 1]])
wenzelm@14577
    68
apply (simp_all add: zero_le_one order_trans [OF zero_le_one])
paulson@14348
    69
done
paulson@14348
    70
obua@14738
    71
lemma gt1_imp_ge0: "1 < a ==> 0 \<le> (a::'a::ordered_semidom)"
paulson@14348
    72
  by (simp add: order_trans [OF zero_le_one order_less_imp_le])
paulson@14348
    73
paulson@14348
    74
lemma power_gt1_lemma:
paulson@15004
    75
  assumes gt1: "1 < (a::'a::{ordered_semidom,recpower})"
wenzelm@14577
    76
  shows "1 < a * a^n"
paulson@14348
    77
proof -
wenzelm@14577
    78
  have "1*1 < a*1" using gt1 by simp
wenzelm@14577
    79
  also have "\<dots> \<le> a * a^n" using gt1
wenzelm@14577
    80
    by (simp only: mult_mono gt1_imp_ge0 one_le_power order_less_imp_le
wenzelm@14577
    81
        zero_le_one order_refl)
wenzelm@14577
    82
  finally show ?thesis by simp
paulson@14348
    83
qed
paulson@14348
    84
paulson@14348
    85
lemma power_gt1:
paulson@15004
    86
     "1 < (a::'a::{ordered_semidom,recpower}) ==> 1 < a ^ (Suc n)"
paulson@14348
    87
by (simp add: power_gt1_lemma power_Suc)
paulson@14348
    88
paulson@14348
    89
lemma power_le_imp_le_exp:
paulson@15004
    90
  assumes gt1: "(1::'a::{recpower,ordered_semidom}) < a"
wenzelm@14577
    91
  shows "!!n. a^m \<le> a^n ==> m \<le> n"
wenzelm@14577
    92
proof (induct m)
paulson@14348
    93
  case 0
wenzelm@14577
    94
  show ?case by simp
paulson@14348
    95
next
paulson@14348
    96
  case (Suc m)
wenzelm@14577
    97
  show ?case
wenzelm@14577
    98
  proof (cases n)
wenzelm@14577
    99
    case 0
wenzelm@14577
   100
    from prems have "a * a^m \<le> 1" by (simp add: power_Suc)
wenzelm@14577
   101
    with gt1 show ?thesis
wenzelm@14577
   102
      by (force simp only: power_gt1_lemma
wenzelm@14577
   103
          linorder_not_less [symmetric])
wenzelm@14577
   104
  next
wenzelm@14577
   105
    case (Suc n)
wenzelm@14577
   106
    from prems show ?thesis
wenzelm@14577
   107
      by (force dest: mult_left_le_imp_le
wenzelm@14577
   108
          simp add: power_Suc order_less_trans [OF zero_less_one gt1])
wenzelm@14577
   109
  qed
paulson@14348
   110
qed
paulson@14348
   111
wenzelm@14577
   112
text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*}
paulson@14348
   113
lemma power_inject_exp [simp]:
paulson@15004
   114
     "1 < (a::'a::{ordered_semidom,recpower}) ==> (a^m = a^n) = (m=n)"
wenzelm@14577
   115
  by (force simp add: order_antisym power_le_imp_le_exp)
paulson@14348
   116
paulson@14348
   117
text{*Can relax the first premise to @{term "0<a"} in the case of the
paulson@14348
   118
natural numbers.*}
paulson@14348
   119
lemma power_less_imp_less_exp:
paulson@15004
   120
     "[| (1::'a::{recpower,ordered_semidom}) < a; a^m < a^n |] ==> m < n"
wenzelm@14577
   121
by (simp add: order_less_le [of m n] order_less_le [of "a^m" "a^n"]
wenzelm@14577
   122
              power_le_imp_le_exp)
paulson@14348
   123
paulson@14348
   124
paulson@14348
   125
lemma power_mono:
paulson@15004
   126
     "[|a \<le> b; (0::'a::{recpower,ordered_semidom}) \<le> a|] ==> a^n \<le> b^n"
paulson@15251
   127
apply (induct "n")
paulson@14348
   128
apply (simp_all add: power_Suc)
paulson@14348
   129
apply (auto intro: mult_mono zero_le_power order_trans [of 0 a b])
paulson@14348
   130
done
paulson@14348
   131
paulson@14348
   132
lemma power_strict_mono [rule_format]:
paulson@15004
   133
     "[|a < b; (0::'a::{recpower,ordered_semidom}) \<le> a|]
wenzelm@14577
   134
      ==> 0 < n --> a^n < b^n"
paulson@15251
   135
apply (induct "n")
paulson@14348
   136
apply (auto simp add: mult_strict_mono zero_le_power power_Suc
paulson@14348
   137
                      order_le_less_trans [of 0 a b])
paulson@14348
   138
done
paulson@14348
   139
paulson@14348
   140
lemma power_eq_0_iff [simp]:
paulson@15004
   141
     "(a^n = 0) = (a = (0::'a::{ordered_idom,recpower}) & 0<n)"
paulson@15251
   142
apply (induct "n")
paulson@14348
   143
apply (auto simp add: power_Suc zero_neq_one [THEN not_sym])
paulson@14348
   144
done
paulson@14348
   145
paulson@14348
   146
lemma field_power_eq_0_iff [simp]:
paulson@15004
   147
     "(a^n = 0) = (a = (0::'a::{field,recpower}) & 0<n)"
paulson@15251
   148
apply (induct "n")
paulson@14348
   149
apply (auto simp add: power_Suc field_mult_eq_0_iff zero_neq_one[THEN not_sym])
paulson@14348
   150
done
paulson@14348
   151
paulson@15004
   152
lemma field_power_not_zero: "a \<noteq> (0::'a::{field,recpower}) ==> a^n \<noteq> 0"
paulson@14348
   153
by force
paulson@14348
   154
paulson@14353
   155
lemma nonzero_power_inverse:
paulson@15004
   156
  "a \<noteq> 0 ==> inverse ((a::'a::{field,recpower}) ^ n) = (inverse a) ^ n"
paulson@15251
   157
apply (induct "n")
paulson@14353
   158
apply (auto simp add: power_Suc nonzero_inverse_mult_distrib mult_commute)
paulson@14353
   159
done
paulson@14353
   160
paulson@14348
   161
text{*Perhaps these should be simprules.*}
paulson@14348
   162
lemma power_inverse:
paulson@15004
   163
  "inverse ((a::'a::{field,division_by_zero,recpower}) ^ n) = (inverse a) ^ n"
paulson@15251
   164
apply (induct "n")
paulson@14348
   165
apply (auto simp add: power_Suc inverse_mult_distrib)
paulson@14348
   166
done
paulson@14348
   167
avigad@16775
   168
lemma power_one_over: "1 / (a::'a::{field,division_by_zero,recpower})^n = 
avigad@16775
   169
    (1 / a)^n"
avigad@16775
   170
apply (simp add: divide_inverse)
avigad@16775
   171
apply (rule power_inverse)
avigad@16775
   172
done
avigad@16775
   173
wenzelm@14577
   174
lemma nonzero_power_divide:
paulson@15004
   175
    "b \<noteq> 0 ==> (a/b) ^ n = ((a::'a::{field,recpower}) ^ n) / (b ^ n)"
paulson@14353
   176
by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse)
paulson@14353
   177
wenzelm@14577
   178
lemma power_divide:
paulson@15004
   179
    "(a/b) ^ n = ((a::'a::{field,division_by_zero,recpower}) ^ n / b ^ n)"
paulson@14353
   180
apply (case_tac "b=0", simp add: power_0_left)
wenzelm@14577
   181
apply (rule nonzero_power_divide)
wenzelm@14577
   182
apply assumption
paulson@14353
   183
done
paulson@14353
   184
paulson@15004
   185
lemma power_abs: "abs(a ^ n) = abs(a::'a::{ordered_idom,recpower}) ^ n"
paulson@15251
   186
apply (induct "n")
paulson@14348
   187
apply (auto simp add: power_Suc abs_mult)
paulson@14348
   188
done
paulson@14348
   189
paulson@14353
   190
lemma zero_less_power_abs_iff [simp]:
paulson@15004
   191
     "(0 < (abs a)^n) = (a \<noteq> (0::'a::{ordered_idom,recpower}) | n=0)"
paulson@14353
   192
proof (induct "n")
paulson@14353
   193
  case 0
paulson@14353
   194
    show ?case by (simp add: zero_less_one)
paulson@14353
   195
next
paulson@14353
   196
  case (Suc n)
paulson@14353
   197
    show ?case by (force simp add: prems power_Suc zero_less_mult_iff)
paulson@14353
   198
qed
paulson@14353
   199
paulson@14353
   200
lemma zero_le_power_abs [simp]:
paulson@15004
   201
     "(0::'a::{ordered_idom,recpower}) \<le> (abs a)^n"
paulson@15251
   202
apply (induct "n")
paulson@14353
   203
apply (auto simp add: zero_le_one zero_le_power)
paulson@14353
   204
done
paulson@14353
   205
paulson@15004
   206
lemma power_minus: "(-a) ^ n = (- 1)^n * (a::'a::{comm_ring_1,recpower}) ^ n"
paulson@14348
   207
proof -
paulson@14348
   208
  have "-a = (- 1) * a"  by (simp add: minus_mult_left [symmetric])
paulson@14348
   209
  thus ?thesis by (simp only: power_mult_distrib)
paulson@14348
   210
qed
paulson@14348
   211
paulson@14348
   212
text{*Lemma for @{text power_strict_decreasing}*}
paulson@14348
   213
lemma power_Suc_less:
paulson@15004
   214
     "[|(0::'a::{ordered_semidom,recpower}) < a; a < 1|]
paulson@14348
   215
      ==> a * a^n < a^n"
paulson@15251
   216
apply (induct n)
wenzelm@14577
   217
apply (auto simp add: power_Suc mult_strict_left_mono)
paulson@14348
   218
done
paulson@14348
   219
paulson@14348
   220
lemma power_strict_decreasing:
paulson@15004
   221
     "[|n < N; 0 < a; a < (1::'a::{ordered_semidom,recpower})|]
paulson@14348
   222
      ==> a^N < a^n"
wenzelm@14577
   223
apply (erule rev_mp)
paulson@15251
   224
apply (induct "N")
wenzelm@14577
   225
apply (auto simp add: power_Suc power_Suc_less less_Suc_eq)
wenzelm@14577
   226
apply (rename_tac m)
paulson@14348
   227
apply (subgoal_tac "a * a^m < 1 * a^n", simp)
wenzelm@14577
   228
apply (rule mult_strict_mono)
paulson@14348
   229
apply (auto simp add: zero_le_power zero_less_one order_less_imp_le)
paulson@14348
   230
done
paulson@14348
   231
paulson@14348
   232
text{*Proof resembles that of @{text power_strict_decreasing}*}
paulson@14348
   233
lemma power_decreasing:
paulson@15004
   234
     "[|n \<le> N; 0 \<le> a; a \<le> (1::'a::{ordered_semidom,recpower})|]
paulson@14348
   235
      ==> a^N \<le> a^n"
wenzelm@14577
   236
apply (erule rev_mp)
paulson@15251
   237
apply (induct "N")
wenzelm@14577
   238
apply (auto simp add: power_Suc  le_Suc_eq)
wenzelm@14577
   239
apply (rename_tac m)
paulson@14348
   240
apply (subgoal_tac "a * a^m \<le> 1 * a^n", simp)
wenzelm@14577
   241
apply (rule mult_mono)
paulson@14348
   242
apply (auto simp add: zero_le_power zero_le_one)
paulson@14348
   243
done
paulson@14348
   244
paulson@14348
   245
lemma power_Suc_less_one:
paulson@15004
   246
     "[| 0 < a; a < (1::'a::{ordered_semidom,recpower}) |] ==> a ^ Suc n < 1"
wenzelm@14577
   247
apply (insert power_strict_decreasing [of 0 "Suc n" a], simp)
paulson@14348
   248
done
paulson@14348
   249
paulson@14348
   250
text{*Proof again resembles that of @{text power_strict_decreasing}*}
paulson@14348
   251
lemma power_increasing:
paulson@15004
   252
     "[|n \<le> N; (1::'a::{ordered_semidom,recpower}) \<le> a|] ==> a^n \<le> a^N"
wenzelm@14577
   253
apply (erule rev_mp)
paulson@15251
   254
apply (induct "N")
wenzelm@14577
   255
apply (auto simp add: power_Suc le_Suc_eq)
paulson@14348
   256
apply (rename_tac m)
paulson@14348
   257
apply (subgoal_tac "1 * a^n \<le> a * a^m", simp)
wenzelm@14577
   258
apply (rule mult_mono)
paulson@14348
   259
apply (auto simp add: order_trans [OF zero_le_one] zero_le_power)
paulson@14348
   260
done
paulson@14348
   261
paulson@14348
   262
text{*Lemma for @{text power_strict_increasing}*}
paulson@14348
   263
lemma power_less_power_Suc:
paulson@15004
   264
     "(1::'a::{ordered_semidom,recpower}) < a ==> a^n < a * a^n"
paulson@15251
   265
apply (induct n)
wenzelm@14577
   266
apply (auto simp add: power_Suc mult_strict_left_mono order_less_trans [OF zero_less_one])
paulson@14348
   267
done
paulson@14348
   268
paulson@14348
   269
lemma power_strict_increasing:
paulson@15004
   270
     "[|n < N; (1::'a::{ordered_semidom,recpower}) < a|] ==> a^n < a^N"
wenzelm@14577
   271
apply (erule rev_mp)
paulson@15251
   272
apply (induct "N")
wenzelm@14577
   273
apply (auto simp add: power_less_power_Suc power_Suc less_Suc_eq)
paulson@14348
   274
apply (rename_tac m)
paulson@14348
   275
apply (subgoal_tac "1 * a^n < a * a^m", simp)
wenzelm@14577
   276
apply (rule mult_strict_mono)
paulson@14348
   277
apply (auto simp add: order_less_trans [OF zero_less_one] zero_le_power
paulson@14348
   278
                 order_less_imp_le)
paulson@14348
   279
done
paulson@14348
   280
paulson@15066
   281
lemma power_increasing_iff [simp]: 
paulson@15066
   282
     "1 < (b::'a::{ordered_semidom,recpower}) ==> (b ^ x \<le> b ^ y) = (x \<le> y)"
paulson@15066
   283
  by (blast intro: power_le_imp_le_exp power_increasing order_less_imp_le) 
paulson@15066
   284
paulson@15066
   285
lemma power_strict_increasing_iff [simp]:
paulson@15066
   286
     "1 < (b::'a::{ordered_semidom,recpower}) ==> (b ^ x < b ^ y) = (x < y)"
paulson@15066
   287
  by (blast intro: power_less_imp_less_exp power_strict_increasing) 
paulson@15066
   288
paulson@14348
   289
lemma power_le_imp_le_base:
paulson@14348
   290
  assumes le: "a ^ Suc n \<le> b ^ Suc n"
paulson@15004
   291
      and xnonneg: "(0::'a::{ordered_semidom,recpower}) \<le> a"
paulson@14348
   292
      and ynonneg: "0 \<le> b"
paulson@14348
   293
  shows "a \<le> b"
paulson@14348
   294
 proof (rule ccontr)
paulson@14348
   295
   assume "~ a \<le> b"
paulson@14348
   296
   then have "b < a" by (simp only: linorder_not_le)
paulson@14348
   297
   then have "b ^ Suc n < a ^ Suc n"
wenzelm@14577
   298
     by (simp only: prems power_strict_mono)
paulson@14348
   299
   from le and this show "False"
paulson@14348
   300
      by (simp add: linorder_not_less [symmetric])
paulson@14348
   301
 qed
wenzelm@14577
   302
paulson@14348
   303
lemma power_inject_base:
wenzelm@14577
   304
     "[| a ^ Suc n = b ^ Suc n; 0 \<le> a; 0 \<le> b |]
paulson@15004
   305
      ==> a = (b::'a::{ordered_semidom,recpower})"
paulson@14348
   306
by (blast intro: power_le_imp_le_base order_antisym order_eq_refl sym)
paulson@14348
   307
paulson@14348
   308
paulson@14348
   309
subsection{*Exponentiation for the Natural Numbers*}
paulson@3390
   310
wenzelm@8844
   311
primrec (power)
paulson@3390
   312
  "p ^ 0 = 1"
paulson@3390
   313
  "p ^ (Suc n) = (p::nat) * (p ^ n)"
wenzelm@14577
   314
paulson@15004
   315
instance nat :: recpower
paulson@14348
   316
proof
paulson@14438
   317
  fix z n :: nat
paulson@14348
   318
  show "z^0 = 1" by simp
paulson@14348
   319
  show "z^(Suc n) = z * (z^n)" by simp
paulson@14348
   320
qed
paulson@14348
   321
paulson@14348
   322
lemma nat_one_le_power [simp]: "1 \<le> i ==> Suc 0 \<le> i^n"
paulson@14348
   323
by (insert one_le_power [of i n], simp)
paulson@14348
   324
paulson@14348
   325
lemma le_imp_power_dvd: "!!i::nat. m \<le> n ==> i^m dvd i^n"
paulson@14348
   326
apply (unfold dvd_def)
paulson@16796
   327
apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst])
paulson@14348
   328
apply (simp add: power_add)
paulson@14348
   329
done
paulson@14348
   330
paulson@14348
   331
text{*Valid for the naturals, but what if @{text"0<i<1"}?
paulson@14348
   332
Premises cannot be weakened: consider the case where @{term "i=0"},
paulson@14348
   333
@{term "m=1"} and @{term "n=0"}.*}
paulson@14348
   334
lemma nat_power_less_imp_less: "!!i::nat. [| 0 < i; i^m < i^n |] ==> m < n"
paulson@14348
   335
apply (rule ccontr)
paulson@14348
   336
apply (drule leI [THEN le_imp_power_dvd, THEN dvd_imp_le, THEN leD])
wenzelm@14577
   337
apply (erule zero_less_power, auto)
paulson@14348
   338
done
paulson@14348
   339
paulson@14348
   340
lemma nat_zero_less_power_iff [simp]: "(0 < x^n) = (x \<noteq> (0::nat) | n=0)"
paulson@15251
   341
by (induct "n", auto)
paulson@14348
   342
paulson@14348
   343
lemma power_le_dvd [rule_format]: "k^j dvd n --> i\<le>j --> k^i dvd (n::nat)"
paulson@15251
   344
apply (induct "j")
paulson@14348
   345
apply (simp_all add: le_Suc_eq)
paulson@14348
   346
apply (blast dest!: dvd_mult_right)
paulson@14348
   347
done
paulson@14348
   348
paulson@14348
   349
lemma power_dvd_imp_le: "[|i^m dvd i^n;  (1::nat) < i|] ==> m \<le> n"
paulson@14348
   350
apply (rule power_le_imp_le_exp, assumption)
paulson@14348
   351
apply (erule dvd_imp_le, simp)
paulson@14348
   352
done
paulson@14348
   353
ballarin@17149
   354
lemma power_diff:
ballarin@17149
   355
  assumes nz: "a ~= 0"
ballarin@17149
   356
  shows "n <= m ==> (a::'a::{recpower, field}) ^ (m-n) = (a^m) / (a^n)"
ballarin@17149
   357
  by (induct m n rule: diff_induct)
ballarin@17149
   358
    (simp_all add: power_Suc nonzero_mult_divide_cancel_left nz)
ballarin@17149
   359
ballarin@17149
   360
paulson@14348
   361
text{*ML bindings for the general exponentiation theorems*}
paulson@14348
   362
ML
paulson@14348
   363
{*
paulson@14348
   364
val power_0 = thm"power_0";
paulson@14348
   365
val power_Suc = thm"power_Suc";
paulson@14348
   366
val power_0_Suc = thm"power_0_Suc";
paulson@14348
   367
val power_0_left = thm"power_0_left";
paulson@14348
   368
val power_one = thm"power_one";
paulson@14348
   369
val power_one_right = thm"power_one_right";
paulson@14348
   370
val power_add = thm"power_add";
paulson@14348
   371
val power_mult = thm"power_mult";
paulson@14348
   372
val power_mult_distrib = thm"power_mult_distrib";
paulson@14348
   373
val zero_less_power = thm"zero_less_power";
paulson@14348
   374
val zero_le_power = thm"zero_le_power";
paulson@14348
   375
val one_le_power = thm"one_le_power";
paulson@14348
   376
val gt1_imp_ge0 = thm"gt1_imp_ge0";
paulson@14348
   377
val power_gt1_lemma = thm"power_gt1_lemma";
paulson@14348
   378
val power_gt1 = thm"power_gt1";
paulson@14348
   379
val power_le_imp_le_exp = thm"power_le_imp_le_exp";
paulson@14348
   380
val power_inject_exp = thm"power_inject_exp";
paulson@14348
   381
val power_less_imp_less_exp = thm"power_less_imp_less_exp";
paulson@14348
   382
val power_mono = thm"power_mono";
paulson@14348
   383
val power_strict_mono = thm"power_strict_mono";
paulson@14348
   384
val power_eq_0_iff = thm"power_eq_0_iff";
paulson@14348
   385
val field_power_eq_0_iff = thm"field_power_eq_0_iff";
paulson@14348
   386
val field_power_not_zero = thm"field_power_not_zero";
paulson@14348
   387
val power_inverse = thm"power_inverse";
paulson@14353
   388
val nonzero_power_divide = thm"nonzero_power_divide";
paulson@14353
   389
val power_divide = thm"power_divide";
paulson@14348
   390
val power_abs = thm"power_abs";
paulson@14353
   391
val zero_less_power_abs_iff = thm"zero_less_power_abs_iff";
paulson@14353
   392
val zero_le_power_abs = thm "zero_le_power_abs";
paulson@14348
   393
val power_minus = thm"power_minus";
paulson@14348
   394
val power_Suc_less = thm"power_Suc_less";
paulson@14348
   395
val power_strict_decreasing = thm"power_strict_decreasing";
paulson@14348
   396
val power_decreasing = thm"power_decreasing";
paulson@14348
   397
val power_Suc_less_one = thm"power_Suc_less_one";
paulson@14348
   398
val power_increasing = thm"power_increasing";
paulson@14348
   399
val power_strict_increasing = thm"power_strict_increasing";
paulson@14348
   400
val power_le_imp_le_base = thm"power_le_imp_le_base";
paulson@14348
   401
val power_inject_base = thm"power_inject_base";
paulson@14348
   402
*}
wenzelm@14577
   403
paulson@14348
   404
text{*ML bindings for the remaining theorems*}
paulson@14348
   405
ML
paulson@14348
   406
{*
paulson@14348
   407
val nat_one_le_power = thm"nat_one_le_power";
paulson@14348
   408
val le_imp_power_dvd = thm"le_imp_power_dvd";
paulson@14348
   409
val nat_power_less_imp_less = thm"nat_power_less_imp_less";
paulson@14348
   410
val nat_zero_less_power_iff = thm"nat_zero_less_power_iff";
paulson@14348
   411
val power_le_dvd = thm"power_le_dvd";
paulson@14348
   412
val power_dvd_imp_le = thm"power_dvd_imp_le";
paulson@14348
   413
*}
paulson@3390
   414
paulson@3390
   415
end
paulson@3390
   416