src/HOL/Equiv_Relations.thy
author haftmann
Wed Sep 26 20:27:55 2007 +0200 (2007-09-26)
changeset 24728 e2b3a1065676
parent 23705 315c638d5856
child 25482 4ed49eccb1eb
permissions -rw-r--r--
moved Finite_Set before Datatype
paulson@15300
     1
(*  ID:         $Id$
paulson@15300
     2
    Authors:    Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@15300
     3
    Copyright   1996  University of Cambridge
paulson@15300
     4
*)
paulson@15300
     5
paulson@15300
     6
header {* Equivalence Relations in Higher-Order Set Theory *}
paulson@15300
     7
paulson@15300
     8
theory Equiv_Relations
haftmann@24728
     9
imports Finite_Set Relation
paulson@15300
    10
begin
paulson@15300
    11
paulson@15300
    12
subsection {* Equivalence relations *}
paulson@15300
    13
paulson@15300
    14
locale equiv =
paulson@15300
    15
  fixes A and r
paulson@15300
    16
  assumes refl: "refl A r"
paulson@15300
    17
    and sym: "sym r"
paulson@15300
    18
    and trans: "trans r"
paulson@15300
    19
paulson@15300
    20
text {*
paulson@15300
    21
  Suppes, Theorem 70: @{text r} is an equiv relation iff @{text "r\<inverse> O
paulson@15300
    22
  r = r"}.
paulson@15300
    23
paulson@15300
    24
  First half: @{text "equiv A r ==> r\<inverse> O r = r"}.
paulson@15300
    25
*}
paulson@15300
    26
paulson@15300
    27
lemma sym_trans_comp_subset:
paulson@15300
    28
    "sym r ==> trans r ==> r\<inverse> O r \<subseteq> r"
paulson@15300
    29
  by (unfold trans_def sym_def converse_def) blast
paulson@15300
    30
paulson@15300
    31
lemma refl_comp_subset: "refl A r ==> r \<subseteq> r\<inverse> O r"
paulson@15300
    32
  by (unfold refl_def) blast
paulson@15300
    33
paulson@15300
    34
lemma equiv_comp_eq: "equiv A r ==> r\<inverse> O r = r"
paulson@15300
    35
  apply (unfold equiv_def)
paulson@15300
    36
  apply clarify
paulson@15300
    37
  apply (rule equalityI)
nipkow@17589
    38
   apply (iprover intro: sym_trans_comp_subset refl_comp_subset)+
paulson@15300
    39
  done
paulson@15300
    40
paulson@15300
    41
text {* Second half. *}
paulson@15300
    42
paulson@15300
    43
lemma comp_equivI:
paulson@15300
    44
    "r\<inverse> O r = r ==> Domain r = A ==> equiv A r"
paulson@15300
    45
  apply (unfold equiv_def refl_def sym_def trans_def)
paulson@15300
    46
  apply (erule equalityE)
paulson@15300
    47
  apply (subgoal_tac "\<forall>x y. (x, y) \<in> r --> (y, x) \<in> r")
paulson@15300
    48
   apply fast
paulson@15300
    49
  apply fast
paulson@15300
    50
  done
paulson@15300
    51
paulson@15300
    52
paulson@15300
    53
subsection {* Equivalence classes *}
paulson@15300
    54
paulson@15300
    55
lemma equiv_class_subset:
paulson@15300
    56
  "equiv A r ==> (a, b) \<in> r ==> r``{a} \<subseteq> r``{b}"
paulson@15300
    57
  -- {* lemma for the next result *}
paulson@15300
    58
  by (unfold equiv_def trans_def sym_def) blast
paulson@15300
    59
paulson@15300
    60
theorem equiv_class_eq: "equiv A r ==> (a, b) \<in> r ==> r``{a} = r``{b}"
paulson@15300
    61
  apply (assumption | rule equalityI equiv_class_subset)+
paulson@15300
    62
  apply (unfold equiv_def sym_def)
paulson@15300
    63
  apply blast
paulson@15300
    64
  done
paulson@15300
    65
paulson@15300
    66
lemma equiv_class_self: "equiv A r ==> a \<in> A ==> a \<in> r``{a}"
paulson@15300
    67
  by (unfold equiv_def refl_def) blast
paulson@15300
    68
paulson@15300
    69
lemma subset_equiv_class:
paulson@15300
    70
    "equiv A r ==> r``{b} \<subseteq> r``{a} ==> b \<in> A ==> (a,b) \<in> r"
paulson@15300
    71
  -- {* lemma for the next result *}
paulson@15300
    72
  by (unfold equiv_def refl_def) blast
paulson@15300
    73
paulson@15300
    74
lemma eq_equiv_class:
paulson@15300
    75
    "r``{a} = r``{b} ==> equiv A r ==> b \<in> A ==> (a, b) \<in> r"
nipkow@17589
    76
  by (iprover intro: equalityD2 subset_equiv_class)
paulson@15300
    77
paulson@15300
    78
lemma equiv_class_nondisjoint:
paulson@15300
    79
    "equiv A r ==> x \<in> (r``{a} \<inter> r``{b}) ==> (a, b) \<in> r"
paulson@15300
    80
  by (unfold equiv_def trans_def sym_def) blast
paulson@15300
    81
paulson@15300
    82
lemma equiv_type: "equiv A r ==> r \<subseteq> A \<times> A"
paulson@15300
    83
  by (unfold equiv_def refl_def) blast
paulson@15300
    84
paulson@15300
    85
theorem equiv_class_eq_iff:
paulson@15300
    86
  "equiv A r ==> ((x, y) \<in> r) = (r``{x} = r``{y} & x \<in> A & y \<in> A)"
paulson@15300
    87
  by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type)
paulson@15300
    88
paulson@15300
    89
theorem eq_equiv_class_iff:
paulson@15300
    90
  "equiv A r ==> x \<in> A ==> y \<in> A ==> (r``{x} = r``{y}) = ((x, y) \<in> r)"
paulson@15300
    91
  by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type)
paulson@15300
    92
paulson@15300
    93
paulson@15300
    94
subsection {* Quotients *}
paulson@15300
    95
paulson@15300
    96
constdefs
paulson@15300
    97
  quotient :: "['a set, ('a*'a) set] => 'a set set"  (infixl "'/'/" 90)
paulson@15300
    98
  "A//r == \<Union>x \<in> A. {r``{x}}"  -- {* set of equiv classes *}
paulson@15300
    99
paulson@15300
   100
lemma quotientI: "x \<in> A ==> r``{x} \<in> A//r"
paulson@15300
   101
  by (unfold quotient_def) blast
paulson@15300
   102
paulson@15300
   103
lemma quotientE:
paulson@15300
   104
  "X \<in> A//r ==> (!!x. X = r``{x} ==> x \<in> A ==> P) ==> P"
paulson@15300
   105
  by (unfold quotient_def) blast
paulson@15300
   106
paulson@15300
   107
lemma Union_quotient: "equiv A r ==> Union (A//r) = A"
paulson@15300
   108
  by (unfold equiv_def refl_def quotient_def) blast
paulson@15300
   109
paulson@15300
   110
lemma quotient_disj:
paulson@15300
   111
  "equiv A r ==> X \<in> A//r ==> Y \<in> A//r ==> X = Y | (X \<inter> Y = {})"
paulson@15300
   112
  apply (unfold quotient_def)
paulson@15300
   113
  apply clarify
paulson@15300
   114
  apply (rule equiv_class_eq)
paulson@15300
   115
   apply assumption
paulson@15300
   116
  apply (unfold equiv_def trans_def sym_def)
paulson@15300
   117
  apply blast
paulson@15300
   118
  done
paulson@15300
   119
paulson@15300
   120
lemma quotient_eqI:
paulson@15300
   121
  "[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y; (x,y) \<in> r|] ==> X = Y" 
paulson@15300
   122
  apply (clarify elim!: quotientE)
paulson@15300
   123
  apply (rule equiv_class_eq, assumption)
paulson@15300
   124
  apply (unfold equiv_def sym_def trans_def, blast)
paulson@15300
   125
  done
paulson@15300
   126
paulson@15300
   127
lemma quotient_eq_iff:
paulson@15300
   128
  "[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y|] ==> (X = Y) = ((x,y) \<in> r)" 
paulson@15300
   129
  apply (rule iffI)  
paulson@15300
   130
   prefer 2 apply (blast del: equalityI intro: quotient_eqI) 
paulson@15300
   131
  apply (clarify elim!: quotientE)
paulson@15300
   132
  apply (unfold equiv_def sym_def trans_def, blast)
paulson@15300
   133
  done
paulson@15300
   134
nipkow@18493
   135
lemma eq_equiv_class_iff2:
nipkow@18493
   136
  "\<lbrakk> equiv A r; x \<in> A; y \<in> A \<rbrakk> \<Longrightarrow> ({x}//r = {y}//r) = ((x,y) : r)"
nipkow@18493
   137
by(simp add:quotient_def eq_equiv_class_iff)
nipkow@18493
   138
paulson@15300
   139
paulson@15300
   140
lemma quotient_empty [simp]: "{}//r = {}"
paulson@15300
   141
by(simp add: quotient_def)
paulson@15300
   142
paulson@15300
   143
lemma quotient_is_empty [iff]: "(A//r = {}) = (A = {})"
paulson@15300
   144
by(simp add: quotient_def)
paulson@15300
   145
paulson@15300
   146
lemma quotient_is_empty2 [iff]: "({} = A//r) = (A = {})"
paulson@15300
   147
by(simp add: quotient_def)
paulson@15300
   148
paulson@15300
   149
nipkow@15302
   150
lemma singleton_quotient: "{x}//r = {r `` {x}}"
nipkow@15302
   151
by(simp add:quotient_def)
nipkow@15302
   152
nipkow@15302
   153
lemma quotient_diff1:
nipkow@15302
   154
  "\<lbrakk> inj_on (%a. {a}//r) A; a \<in> A \<rbrakk> \<Longrightarrow> (A - {a})//r = A//r - {a}//r"
nipkow@15302
   155
apply(simp add:quotient_def inj_on_def)
nipkow@15302
   156
apply blast
nipkow@15302
   157
done
nipkow@15302
   158
paulson@15300
   159
subsection {* Defining unary operations upon equivalence classes *}
paulson@15300
   160
paulson@15300
   161
text{*A congruence-preserving function*}
paulson@15300
   162
locale congruent =
paulson@15300
   163
  fixes r and f
paulson@15300
   164
  assumes congruent: "(y,z) \<in> r ==> f y = f z"
paulson@15300
   165
wenzelm@19363
   166
abbreviation
wenzelm@21404
   167
  RESPECTS :: "('a => 'b) => ('a * 'a) set => bool"
wenzelm@21404
   168
    (infixr "respects" 80) where
wenzelm@19363
   169
  "f respects r == congruent r f"
paulson@15300
   170
paulson@15300
   171
paulson@15300
   172
lemma UN_constant_eq: "a \<in> A ==> \<forall>y \<in> A. f y = c ==> (\<Union>y \<in> A. f(y))=c"
paulson@15300
   173
  -- {* lemma required to prove @{text UN_equiv_class} *}
paulson@15300
   174
  by auto
paulson@15300
   175
paulson@15300
   176
lemma UN_equiv_class:
paulson@15300
   177
  "equiv A r ==> f respects r ==> a \<in> A
paulson@15300
   178
    ==> (\<Union>x \<in> r``{a}. f x) = f a"
paulson@15300
   179
  -- {* Conversion rule *}
paulson@15300
   180
  apply (rule equiv_class_self [THEN UN_constant_eq], assumption+)
paulson@15300
   181
  apply (unfold equiv_def congruent_def sym_def)
paulson@15300
   182
  apply (blast del: equalityI)
paulson@15300
   183
  done
paulson@15300
   184
paulson@15300
   185
lemma UN_equiv_class_type:
paulson@15300
   186
  "equiv A r ==> f respects r ==> X \<in> A//r ==>
paulson@15300
   187
    (!!x. x \<in> A ==> f x \<in> B) ==> (\<Union>x \<in> X. f x) \<in> B"
paulson@15300
   188
  apply (unfold quotient_def)
paulson@15300
   189
  apply clarify
paulson@15300
   190
  apply (subst UN_equiv_class)
paulson@15300
   191
     apply auto
paulson@15300
   192
  done
paulson@15300
   193
paulson@15300
   194
text {*
paulson@15300
   195
  Sufficient conditions for injectiveness.  Could weaken premises!
paulson@15300
   196
  major premise could be an inclusion; bcong could be @{text "!!y. y \<in>
paulson@15300
   197
  A ==> f y \<in> B"}.
paulson@15300
   198
*}
paulson@15300
   199
paulson@15300
   200
lemma UN_equiv_class_inject:
paulson@15300
   201
  "equiv A r ==> f respects r ==>
paulson@15300
   202
    (\<Union>x \<in> X. f x) = (\<Union>y \<in> Y. f y) ==> X \<in> A//r ==> Y \<in> A//r
paulson@15300
   203
    ==> (!!x y. x \<in> A ==> y \<in> A ==> f x = f y ==> (x, y) \<in> r)
paulson@15300
   204
    ==> X = Y"
paulson@15300
   205
  apply (unfold quotient_def)
paulson@15300
   206
  apply clarify
paulson@15300
   207
  apply (rule equiv_class_eq)
paulson@15300
   208
   apply assumption
paulson@15300
   209
  apply (subgoal_tac "f x = f xa")
paulson@15300
   210
   apply blast
paulson@15300
   211
  apply (erule box_equals)
paulson@15300
   212
   apply (assumption | rule UN_equiv_class)+
paulson@15300
   213
  done
paulson@15300
   214
paulson@15300
   215
paulson@15300
   216
subsection {* Defining binary operations upon equivalence classes *}
paulson@15300
   217
paulson@15300
   218
text{*A congruence-preserving function of two arguments*}
paulson@15300
   219
locale congruent2 =
paulson@15300
   220
  fixes r1 and r2 and f
paulson@15300
   221
  assumes congruent2:
paulson@15300
   222
    "(y1,z1) \<in> r1 ==> (y2,z2) \<in> r2 ==> f y1 y2 = f z1 z2"
paulson@15300
   223
paulson@15300
   224
text{*Abbreviation for the common case where the relations are identical*}
nipkow@19979
   225
abbreviation
wenzelm@21404
   226
  RESPECTS2:: "['a => 'a => 'b, ('a * 'a) set] => bool"
wenzelm@21749
   227
    (infixr "respects2" 80) where
nipkow@19979
   228
  "f respects2 r == congruent2 r r f"
nipkow@19979
   229
paulson@15300
   230
paulson@15300
   231
lemma congruent2_implies_congruent:
paulson@15300
   232
    "equiv A r1 ==> congruent2 r1 r2 f ==> a \<in> A ==> congruent r2 (f a)"
paulson@15300
   233
  by (unfold congruent_def congruent2_def equiv_def refl_def) blast
paulson@15300
   234
paulson@15300
   235
lemma congruent2_implies_congruent_UN:
paulson@15300
   236
  "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a \<in> A2 ==>
paulson@15300
   237
    congruent r1 (\<lambda>x1. \<Union>x2 \<in> r2``{a}. f x1 x2)"
paulson@15300
   238
  apply (unfold congruent_def)
paulson@15300
   239
  apply clarify
paulson@15300
   240
  apply (rule equiv_type [THEN subsetD, THEN SigmaE2], assumption+)
paulson@15300
   241
  apply (simp add: UN_equiv_class congruent2_implies_congruent)
paulson@15300
   242
  apply (unfold congruent2_def equiv_def refl_def)
paulson@15300
   243
  apply (blast del: equalityI)
paulson@15300
   244
  done
paulson@15300
   245
paulson@15300
   246
lemma UN_equiv_class2:
paulson@15300
   247
  "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a1 \<in> A1 ==> a2 \<in> A2
paulson@15300
   248
    ==> (\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. f x1 x2) = f a1 a2"
paulson@15300
   249
  by (simp add: UN_equiv_class congruent2_implies_congruent
paulson@15300
   250
    congruent2_implies_congruent_UN)
paulson@15300
   251
paulson@15300
   252
lemma UN_equiv_class_type2:
paulson@15300
   253
  "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f
paulson@15300
   254
    ==> X1 \<in> A1//r1 ==> X2 \<in> A2//r2
paulson@15300
   255
    ==> (!!x1 x2. x1 \<in> A1 ==> x2 \<in> A2 ==> f x1 x2 \<in> B)
paulson@15300
   256
    ==> (\<Union>x1 \<in> X1. \<Union>x2 \<in> X2. f x1 x2) \<in> B"
paulson@15300
   257
  apply (unfold quotient_def)
paulson@15300
   258
  apply clarify
paulson@15300
   259
  apply (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN
paulson@15300
   260
    congruent2_implies_congruent quotientI)
paulson@15300
   261
  done
paulson@15300
   262
paulson@15300
   263
lemma UN_UN_split_split_eq:
paulson@15300
   264
  "(\<Union>(x1, x2) \<in> X. \<Union>(y1, y2) \<in> Y. A x1 x2 y1 y2) =
paulson@15300
   265
    (\<Union>x \<in> X. \<Union>y \<in> Y. (\<lambda>(x1, x2). (\<lambda>(y1, y2). A x1 x2 y1 y2) y) x)"
paulson@15300
   266
  -- {* Allows a natural expression of binary operators, *}
paulson@15300
   267
  -- {* without explicit calls to @{text split} *}
paulson@15300
   268
  by auto
paulson@15300
   269
paulson@15300
   270
lemma congruent2I:
paulson@15300
   271
  "equiv A1 r1 ==> equiv A2 r2
paulson@15300
   272
    ==> (!!y z w. w \<in> A2 ==> (y,z) \<in> r1 ==> f y w = f z w)
paulson@15300
   273
    ==> (!!y z w. w \<in> A1 ==> (y,z) \<in> r2 ==> f w y = f w z)
paulson@15300
   274
    ==> congruent2 r1 r2 f"
paulson@15300
   275
  -- {* Suggested by John Harrison -- the two subproofs may be *}
paulson@15300
   276
  -- {* \emph{much} simpler than the direct proof. *}
paulson@15300
   277
  apply (unfold congruent2_def equiv_def refl_def)
paulson@15300
   278
  apply clarify
paulson@15300
   279
  apply (blast intro: trans)
paulson@15300
   280
  done
paulson@15300
   281
paulson@15300
   282
lemma congruent2_commuteI:
paulson@15300
   283
  assumes equivA: "equiv A r"
paulson@15300
   284
    and commute: "!!y z. y \<in> A ==> z \<in> A ==> f y z = f z y"
paulson@15300
   285
    and congt: "!!y z w. w \<in> A ==> (y,z) \<in> r ==> f w y = f w z"
paulson@15300
   286
  shows "f respects2 r"
paulson@15300
   287
  apply (rule congruent2I [OF equivA equivA])
paulson@15300
   288
   apply (rule commute [THEN trans])
paulson@15300
   289
     apply (rule_tac [3] commute [THEN trans, symmetric])
paulson@15300
   290
       apply (rule_tac [5] sym)
paulson@15300
   291
       apply (assumption | rule congt |
paulson@15300
   292
         erule equivA [THEN equiv_type, THEN subsetD, THEN SigmaE2])+
paulson@15300
   293
  done
paulson@15300
   294
haftmann@24728
   295
haftmann@24728
   296
subsection {* Quotients and finiteness *}
haftmann@24728
   297
haftmann@24728
   298
text {*Suggested by Florian Kammüller*}
haftmann@24728
   299
haftmann@24728
   300
lemma finite_quotient: "finite A ==> r \<subseteq> A \<times> A ==> finite (A//r)"
haftmann@24728
   301
  -- {* recall @{thm equiv_type} *}
haftmann@24728
   302
  apply (rule finite_subset)
haftmann@24728
   303
   apply (erule_tac [2] finite_Pow_iff [THEN iffD2])
haftmann@24728
   304
  apply (unfold quotient_def)
haftmann@24728
   305
  apply blast
haftmann@24728
   306
  done
haftmann@24728
   307
haftmann@24728
   308
lemma finite_equiv_class:
haftmann@24728
   309
  "finite A ==> r \<subseteq> A \<times> A ==> X \<in> A//r ==> finite X"
haftmann@24728
   310
  apply (unfold quotient_def)
haftmann@24728
   311
  apply (rule finite_subset)
haftmann@24728
   312
   prefer 2 apply assumption
haftmann@24728
   313
  apply blast
haftmann@24728
   314
  done
haftmann@24728
   315
haftmann@24728
   316
lemma equiv_imp_dvd_card:
haftmann@24728
   317
  "finite A ==> equiv A r ==> \<forall>X \<in> A//r. k dvd card X
haftmann@24728
   318
    ==> k dvd card A"
haftmann@24728
   319
  apply (rule Union_quotient [THEN subst])
haftmann@24728
   320
   apply assumption
haftmann@24728
   321
  apply (rule dvd_partition)
haftmann@24728
   322
     prefer 3 apply (blast dest: quotient_disj)
haftmann@24728
   323
    apply (simp_all add: Union_quotient equiv_type)
haftmann@24728
   324
  done
haftmann@24728
   325
haftmann@24728
   326
lemma card_quotient_disjoint:
haftmann@24728
   327
 "\<lbrakk> finite A; inj_on (\<lambda>x. {x} // r) A \<rbrakk> \<Longrightarrow> card(A//r) = card A"
haftmann@24728
   328
apply(simp add:quotient_def)
haftmann@24728
   329
apply(subst card_UN_disjoint)
haftmann@24728
   330
   apply assumption
haftmann@24728
   331
  apply simp
haftmann@24728
   332
 apply(fastsimp simp add:inj_on_def)
haftmann@24728
   333
apply (simp add:setsum_constant)
haftmann@24728
   334
done
haftmann@24728
   335
paulson@15300
   336
end