src/HOL/NumberTheory/Residues.thy
author haftmann
Wed Sep 26 20:27:55 2007 +0200 (2007-09-26)
changeset 24728 e2b3a1065676
parent 21404 eb85850d3eb7
child 29948 cdf12a1cb963
permissions -rw-r--r--
moved Finite_Set before Datatype
paulson@13871
     1
(*  Title:      HOL/Quadratic_Reciprocity/Residues.thy
kleing@14981
     2
    ID:         $Id$
paulson@13871
     3
    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
paulson@13871
     4
*)
paulson@13871
     5
paulson@13871
     6
header {* Residue Sets *}
paulson@13871
     7
wenzelm@18369
     8
theory Residues imports Int2 begin
paulson@13871
     9
wenzelm@19670
    10
text {*
wenzelm@19670
    11
  \medskip Define the residue of a set, the standard residue,
wenzelm@19670
    12
  quadratic residues, and prove some basic properties. *}
paulson@13871
    13
wenzelm@19670
    14
definition
wenzelm@21404
    15
  ResSet      :: "int => int set => bool" where
wenzelm@19670
    16
  "ResSet m X = (\<forall>y1 y2. (y1 \<in> X & y2 \<in> X & [y1 = y2] (mod m) --> y1 = y2))"
paulson@13871
    17
wenzelm@21404
    18
definition
wenzelm@21404
    19
  StandardRes :: "int => int => int" where
wenzelm@19670
    20
  "StandardRes m x = x mod m"
paulson@13871
    21
wenzelm@21404
    22
definition
wenzelm@21404
    23
  QuadRes     :: "int => int => bool" where
wenzelm@19670
    24
  "QuadRes m x = (\<exists>y. ([(y ^ 2) = x] (mod m)))"
paulson@13871
    25
wenzelm@21404
    26
definition
wenzelm@21404
    27
  Legendre    :: "int => int => int" where
wenzelm@19670
    28
  "Legendre a p = (if ([a = 0] (mod p)) then 0
paulson@13871
    29
                     else if (QuadRes p a) then 1
paulson@13871
    30
                     else -1)"
paulson@13871
    31
wenzelm@21404
    32
definition
wenzelm@21404
    33
  SR          :: "int => int set" where
wenzelm@19670
    34
  "SR p = {x. (0 \<le> x) & (x < p)}"
paulson@13871
    35
wenzelm@21404
    36
definition
wenzelm@21404
    37
  SRStar      :: "int => int set" where
wenzelm@19670
    38
  "SRStar p = {x. (0 < x) & (x < p)}"
paulson@13871
    39
paulson@13871
    40
wenzelm@19670
    41
subsection {* Some useful properties of StandardRes *}
paulson@13871
    42
wenzelm@18369
    43
lemma StandardRes_prop1: "[x = StandardRes m x] (mod m)"
paulson@13871
    44
  by (auto simp add: StandardRes_def zcong_zmod)
paulson@13871
    45
paulson@13871
    46
lemma StandardRes_prop2: "0 < m ==> (StandardRes m x1 = StandardRes m x2)
wenzelm@18369
    47
      = ([x1 = x2] (mod m))"
paulson@13871
    48
  by (auto simp add: StandardRes_def zcong_zmod_eq)
paulson@13871
    49
wenzelm@18369
    50
lemma StandardRes_prop3: "(~[x = 0] (mod p)) = (~(StandardRes p x = 0))"
paulson@13871
    51
  by (auto simp add: StandardRes_def zcong_def zdvd_iff_zmod_eq_0)
paulson@13871
    52
paulson@13871
    53
lemma StandardRes_prop4: "2 < m 
wenzelm@18369
    54
     ==> [StandardRes m x * StandardRes m y = (x * y)] (mod m)"
paulson@13871
    55
  by (auto simp add: StandardRes_def zcong_zmod_eq 
paulson@13871
    56
                     zmod_zmult_distrib [of x y m])
paulson@13871
    57
wenzelm@18369
    58
lemma StandardRes_lbound: "0 < p ==> 0 \<le> StandardRes p x"
paulson@13871
    59
  by (auto simp add: StandardRes_def pos_mod_sign)
paulson@13871
    60
wenzelm@18369
    61
lemma StandardRes_ubound: "0 < p ==> StandardRes p x < p"
paulson@13871
    62
  by (auto simp add: StandardRes_def pos_mod_bound)
paulson@13871
    63
paulson@13871
    64
lemma StandardRes_eq_zcong: 
wenzelm@18369
    65
   "(StandardRes m x = 0) = ([x = 0](mod m))"
paulson@13871
    66
  by (auto simp add: StandardRes_def zcong_eq_zdvd_prop dvd_def) 
paulson@13871
    67
paulson@13871
    68
paulson@13871
    69
subsection {* Relations between StandardRes, SRStar, and SR *}
paulson@13871
    70
wenzelm@18369
    71
lemma SRStar_SR_prop: "x \<in> SRStar p ==> x \<in> SR p"
paulson@13871
    72
  by (auto simp add: SRStar_def SR_def)
paulson@13871
    73
wenzelm@18369
    74
lemma StandardRes_SR_prop: "x \<in> SR p ==> StandardRes p x = x"
paulson@13871
    75
  by (auto simp add: SR_def StandardRes_def mod_pos_pos_trivial)
paulson@13871
    76
paulson@13871
    77
lemma StandardRes_SRStar_prop1: "2 < p ==> (StandardRes p x \<in> SRStar p) 
wenzelm@18369
    78
     = (~[x = 0] (mod p))"
paulson@13871
    79
  apply (auto simp add: StandardRes_prop3 StandardRes_def
paulson@13871
    80
                        SRStar_def pos_mod_bound)
paulson@13871
    81
  apply (subgoal_tac "0 < p")
wenzelm@18369
    82
  apply (drule_tac a = x in pos_mod_sign, arith, simp)
wenzelm@18369
    83
  done
paulson@13871
    84
wenzelm@18369
    85
lemma StandardRes_SRStar_prop1a: "x \<in> SRStar p ==> ~([x = 0] (mod p))"
paulson@13871
    86
  by (auto simp add: SRStar_def zcong_def zdvd_not_zless)
paulson@13871
    87
nipkow@16663
    88
lemma StandardRes_SRStar_prop2: "[| 2 < p; zprime p; x \<in> SRStar p |] 
wenzelm@18369
    89
     ==> StandardRes p (MultInv p x) \<in> SRStar p"
wenzelm@18369
    90
  apply (frule_tac x = "(MultInv p x)" in StandardRes_SRStar_prop1, simp)
paulson@13871
    91
  apply (rule MultInv_prop3)
paulson@13871
    92
  apply (auto simp add: SRStar_def zcong_def zdvd_not_zless)
wenzelm@18369
    93
  done
paulson@13871
    94
wenzelm@18369
    95
lemma StandardRes_SRStar_prop3: "x \<in> SRStar p ==> StandardRes p x = x"
paulson@13871
    96
  by (auto simp add: SRStar_SR_prop StandardRes_SR_prop)
paulson@13871
    97
nipkow@16663
    98
lemma StandardRes_SRStar_prop4: "[| zprime p; 2 < p; x \<in> SRStar p |] 
wenzelm@18369
    99
     ==> StandardRes p x \<in> SRStar p"
paulson@13871
   100
  by (frule StandardRes_SRStar_prop3, auto)
paulson@13871
   101
nipkow@16663
   102
lemma SRStar_mult_prop1: "[| zprime p; 2 < p; x \<in> SRStar p; y \<in> SRStar p|] 
wenzelm@18369
   103
     ==> (StandardRes p (x * y)):SRStar p"
paulson@13871
   104
  apply (frule_tac x = x in StandardRes_SRStar_prop4, auto)
paulson@13871
   105
  apply (frule_tac x = y in StandardRes_SRStar_prop4, auto)
paulson@13871
   106
  apply (auto simp add: StandardRes_SRStar_prop1 zcong_zmult_prop3)
wenzelm@18369
   107
  done
paulson@13871
   108
nipkow@16663
   109
lemma SRStar_mult_prop2: "[| zprime p; 2 < p; ~([a = 0](mod p)); 
paulson@13871
   110
     x \<in> SRStar p |] 
wenzelm@18369
   111
     ==> StandardRes p (a * MultInv p x) \<in> SRStar p"
paulson@13871
   112
  apply (frule_tac x = x in StandardRes_SRStar_prop2, auto)
paulson@13871
   113
  apply (frule_tac x = "MultInv p x" in StandardRes_SRStar_prop1)
paulson@13871
   114
  apply (auto simp add: StandardRes_SRStar_prop1 zcong_zmult_prop3)
wenzelm@18369
   115
  done
paulson@13871
   116
wenzelm@18369
   117
lemma SRStar_card: "2 < p ==> int(card(SRStar p)) = p - 1"
paulson@13871
   118
  by (auto simp add: SRStar_def int_card_bdd_int_set_l_l)
paulson@13871
   119
wenzelm@18369
   120
lemma SRStar_finite: "2 < p ==> finite( SRStar p)"
paulson@13871
   121
  by (auto simp add: SRStar_def bdd_int_set_l_l_finite)
paulson@13871
   122
paulson@13871
   123
paulson@13871
   124
subsection {* Properties relating ResSets with StandardRes *}
paulson@13871
   125
wenzelm@18369
   126
lemma aux: "x mod m = y mod m ==> [x = y] (mod m)"
wenzelm@18369
   127
  apply (subgoal_tac "x = y ==> [x = y](mod m)")
wenzelm@18369
   128
  apply (subgoal_tac "[x mod m = y mod m] (mod m) ==> [x = y] (mod m)")
paulson@13871
   129
  apply (auto simp add: zcong_zmod [of x y m])
wenzelm@18369
   130
  done
paulson@13871
   131
wenzelm@18369
   132
lemma StandardRes_inj_on_ResSet: "ResSet m X ==> (inj_on (StandardRes m) X)"
paulson@13871
   133
  apply (auto simp add: ResSet_def StandardRes_def inj_on_def)
paulson@13871
   134
  apply (drule_tac m = m in aux, auto)
wenzelm@18369
   135
  done
paulson@13871
   136
paulson@13871
   137
lemma StandardRes_Sum: "[| finite X; 0 < m |] 
wenzelm@18369
   138
     ==> [setsum f X = setsum (StandardRes m o f) X](mod m)" 
paulson@13871
   139
  apply (rule_tac F = X in finite_induct)
paulson@13871
   140
  apply (auto intro!: zcong_zadd simp add: StandardRes_prop1)
wenzelm@18369
   141
  done
paulson@13871
   142
wenzelm@18369
   143
lemma SR_pos: "0 < m ==> (StandardRes m ` X) \<subseteq> {x. 0 \<le> x & x < m}"
paulson@13871
   144
  by (auto simp add: StandardRes_ubound StandardRes_lbound)
paulson@13871
   145
wenzelm@18369
   146
lemma ResSet_finite: "0 < m ==> ResSet m X ==> finite X"
paulson@13871
   147
  apply (rule_tac f = "StandardRes m" in finite_imageD) 
wenzelm@18369
   148
  apply (rule_tac B = "{x. (0 :: int) \<le> x & x < m}" in finite_subset)
wenzelm@18369
   149
  apply (auto simp add: StandardRes_inj_on_ResSet bdd_int_set_l_finite SR_pos)
wenzelm@18369
   150
  done
paulson@13871
   151
wenzelm@18369
   152
lemma mod_mod_is_mod: "[x = x mod m](mod m)"
paulson@13871
   153
  by (auto simp add: zcong_zmod)
paulson@13871
   154
paulson@13871
   155
lemma StandardRes_prod: "[| finite X; 0 < m |] 
wenzelm@18369
   156
     ==> [setprod f X = setprod (StandardRes m o f) X] (mod m)"
paulson@13871
   157
  apply (rule_tac F = X in finite_induct)
wenzelm@18369
   158
  apply (auto intro!: zcong_zmult simp add: StandardRes_prop1)
wenzelm@18369
   159
  done
paulson@13871
   160
wenzelm@19670
   161
lemma ResSet_image:
wenzelm@19670
   162
  "[| 0 < m; ResSet m A; \<forall>x \<in> A. \<forall>y \<in> A. ([f x = f y](mod m) --> x = y) |] ==>
wenzelm@19670
   163
    ResSet m (f ` A)"
paulson@13871
   164
  by (auto simp add: ResSet_def)
paulson@13871
   165
wenzelm@19670
   166
wenzelm@19670
   167
subsection {* Property for SRStar *}
paulson@13871
   168
wenzelm@18369
   169
lemma ResSet_SRStar_prop: "ResSet p (SRStar p)"
paulson@13871
   170
  by (auto simp add: SRStar_def ResSet_def zcong_zless_imp_eq)
paulson@13871
   171
wenzelm@18369
   172
end