src/HOL/RealVector.thy
author huffman
Sun Feb 22 12:16:51 2009 -0800 (2009-02-22)
changeset 30069 e2fe62de0925
parent 29608 564ea783ace8
child 30070 76cee7c62782
permissions -rw-r--r--
clean up instantiations
haftmann@29197
     1
(*  Title:      HOL/RealVector.thy
haftmann@27552
     2
    Author:     Brian Huffman
huffman@20504
     3
*)
huffman@20504
     4
huffman@20504
     5
header {* Vector Spaces and Algebras over the Reals *}
huffman@20504
     6
huffman@20504
     7
theory RealVector
haftmann@29197
     8
imports RealPow
huffman@20504
     9
begin
huffman@20504
    10
huffman@20504
    11
subsection {* Locale for additive functions *}
huffman@20504
    12
huffman@20504
    13
locale additive =
huffman@20504
    14
  fixes f :: "'a::ab_group_add \<Rightarrow> 'b::ab_group_add"
huffman@20504
    15
  assumes add: "f (x + y) = f x + f y"
huffman@27443
    16
begin
huffman@20504
    17
huffman@27443
    18
lemma zero: "f 0 = 0"
huffman@20504
    19
proof -
huffman@20504
    20
  have "f 0 = f (0 + 0)" by simp
huffman@20504
    21
  also have "\<dots> = f 0 + f 0" by (rule add)
huffman@20504
    22
  finally show "f 0 = 0" by simp
huffman@20504
    23
qed
huffman@20504
    24
huffman@27443
    25
lemma minus: "f (- x) = - f x"
huffman@20504
    26
proof -
huffman@20504
    27
  have "f (- x) + f x = f (- x + x)" by (rule add [symmetric])
huffman@20504
    28
  also have "\<dots> = - f x + f x" by (simp add: zero)
huffman@20504
    29
  finally show "f (- x) = - f x" by (rule add_right_imp_eq)
huffman@20504
    30
qed
huffman@20504
    31
huffman@27443
    32
lemma diff: "f (x - y) = f x - f y"
huffman@20504
    33
by (simp add: diff_def add minus)
huffman@20504
    34
huffman@27443
    35
lemma setsum: "f (setsum g A) = (\<Sum>x\<in>A. f (g x))"
huffman@22942
    36
apply (cases "finite A")
huffman@22942
    37
apply (induct set: finite)
huffman@22942
    38
apply (simp add: zero)
huffman@22942
    39
apply (simp add: add)
huffman@22942
    40
apply (simp add: zero)
huffman@22942
    41
done
huffman@22942
    42
huffman@27443
    43
end
huffman@20504
    44
huffman@28029
    45
subsection {* Vector spaces *}
huffman@28029
    46
huffman@28029
    47
locale vector_space =
huffman@28029
    48
  fixes scale :: "'a::field \<Rightarrow> 'b::ab_group_add \<Rightarrow> 'b"
huffman@28029
    49
  assumes scale_right_distrib: "scale a (x + y) = scale a x + scale a y"
huffman@28029
    50
  and scale_left_distrib: "scale (a + b) x = scale a x + scale b x"
huffman@28029
    51
  and scale_scale [simp]: "scale a (scale b x) = scale (a * b) x"
huffman@28029
    52
  and scale_one [simp]: "scale 1 x = x"
huffman@28029
    53
begin
huffman@28029
    54
huffman@28029
    55
lemma scale_left_commute:
huffman@28029
    56
  "scale a (scale b x) = scale b (scale a x)"
huffman@28029
    57
by (simp add: mult_commute)
huffman@28029
    58
huffman@28029
    59
lemma scale_zero_left [simp]: "scale 0 x = 0"
huffman@28029
    60
  and scale_minus_left [simp]: "scale (- a) x = - (scale a x)"
huffman@28029
    61
  and scale_left_diff_distrib: "scale (a - b) x = scale a x - scale b x"
huffman@28029
    62
proof -
ballarin@29229
    63
  interpret s: additive "\<lambda>a. scale a x"
haftmann@28823
    64
    proof qed (rule scale_left_distrib)
huffman@28029
    65
  show "scale 0 x = 0" by (rule s.zero)
huffman@28029
    66
  show "scale (- a) x = - (scale a x)" by (rule s.minus)
huffman@28029
    67
  show "scale (a - b) x = scale a x - scale b x" by (rule s.diff)
huffman@28029
    68
qed
huffman@28029
    69
huffman@28029
    70
lemma scale_zero_right [simp]: "scale a 0 = 0"
huffman@28029
    71
  and scale_minus_right [simp]: "scale a (- x) = - (scale a x)"
huffman@28029
    72
  and scale_right_diff_distrib: "scale a (x - y) = scale a x - scale a y"
huffman@28029
    73
proof -
ballarin@29229
    74
  interpret s: additive "\<lambda>x. scale a x"
haftmann@28823
    75
    proof qed (rule scale_right_distrib)
huffman@28029
    76
  show "scale a 0 = 0" by (rule s.zero)
huffman@28029
    77
  show "scale a (- x) = - (scale a x)" by (rule s.minus)
huffman@28029
    78
  show "scale a (x - y) = scale a x - scale a y" by (rule s.diff)
huffman@28029
    79
qed
huffman@28029
    80
huffman@28029
    81
lemma scale_eq_0_iff [simp]:
huffman@28029
    82
  "scale a x = 0 \<longleftrightarrow> a = 0 \<or> x = 0"
huffman@28029
    83
proof cases
huffman@28029
    84
  assume "a = 0" thus ?thesis by simp
huffman@28029
    85
next
huffman@28029
    86
  assume anz [simp]: "a \<noteq> 0"
huffman@28029
    87
  { assume "scale a x = 0"
huffman@28029
    88
    hence "scale (inverse a) (scale a x) = 0" by simp
huffman@28029
    89
    hence "x = 0" by simp }
huffman@28029
    90
  thus ?thesis by force
huffman@28029
    91
qed
huffman@28029
    92
huffman@28029
    93
lemma scale_left_imp_eq:
huffman@28029
    94
  "\<lbrakk>a \<noteq> 0; scale a x = scale a y\<rbrakk> \<Longrightarrow> x = y"
huffman@28029
    95
proof -
huffman@28029
    96
  assume nonzero: "a \<noteq> 0"
huffman@28029
    97
  assume "scale a x = scale a y"
huffman@28029
    98
  hence "scale a (x - y) = 0"
huffman@28029
    99
     by (simp add: scale_right_diff_distrib)
huffman@28029
   100
  hence "x - y = 0" by (simp add: nonzero)
huffman@28029
   101
  thus "x = y" by (simp only: right_minus_eq)
huffman@28029
   102
qed
huffman@28029
   103
huffman@28029
   104
lemma scale_right_imp_eq:
huffman@28029
   105
  "\<lbrakk>x \<noteq> 0; scale a x = scale b x\<rbrakk> \<Longrightarrow> a = b"
huffman@28029
   106
proof -
huffman@28029
   107
  assume nonzero: "x \<noteq> 0"
huffman@28029
   108
  assume "scale a x = scale b x"
huffman@28029
   109
  hence "scale (a - b) x = 0"
huffman@28029
   110
     by (simp add: scale_left_diff_distrib)
huffman@28029
   111
  hence "a - b = 0" by (simp add: nonzero)
huffman@28029
   112
  thus "a = b" by (simp only: right_minus_eq)
huffman@28029
   113
qed
huffman@28029
   114
huffman@28029
   115
lemma scale_cancel_left:
huffman@28029
   116
  "scale a x = scale a y \<longleftrightarrow> x = y \<or> a = 0"
huffman@28029
   117
by (auto intro: scale_left_imp_eq)
huffman@28029
   118
huffman@28029
   119
lemma scale_cancel_right:
huffman@28029
   120
  "scale a x = scale b x \<longleftrightarrow> a = b \<or> x = 0"
huffman@28029
   121
by (auto intro: scale_right_imp_eq)
huffman@28029
   122
huffman@28029
   123
end
huffman@28029
   124
huffman@20504
   125
subsection {* Real vector spaces *}
huffman@20504
   126
haftmann@29608
   127
class scaleR =
haftmann@25062
   128
  fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "*\<^sub>R" 75)
haftmann@24748
   129
begin
huffman@20504
   130
huffman@20763
   131
abbreviation
haftmann@25062
   132
  divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a" (infixl "'/\<^sub>R" 70)
haftmann@24748
   133
where
haftmann@25062
   134
  "x /\<^sub>R r == scaleR (inverse r) x"
haftmann@24748
   135
haftmann@24748
   136
end
haftmann@24748
   137
haftmann@24588
   138
class real_vector = scaleR + ab_group_add +
haftmann@25062
   139
  assumes scaleR_right_distrib: "scaleR a (x + y) = scaleR a x + scaleR a y"
haftmann@25062
   140
  and scaleR_left_distrib: "scaleR (a + b) x = scaleR a x + scaleR b x"
haftmann@24588
   141
  and scaleR_scaleR [simp]: "scaleR a (scaleR b x) = scaleR (a * b) x"
haftmann@24588
   142
  and scaleR_one [simp]: "scaleR 1 x = x"
huffman@20504
   143
ballarin@29233
   144
interpretation real_vector!:
ballarin@29229
   145
  vector_space "scaleR :: real \<Rightarrow> 'a \<Rightarrow> 'a::real_vector"
huffman@28009
   146
apply unfold_locales
huffman@28009
   147
apply (rule scaleR_right_distrib)
huffman@28009
   148
apply (rule scaleR_left_distrib)
huffman@28009
   149
apply (rule scaleR_scaleR)
huffman@28009
   150
apply (rule scaleR_one)
huffman@28009
   151
done
huffman@28009
   152
huffman@28009
   153
text {* Recover original theorem names *}
huffman@28009
   154
huffman@28009
   155
lemmas scaleR_left_commute = real_vector.scale_left_commute
huffman@28009
   156
lemmas scaleR_zero_left = real_vector.scale_zero_left
huffman@28009
   157
lemmas scaleR_minus_left = real_vector.scale_minus_left
huffman@28009
   158
lemmas scaleR_left_diff_distrib = real_vector.scale_left_diff_distrib
huffman@28009
   159
lemmas scaleR_zero_right = real_vector.scale_zero_right
huffman@28009
   160
lemmas scaleR_minus_right = real_vector.scale_minus_right
huffman@28009
   161
lemmas scaleR_right_diff_distrib = real_vector.scale_right_diff_distrib
huffman@28009
   162
lemmas scaleR_eq_0_iff = real_vector.scale_eq_0_iff
huffman@28009
   163
lemmas scaleR_left_imp_eq = real_vector.scale_left_imp_eq
huffman@28009
   164
lemmas scaleR_right_imp_eq = real_vector.scale_right_imp_eq
huffman@28009
   165
lemmas scaleR_cancel_left = real_vector.scale_cancel_left
huffman@28009
   166
lemmas scaleR_cancel_right = real_vector.scale_cancel_right
huffman@28009
   167
haftmann@24588
   168
class real_algebra = real_vector + ring +
haftmann@25062
   169
  assumes mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)"
haftmann@25062
   170
  and mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)"
huffman@20504
   171
haftmann@24588
   172
class real_algebra_1 = real_algebra + ring_1
huffman@20554
   173
haftmann@24588
   174
class real_div_algebra = real_algebra_1 + division_ring
huffman@20584
   175
haftmann@24588
   176
class real_field = real_div_algebra + field
huffman@20584
   177
huffman@30069
   178
instantiation real :: real_field
huffman@30069
   179
begin
huffman@30069
   180
huffman@30069
   181
definition
huffman@30069
   182
  real_scaleR_def [simp]: "scaleR a x = a * x"
huffman@30069
   183
huffman@30069
   184
instance
huffman@20554
   185
apply (intro_classes, unfold real_scaleR_def)
huffman@20554
   186
apply (rule right_distrib)
huffman@20554
   187
apply (rule left_distrib)
huffman@20763
   188
apply (rule mult_assoc [symmetric])
huffman@20554
   189
apply (rule mult_1_left)
huffman@20554
   190
apply (rule mult_assoc)
huffman@20554
   191
apply (rule mult_left_commute)
huffman@20554
   192
done
huffman@20554
   193
huffman@30069
   194
end
huffman@30069
   195
ballarin@29233
   196
interpretation scaleR_left!: additive "(\<lambda>a. scaleR a x::'a::real_vector)"
haftmann@28823
   197
proof qed (rule scaleR_left_distrib)
huffman@20504
   198
ballarin@29233
   199
interpretation scaleR_right!: additive "(\<lambda>x. scaleR a x::'a::real_vector)"
haftmann@28823
   200
proof qed (rule scaleR_right_distrib)
huffman@20504
   201
huffman@20584
   202
lemma nonzero_inverse_scaleR_distrib:
huffman@21809
   203
  fixes x :: "'a::real_div_algebra" shows
huffman@21809
   204
  "\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
huffman@20763
   205
by (rule inverse_unique, simp)
huffman@20584
   206
huffman@20584
   207
lemma inverse_scaleR_distrib:
huffman@20584
   208
  fixes x :: "'a::{real_div_algebra,division_by_zero}"
huffman@21809
   209
  shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
huffman@20584
   210
apply (case_tac "a = 0", simp)
huffman@20584
   211
apply (case_tac "x = 0", simp)
huffman@20584
   212
apply (erule (1) nonzero_inverse_scaleR_distrib)
huffman@20584
   213
done
huffman@20584
   214
huffman@20554
   215
huffman@20554
   216
subsection {* Embedding of the Reals into any @{text real_algebra_1}:
huffman@20554
   217
@{term of_real} *}
huffman@20554
   218
huffman@20554
   219
definition
wenzelm@21404
   220
  of_real :: "real \<Rightarrow> 'a::real_algebra_1" where
huffman@21809
   221
  "of_real r = scaleR r 1"
huffman@20554
   222
huffman@21809
   223
lemma scaleR_conv_of_real: "scaleR r x = of_real r * x"
huffman@20763
   224
by (simp add: of_real_def)
huffman@20763
   225
huffman@20554
   226
lemma of_real_0 [simp]: "of_real 0 = 0"
huffman@20554
   227
by (simp add: of_real_def)
huffman@20554
   228
huffman@20554
   229
lemma of_real_1 [simp]: "of_real 1 = 1"
huffman@20554
   230
by (simp add: of_real_def)
huffman@20554
   231
huffman@20554
   232
lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y"
huffman@20554
   233
by (simp add: of_real_def scaleR_left_distrib)
huffman@20554
   234
huffman@20554
   235
lemma of_real_minus [simp]: "of_real (- x) = - of_real x"
huffman@20554
   236
by (simp add: of_real_def)
huffman@20554
   237
huffman@20554
   238
lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y"
huffman@20554
   239
by (simp add: of_real_def scaleR_left_diff_distrib)
huffman@20554
   240
huffman@20554
   241
lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y"
huffman@20763
   242
by (simp add: of_real_def mult_commute)
huffman@20554
   243
huffman@20584
   244
lemma nonzero_of_real_inverse:
huffman@20584
   245
  "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) =
huffman@20584
   246
   inverse (of_real x :: 'a::real_div_algebra)"
huffman@20584
   247
by (simp add: of_real_def nonzero_inverse_scaleR_distrib)
huffman@20584
   248
huffman@20584
   249
lemma of_real_inverse [simp]:
huffman@20584
   250
  "of_real (inverse x) =
huffman@20584
   251
   inverse (of_real x :: 'a::{real_div_algebra,division_by_zero})"
huffman@20584
   252
by (simp add: of_real_def inverse_scaleR_distrib)
huffman@20584
   253
huffman@20584
   254
lemma nonzero_of_real_divide:
huffman@20584
   255
  "y \<noteq> 0 \<Longrightarrow> of_real (x / y) =
huffman@20584
   256
   (of_real x / of_real y :: 'a::real_field)"
huffman@20584
   257
by (simp add: divide_inverse nonzero_of_real_inverse)
huffman@20722
   258
huffman@20722
   259
lemma of_real_divide [simp]:
huffman@20584
   260
  "of_real (x / y) =
huffman@20584
   261
   (of_real x / of_real y :: 'a::{real_field,division_by_zero})"
huffman@20584
   262
by (simp add: divide_inverse)
huffman@20584
   263
huffman@20722
   264
lemma of_real_power [simp]:
huffman@20722
   265
  "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1,recpower}) ^ n"
wenzelm@20772
   266
by (induct n) (simp_all add: power_Suc)
huffman@20722
   267
huffman@20554
   268
lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)"
huffman@20554
   269
by (simp add: of_real_def scaleR_cancel_right)
huffman@20554
   270
huffman@20584
   271
lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified]
huffman@20554
   272
huffman@20554
   273
lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)"
huffman@20554
   274
proof
huffman@20554
   275
  fix r
huffman@20554
   276
  show "of_real r = id r"
huffman@22973
   277
    by (simp add: of_real_def)
huffman@20554
   278
qed
huffman@20554
   279
huffman@20554
   280
text{*Collapse nested embeddings*}
huffman@20554
   281
lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n"
wenzelm@20772
   282
by (induct n) auto
huffman@20554
   283
huffman@20554
   284
lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z"
huffman@20554
   285
by (cases z rule: int_diff_cases, simp)
huffman@20554
   286
huffman@20554
   287
lemma of_real_number_of_eq:
huffman@20554
   288
  "of_real (number_of w) = (number_of w :: 'a::{number_ring,real_algebra_1})"
huffman@20554
   289
by (simp add: number_of_eq)
huffman@20554
   290
huffman@22912
   291
text{*Every real algebra has characteristic zero*}
huffman@22912
   292
instance real_algebra_1 < ring_char_0
huffman@22912
   293
proof
huffman@23282
   294
  fix m n :: nat
huffman@23282
   295
  have "(of_real (of_nat m) = (of_real (of_nat n)::'a)) = (m = n)"
huffman@23282
   296
    by (simp only: of_real_eq_iff of_nat_eq_iff)
huffman@23282
   297
  thus "(of_nat m = (of_nat n::'a)) = (m = n)"
huffman@23282
   298
    by (simp only: of_real_of_nat_eq)
huffman@22912
   299
qed
huffman@22912
   300
huffman@27553
   301
instance real_field < field_char_0 ..
huffman@27553
   302
huffman@20554
   303
huffman@20554
   304
subsection {* The Set of Real Numbers *}
huffman@20554
   305
wenzelm@20772
   306
definition
wenzelm@21404
   307
  Reals :: "'a::real_algebra_1 set" where
haftmann@28562
   308
  [code del]: "Reals \<equiv> range of_real"
huffman@20554
   309
wenzelm@21210
   310
notation (xsymbols)
huffman@20554
   311
  Reals  ("\<real>")
huffman@20554
   312
huffman@21809
   313
lemma Reals_of_real [simp]: "of_real r \<in> Reals"
huffman@20554
   314
by (simp add: Reals_def)
huffman@20554
   315
huffman@21809
   316
lemma Reals_of_int [simp]: "of_int z \<in> Reals"
huffman@21809
   317
by (subst of_real_of_int_eq [symmetric], rule Reals_of_real)
huffman@20718
   318
huffman@21809
   319
lemma Reals_of_nat [simp]: "of_nat n \<in> Reals"
huffman@21809
   320
by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real)
huffman@21809
   321
huffman@21809
   322
lemma Reals_number_of [simp]:
huffman@21809
   323
  "(number_of w::'a::{number_ring,real_algebra_1}) \<in> Reals"
huffman@21809
   324
by (subst of_real_number_of_eq [symmetric], rule Reals_of_real)
huffman@20718
   325
huffman@20554
   326
lemma Reals_0 [simp]: "0 \<in> Reals"
huffman@20554
   327
apply (unfold Reals_def)
huffman@20554
   328
apply (rule range_eqI)
huffman@20554
   329
apply (rule of_real_0 [symmetric])
huffman@20554
   330
done
huffman@20554
   331
huffman@20554
   332
lemma Reals_1 [simp]: "1 \<in> Reals"
huffman@20554
   333
apply (unfold Reals_def)
huffman@20554
   334
apply (rule range_eqI)
huffman@20554
   335
apply (rule of_real_1 [symmetric])
huffman@20554
   336
done
huffman@20554
   337
huffman@20584
   338
lemma Reals_add [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a + b \<in> Reals"
huffman@20554
   339
apply (auto simp add: Reals_def)
huffman@20554
   340
apply (rule range_eqI)
huffman@20554
   341
apply (rule of_real_add [symmetric])
huffman@20554
   342
done
huffman@20554
   343
huffman@20584
   344
lemma Reals_minus [simp]: "a \<in> Reals \<Longrightarrow> - a \<in> Reals"
huffman@20584
   345
apply (auto simp add: Reals_def)
huffman@20584
   346
apply (rule range_eqI)
huffman@20584
   347
apply (rule of_real_minus [symmetric])
huffman@20584
   348
done
huffman@20584
   349
huffman@20584
   350
lemma Reals_diff [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a - b \<in> Reals"
huffman@20584
   351
apply (auto simp add: Reals_def)
huffman@20584
   352
apply (rule range_eqI)
huffman@20584
   353
apply (rule of_real_diff [symmetric])
huffman@20584
   354
done
huffman@20584
   355
huffman@20584
   356
lemma Reals_mult [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a * b \<in> Reals"
huffman@20554
   357
apply (auto simp add: Reals_def)
huffman@20554
   358
apply (rule range_eqI)
huffman@20554
   359
apply (rule of_real_mult [symmetric])
huffman@20554
   360
done
huffman@20554
   361
huffman@20584
   362
lemma nonzero_Reals_inverse:
huffman@20584
   363
  fixes a :: "'a::real_div_algebra"
huffman@20584
   364
  shows "\<lbrakk>a \<in> Reals; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Reals"
huffman@20584
   365
apply (auto simp add: Reals_def)
huffman@20584
   366
apply (rule range_eqI)
huffman@20584
   367
apply (erule nonzero_of_real_inverse [symmetric])
huffman@20584
   368
done
huffman@20584
   369
huffman@20584
   370
lemma Reals_inverse [simp]:
huffman@20584
   371
  fixes a :: "'a::{real_div_algebra,division_by_zero}"
huffman@20584
   372
  shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals"
huffman@20584
   373
apply (auto simp add: Reals_def)
huffman@20584
   374
apply (rule range_eqI)
huffman@20584
   375
apply (rule of_real_inverse [symmetric])
huffman@20584
   376
done
huffman@20584
   377
huffman@20584
   378
lemma nonzero_Reals_divide:
huffman@20584
   379
  fixes a b :: "'a::real_field"
huffman@20584
   380
  shows "\<lbrakk>a \<in> Reals; b \<in> Reals; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
huffman@20584
   381
apply (auto simp add: Reals_def)
huffman@20584
   382
apply (rule range_eqI)
huffman@20584
   383
apply (erule nonzero_of_real_divide [symmetric])
huffman@20584
   384
done
huffman@20584
   385
huffman@20584
   386
lemma Reals_divide [simp]:
huffman@20584
   387
  fixes a b :: "'a::{real_field,division_by_zero}"
huffman@20584
   388
  shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
huffman@20584
   389
apply (auto simp add: Reals_def)
huffman@20584
   390
apply (rule range_eqI)
huffman@20584
   391
apply (rule of_real_divide [symmetric])
huffman@20584
   392
done
huffman@20584
   393
huffman@20722
   394
lemma Reals_power [simp]:
huffman@20722
   395
  fixes a :: "'a::{real_algebra_1,recpower}"
huffman@20722
   396
  shows "a \<in> Reals \<Longrightarrow> a ^ n \<in> Reals"
huffman@20722
   397
apply (auto simp add: Reals_def)
huffman@20722
   398
apply (rule range_eqI)
huffman@20722
   399
apply (rule of_real_power [symmetric])
huffman@20722
   400
done
huffman@20722
   401
huffman@20554
   402
lemma Reals_cases [cases set: Reals]:
huffman@20554
   403
  assumes "q \<in> \<real>"
huffman@20554
   404
  obtains (of_real) r where "q = of_real r"
huffman@20554
   405
  unfolding Reals_def
huffman@20554
   406
proof -
huffman@20554
   407
  from `q \<in> \<real>` have "q \<in> range of_real" unfolding Reals_def .
huffman@20554
   408
  then obtain r where "q = of_real r" ..
huffman@20554
   409
  then show thesis ..
huffman@20554
   410
qed
huffman@20554
   411
huffman@20554
   412
lemma Reals_induct [case_names of_real, induct set: Reals]:
huffman@20554
   413
  "q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q"
huffman@20554
   414
  by (rule Reals_cases) auto
huffman@20554
   415
huffman@20504
   416
huffman@20504
   417
subsection {* Real normed vector spaces *}
huffman@20504
   418
haftmann@29608
   419
class norm =
huffman@22636
   420
  fixes norm :: "'a \<Rightarrow> real"
huffman@20504
   421
huffman@24520
   422
class sgn_div_norm = scaleR + norm + sgn +
haftmann@25062
   423
  assumes sgn_div_norm: "sgn x = x /\<^sub>R norm x"
nipkow@24506
   424
haftmann@24588
   425
class real_normed_vector = real_vector + sgn_div_norm +
haftmann@24588
   426
  assumes norm_ge_zero [simp]: "0 \<le> norm x"
haftmann@25062
   427
  and norm_eq_zero [simp]: "norm x = 0 \<longleftrightarrow> x = 0"
haftmann@25062
   428
  and norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y"
haftmann@24588
   429
  and norm_scaleR: "norm (scaleR a x) = \<bar>a\<bar> * norm x"
huffman@20504
   430
haftmann@24588
   431
class real_normed_algebra = real_algebra + real_normed_vector +
haftmann@25062
   432
  assumes norm_mult_ineq: "norm (x * y) \<le> norm x * norm y"
huffman@20504
   433
haftmann@24588
   434
class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra +
haftmann@25062
   435
  assumes norm_one [simp]: "norm 1 = 1"
huffman@22852
   436
haftmann@24588
   437
class real_normed_div_algebra = real_div_algebra + real_normed_vector +
haftmann@25062
   438
  assumes norm_mult: "norm (x * y) = norm x * norm y"
huffman@20504
   439
haftmann@24588
   440
class real_normed_field = real_field + real_normed_div_algebra
huffman@20584
   441
huffman@22852
   442
instance real_normed_div_algebra < real_normed_algebra_1
huffman@20554
   443
proof
huffman@20554
   444
  fix x y :: 'a
huffman@20554
   445
  show "norm (x * y) \<le> norm x * norm y"
huffman@20554
   446
    by (simp add: norm_mult)
huffman@22852
   447
next
huffman@22852
   448
  have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)"
huffman@22852
   449
    by (rule norm_mult)
huffman@22852
   450
  thus "norm (1::'a) = 1" by simp
huffman@20554
   451
qed
huffman@20554
   452
huffman@30069
   453
instantiation real :: real_normed_field
huffman@30069
   454
begin
huffman@30069
   455
huffman@30069
   456
definition
huffman@30069
   457
  real_norm_def [simp]: "norm r = \<bar>r\<bar>"
huffman@30069
   458
huffman@30069
   459
instance
huffman@22852
   460
apply (intro_classes, unfold real_norm_def real_scaleR_def)
nipkow@24506
   461
apply (simp add: real_sgn_def)
huffman@20554
   462
apply (rule abs_ge_zero)
huffman@20554
   463
apply (rule abs_eq_0)
huffman@20554
   464
apply (rule abs_triangle_ineq)
huffman@22852
   465
apply (rule abs_mult)
huffman@20554
   466
apply (rule abs_mult)
huffman@20554
   467
done
huffman@20504
   468
huffman@30069
   469
end
huffman@30069
   470
huffman@22852
   471
lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0"
huffman@20504
   472
by simp
huffman@20504
   473
huffman@22852
   474
lemma zero_less_norm_iff [simp]:
huffman@22852
   475
  fixes x :: "'a::real_normed_vector"
huffman@22852
   476
  shows "(0 < norm x) = (x \<noteq> 0)"
huffman@20504
   477
by (simp add: order_less_le)
huffman@20504
   478
huffman@22852
   479
lemma norm_not_less_zero [simp]:
huffman@22852
   480
  fixes x :: "'a::real_normed_vector"
huffman@22852
   481
  shows "\<not> norm x < 0"
huffman@20828
   482
by (simp add: linorder_not_less)
huffman@20828
   483
huffman@22852
   484
lemma norm_le_zero_iff [simp]:
huffman@22852
   485
  fixes x :: "'a::real_normed_vector"
huffman@22852
   486
  shows "(norm x \<le> 0) = (x = 0)"
huffman@20828
   487
by (simp add: order_le_less)
huffman@20828
   488
huffman@20504
   489
lemma norm_minus_cancel [simp]:
huffman@20584
   490
  fixes x :: "'a::real_normed_vector"
huffman@20584
   491
  shows "norm (- x) = norm x"
huffman@20504
   492
proof -
huffman@21809
   493
  have "norm (- x) = norm (scaleR (- 1) x)"
huffman@20504
   494
    by (simp only: scaleR_minus_left scaleR_one)
huffman@20533
   495
  also have "\<dots> = \<bar>- 1\<bar> * norm x"
huffman@20504
   496
    by (rule norm_scaleR)
huffman@20504
   497
  finally show ?thesis by simp
huffman@20504
   498
qed
huffman@20504
   499
huffman@20504
   500
lemma norm_minus_commute:
huffman@20584
   501
  fixes a b :: "'a::real_normed_vector"
huffman@20584
   502
  shows "norm (a - b) = norm (b - a)"
huffman@20504
   503
proof -
huffman@22898
   504
  have "norm (- (b - a)) = norm (b - a)"
huffman@22898
   505
    by (rule norm_minus_cancel)
huffman@22898
   506
  thus ?thesis by simp
huffman@20504
   507
qed
huffman@20504
   508
huffman@20504
   509
lemma norm_triangle_ineq2:
huffman@20584
   510
  fixes a b :: "'a::real_normed_vector"
huffman@20533
   511
  shows "norm a - norm b \<le> norm (a - b)"
huffman@20504
   512
proof -
huffman@20533
   513
  have "norm (a - b + b) \<le> norm (a - b) + norm b"
huffman@20504
   514
    by (rule norm_triangle_ineq)
huffman@22898
   515
  thus ?thesis by simp
huffman@20504
   516
qed
huffman@20504
   517
huffman@20584
   518
lemma norm_triangle_ineq3:
huffman@20584
   519
  fixes a b :: "'a::real_normed_vector"
huffman@20584
   520
  shows "\<bar>norm a - norm b\<bar> \<le> norm (a - b)"
huffman@20584
   521
apply (subst abs_le_iff)
huffman@20584
   522
apply auto
huffman@20584
   523
apply (rule norm_triangle_ineq2)
huffman@20584
   524
apply (subst norm_minus_commute)
huffman@20584
   525
apply (rule norm_triangle_ineq2)
huffman@20584
   526
done
huffman@20584
   527
huffman@20504
   528
lemma norm_triangle_ineq4:
huffman@20584
   529
  fixes a b :: "'a::real_normed_vector"
huffman@20533
   530
  shows "norm (a - b) \<le> norm a + norm b"
huffman@20504
   531
proof -
huffman@22898
   532
  have "norm (a + - b) \<le> norm a + norm (- b)"
huffman@20504
   533
    by (rule norm_triangle_ineq)
huffman@22898
   534
  thus ?thesis
huffman@22898
   535
    by (simp only: diff_minus norm_minus_cancel)
huffman@22898
   536
qed
huffman@22898
   537
huffman@22898
   538
lemma norm_diff_ineq:
huffman@22898
   539
  fixes a b :: "'a::real_normed_vector"
huffman@22898
   540
  shows "norm a - norm b \<le> norm (a + b)"
huffman@22898
   541
proof -
huffman@22898
   542
  have "norm a - norm (- b) \<le> norm (a - - b)"
huffman@22898
   543
    by (rule norm_triangle_ineq2)
huffman@22898
   544
  thus ?thesis by simp
huffman@20504
   545
qed
huffman@20504
   546
huffman@20551
   547
lemma norm_diff_triangle_ineq:
huffman@20551
   548
  fixes a b c d :: "'a::real_normed_vector"
huffman@20551
   549
  shows "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)"
huffman@20551
   550
proof -
huffman@20551
   551
  have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))"
huffman@20551
   552
    by (simp add: diff_minus add_ac)
huffman@20551
   553
  also have "\<dots> \<le> norm (a - c) + norm (b - d)"
huffman@20551
   554
    by (rule norm_triangle_ineq)
huffman@20551
   555
  finally show ?thesis .
huffman@20551
   556
qed
huffman@20551
   557
huffman@22857
   558
lemma abs_norm_cancel [simp]:
huffman@22857
   559
  fixes a :: "'a::real_normed_vector"
huffman@22857
   560
  shows "\<bar>norm a\<bar> = norm a"
huffman@22857
   561
by (rule abs_of_nonneg [OF norm_ge_zero])
huffman@22857
   562
huffman@22880
   563
lemma norm_add_less:
huffman@22880
   564
  fixes x y :: "'a::real_normed_vector"
huffman@22880
   565
  shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x + y) < r + s"
huffman@22880
   566
by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono])
huffman@22880
   567
huffman@22880
   568
lemma norm_mult_less:
huffman@22880
   569
  fixes x y :: "'a::real_normed_algebra"
huffman@22880
   570
  shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x * y) < r * s"
huffman@22880
   571
apply (rule order_le_less_trans [OF norm_mult_ineq])
huffman@22880
   572
apply (simp add: mult_strict_mono')
huffman@22880
   573
done
huffman@22880
   574
huffman@22857
   575
lemma norm_of_real [simp]:
huffman@22857
   576
  "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>"
huffman@22852
   577
unfolding of_real_def by (simp add: norm_scaleR)
huffman@20560
   578
huffman@22876
   579
lemma norm_number_of [simp]:
huffman@22876
   580
  "norm (number_of w::'a::{number_ring,real_normed_algebra_1})
huffman@22876
   581
    = \<bar>number_of w\<bar>"
huffman@22876
   582
by (subst of_real_number_of_eq [symmetric], rule norm_of_real)
huffman@22876
   583
huffman@22876
   584
lemma norm_of_int [simp]:
huffman@22876
   585
  "norm (of_int z::'a::real_normed_algebra_1) = \<bar>of_int z\<bar>"
huffman@22876
   586
by (subst of_real_of_int_eq [symmetric], rule norm_of_real)
huffman@22876
   587
huffman@22876
   588
lemma norm_of_nat [simp]:
huffman@22876
   589
  "norm (of_nat n::'a::real_normed_algebra_1) = of_nat n"
huffman@22876
   590
apply (subst of_real_of_nat_eq [symmetric])
huffman@22876
   591
apply (subst norm_of_real, simp)
huffman@22876
   592
done
huffman@22876
   593
huffman@20504
   594
lemma nonzero_norm_inverse:
huffman@20504
   595
  fixes a :: "'a::real_normed_div_algebra"
huffman@20533
   596
  shows "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)"
huffman@20504
   597
apply (rule inverse_unique [symmetric])
huffman@20504
   598
apply (simp add: norm_mult [symmetric])
huffman@20504
   599
done
huffman@20504
   600
huffman@20504
   601
lemma norm_inverse:
huffman@20504
   602
  fixes a :: "'a::{real_normed_div_algebra,division_by_zero}"
huffman@20533
   603
  shows "norm (inverse a) = inverse (norm a)"
huffman@20504
   604
apply (case_tac "a = 0", simp)
huffman@20504
   605
apply (erule nonzero_norm_inverse)
huffman@20504
   606
done
huffman@20504
   607
huffman@20584
   608
lemma nonzero_norm_divide:
huffman@20584
   609
  fixes a b :: "'a::real_normed_field"
huffman@20584
   610
  shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b"
huffman@20584
   611
by (simp add: divide_inverse norm_mult nonzero_norm_inverse)
huffman@20584
   612
huffman@20584
   613
lemma norm_divide:
huffman@20584
   614
  fixes a b :: "'a::{real_normed_field,division_by_zero}"
huffman@20584
   615
  shows "norm (a / b) = norm a / norm b"
huffman@20584
   616
by (simp add: divide_inverse norm_mult norm_inverse)
huffman@20584
   617
huffman@22852
   618
lemma norm_power_ineq:
huffman@22852
   619
  fixes x :: "'a::{real_normed_algebra_1,recpower}"
huffman@22852
   620
  shows "norm (x ^ n) \<le> norm x ^ n"
huffman@22852
   621
proof (induct n)
huffman@22852
   622
  case 0 show "norm (x ^ 0) \<le> norm x ^ 0" by simp
huffman@22852
   623
next
huffman@22852
   624
  case (Suc n)
huffman@22852
   625
  have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)"
huffman@22852
   626
    by (rule norm_mult_ineq)
huffman@22852
   627
  also from Suc have "\<dots> \<le> norm x * norm x ^ n"
huffman@22852
   628
    using norm_ge_zero by (rule mult_left_mono)
huffman@22852
   629
  finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n"
huffman@22852
   630
    by (simp add: power_Suc)
huffman@22852
   631
qed
huffman@22852
   632
huffman@20684
   633
lemma norm_power:
huffman@20684
   634
  fixes x :: "'a::{real_normed_div_algebra,recpower}"
huffman@20684
   635
  shows "norm (x ^ n) = norm x ^ n"
wenzelm@20772
   636
by (induct n) (simp_all add: power_Suc norm_mult)
huffman@20684
   637
huffman@22442
   638
huffman@22972
   639
subsection {* Sign function *}
huffman@22972
   640
nipkow@24506
   641
lemma norm_sgn:
nipkow@24506
   642
  "norm (sgn(x::'a::real_normed_vector)) = (if x = 0 then 0 else 1)"
nipkow@24506
   643
by (simp add: sgn_div_norm norm_scaleR)
huffman@22972
   644
nipkow@24506
   645
lemma sgn_zero [simp]: "sgn(0::'a::real_normed_vector) = 0"
nipkow@24506
   646
by (simp add: sgn_div_norm)
huffman@22972
   647
nipkow@24506
   648
lemma sgn_zero_iff: "(sgn(x::'a::real_normed_vector) = 0) = (x = 0)"
nipkow@24506
   649
by (simp add: sgn_div_norm)
huffman@22972
   650
nipkow@24506
   651
lemma sgn_minus: "sgn (- x) = - sgn(x::'a::real_normed_vector)"
nipkow@24506
   652
by (simp add: sgn_div_norm)
huffman@22972
   653
nipkow@24506
   654
lemma sgn_scaleR:
nipkow@24506
   655
  "sgn (scaleR r x) = scaleR (sgn r) (sgn(x::'a::real_normed_vector))"
nipkow@24506
   656
by (simp add: sgn_div_norm norm_scaleR mult_ac)
huffman@22973
   657
huffman@22972
   658
lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1"
nipkow@24506
   659
by (simp add: sgn_div_norm)
huffman@22972
   660
huffman@22972
   661
lemma sgn_of_real:
huffman@22972
   662
  "sgn (of_real r::'a::real_normed_algebra_1) = of_real (sgn r)"
huffman@22972
   663
unfolding of_real_def by (simp only: sgn_scaleR sgn_one)
huffman@22972
   664
huffman@22973
   665
lemma sgn_mult:
huffman@22973
   666
  fixes x y :: "'a::real_normed_div_algebra"
huffman@22973
   667
  shows "sgn (x * y) = sgn x * sgn y"
nipkow@24506
   668
by (simp add: sgn_div_norm norm_mult mult_commute)
huffman@22973
   669
huffman@22972
   670
lemma real_sgn_eq: "sgn (x::real) = x / \<bar>x\<bar>"
nipkow@24506
   671
by (simp add: sgn_div_norm divide_inverse)
huffman@22972
   672
huffman@22972
   673
lemma real_sgn_pos: "0 < (x::real) \<Longrightarrow> sgn x = 1"
huffman@22972
   674
unfolding real_sgn_eq by simp
huffman@22972
   675
huffman@22972
   676
lemma real_sgn_neg: "(x::real) < 0 \<Longrightarrow> sgn x = -1"
huffman@22972
   677
unfolding real_sgn_eq by simp
huffman@22972
   678
huffman@22972
   679
huffman@22442
   680
subsection {* Bounded Linear and Bilinear Operators *}
huffman@22442
   681
huffman@22442
   682
locale bounded_linear = additive +
huffman@22442
   683
  constrains f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
huffman@22442
   684
  assumes scaleR: "f (scaleR r x) = scaleR r (f x)"
huffman@22442
   685
  assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K"
huffman@27443
   686
begin
huffman@22442
   687
huffman@27443
   688
lemma pos_bounded:
huffman@22442
   689
  "\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K"
huffman@22442
   690
proof -
huffman@22442
   691
  obtain K where K: "\<And>x. norm (f x) \<le> norm x * K"
huffman@22442
   692
    using bounded by fast
huffman@22442
   693
  show ?thesis
huffman@22442
   694
  proof (intro exI impI conjI allI)
huffman@22442
   695
    show "0 < max 1 K"
huffman@22442
   696
      by (rule order_less_le_trans [OF zero_less_one le_maxI1])
huffman@22442
   697
  next
huffman@22442
   698
    fix x
huffman@22442
   699
    have "norm (f x) \<le> norm x * K" using K .
huffman@22442
   700
    also have "\<dots> \<le> norm x * max 1 K"
huffman@22442
   701
      by (rule mult_left_mono [OF le_maxI2 norm_ge_zero])
huffman@22442
   702
    finally show "norm (f x) \<le> norm x * max 1 K" .
huffman@22442
   703
  qed
huffman@22442
   704
qed
huffman@22442
   705
huffman@27443
   706
lemma nonneg_bounded:
huffman@22442
   707
  "\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K"
huffman@22442
   708
proof -
huffman@22442
   709
  from pos_bounded
huffman@22442
   710
  show ?thesis by (auto intro: order_less_imp_le)
huffman@22442
   711
qed
huffman@22442
   712
huffman@27443
   713
end
huffman@27443
   714
huffman@22442
   715
locale bounded_bilinear =
huffman@22442
   716
  fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector]
huffman@22442
   717
                 \<Rightarrow> 'c::real_normed_vector"
huffman@22442
   718
    (infixl "**" 70)
huffman@22442
   719
  assumes add_left: "prod (a + a') b = prod a b + prod a' b"
huffman@22442
   720
  assumes add_right: "prod a (b + b') = prod a b + prod a b'"
huffman@22442
   721
  assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)"
huffman@22442
   722
  assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)"
huffman@22442
   723
  assumes bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K"
huffman@27443
   724
begin
huffman@22442
   725
huffman@27443
   726
lemma pos_bounded:
huffman@22442
   727
  "\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
huffman@22442
   728
apply (cut_tac bounded, erule exE)
huffman@22442
   729
apply (rule_tac x="max 1 K" in exI, safe)
huffman@22442
   730
apply (rule order_less_le_trans [OF zero_less_one le_maxI1])
huffman@22442
   731
apply (drule spec, drule spec, erule order_trans)
huffman@22442
   732
apply (rule mult_left_mono [OF le_maxI2])
huffman@22442
   733
apply (intro mult_nonneg_nonneg norm_ge_zero)
huffman@22442
   734
done
huffman@22442
   735
huffman@27443
   736
lemma nonneg_bounded:
huffman@22442
   737
  "\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
huffman@22442
   738
proof -
huffman@22442
   739
  from pos_bounded
huffman@22442
   740
  show ?thesis by (auto intro: order_less_imp_le)
huffman@22442
   741
qed
huffman@22442
   742
huffman@27443
   743
lemma additive_right: "additive (\<lambda>b. prod a b)"
huffman@22442
   744
by (rule additive.intro, rule add_right)
huffman@22442
   745
huffman@27443
   746
lemma additive_left: "additive (\<lambda>a. prod a b)"
huffman@22442
   747
by (rule additive.intro, rule add_left)
huffman@22442
   748
huffman@27443
   749
lemma zero_left: "prod 0 b = 0"
huffman@22442
   750
by (rule additive.zero [OF additive_left])
huffman@22442
   751
huffman@27443
   752
lemma zero_right: "prod a 0 = 0"
huffman@22442
   753
by (rule additive.zero [OF additive_right])
huffman@22442
   754
huffman@27443
   755
lemma minus_left: "prod (- a) b = - prod a b"
huffman@22442
   756
by (rule additive.minus [OF additive_left])
huffman@22442
   757
huffman@27443
   758
lemma minus_right: "prod a (- b) = - prod a b"
huffman@22442
   759
by (rule additive.minus [OF additive_right])
huffman@22442
   760
huffman@27443
   761
lemma diff_left:
huffman@22442
   762
  "prod (a - a') b = prod a b - prod a' b"
huffman@22442
   763
by (rule additive.diff [OF additive_left])
huffman@22442
   764
huffman@27443
   765
lemma diff_right:
huffman@22442
   766
  "prod a (b - b') = prod a b - prod a b'"
huffman@22442
   767
by (rule additive.diff [OF additive_right])
huffman@22442
   768
huffman@27443
   769
lemma bounded_linear_left:
huffman@22442
   770
  "bounded_linear (\<lambda>a. a ** b)"
huffman@22442
   771
apply (unfold_locales)
huffman@22442
   772
apply (rule add_left)
huffman@22442
   773
apply (rule scaleR_left)
huffman@22442
   774
apply (cut_tac bounded, safe)
huffman@22442
   775
apply (rule_tac x="norm b * K" in exI)
huffman@22442
   776
apply (simp add: mult_ac)
huffman@22442
   777
done
huffman@22442
   778
huffman@27443
   779
lemma bounded_linear_right:
huffman@22442
   780
  "bounded_linear (\<lambda>b. a ** b)"
huffman@22442
   781
apply (unfold_locales)
huffman@22442
   782
apply (rule add_right)
huffman@22442
   783
apply (rule scaleR_right)
huffman@22442
   784
apply (cut_tac bounded, safe)
huffman@22442
   785
apply (rule_tac x="norm a * K" in exI)
huffman@22442
   786
apply (simp add: mult_ac)
huffman@22442
   787
done
huffman@22442
   788
huffman@27443
   789
lemma prod_diff_prod:
huffman@22442
   790
  "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)"
huffman@22442
   791
by (simp add: diff_left diff_right)
huffman@22442
   792
huffman@27443
   793
end
huffman@27443
   794
ballarin@29233
   795
interpretation mult!:
ballarin@29229
   796
  bounded_bilinear "op * :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra"
huffman@22442
   797
apply (rule bounded_bilinear.intro)
huffman@22442
   798
apply (rule left_distrib)
huffman@22442
   799
apply (rule right_distrib)
huffman@22442
   800
apply (rule mult_scaleR_left)
huffman@22442
   801
apply (rule mult_scaleR_right)
huffman@22442
   802
apply (rule_tac x="1" in exI)
huffman@22442
   803
apply (simp add: norm_mult_ineq)
huffman@22442
   804
done
huffman@22442
   805
ballarin@29233
   806
interpretation mult_left!:
ballarin@29229
   807
  bounded_linear "(\<lambda>x::'a::real_normed_algebra. x * y)"
huffman@23127
   808
by (rule mult.bounded_linear_left)
huffman@22442
   809
ballarin@29233
   810
interpretation mult_right!:
ballarin@29229
   811
  bounded_linear "(\<lambda>y::'a::real_normed_algebra. x * y)"
huffman@23127
   812
by (rule mult.bounded_linear_right)
huffman@23127
   813
ballarin@29233
   814
interpretation divide!:
ballarin@29229
   815
  bounded_linear "(\<lambda>x::'a::real_normed_field. x / y)"
huffman@23127
   816
unfolding divide_inverse by (rule mult.bounded_linear_left)
huffman@23120
   817
ballarin@29233
   818
interpretation scaleR!: bounded_bilinear "scaleR"
huffman@22442
   819
apply (rule bounded_bilinear.intro)
huffman@22442
   820
apply (rule scaleR_left_distrib)
huffman@22442
   821
apply (rule scaleR_right_distrib)
huffman@22973
   822
apply simp
huffman@22442
   823
apply (rule scaleR_left_commute)
huffman@22442
   824
apply (rule_tac x="1" in exI)
huffman@22442
   825
apply (simp add: norm_scaleR)
huffman@22442
   826
done
huffman@22442
   827
ballarin@29233
   828
interpretation scaleR_left!: bounded_linear "\<lambda>r. scaleR r x"
huffman@23127
   829
by (rule scaleR.bounded_linear_left)
huffman@23127
   830
ballarin@29233
   831
interpretation scaleR_right!: bounded_linear "\<lambda>x. scaleR r x"
huffman@23127
   832
by (rule scaleR.bounded_linear_right)
huffman@23127
   833
ballarin@29233
   834
interpretation of_real!: bounded_linear "\<lambda>r. of_real r"
huffman@23127
   835
unfolding of_real_def by (rule scaleR.bounded_linear_left)
huffman@22625
   836
huffman@20504
   837
end