src/HOL/Real/RealDef.thy
author bauerg
Wed Dec 06 12:34:12 2000 +0100 (2000-12-06)
changeset 10606 e3229a37d53f
parent 9391 a6ab3a442da6
child 10648 a8c647cfa31f
permissions -rw-r--r--
converted rinv to inverse;
paulson@5588
     1
(*  Title       : Real/RealDef.thy
paulson@7219
     2
    ID          : $Id$
paulson@5588
     3
    Author      : Jacques D. Fleuriot
paulson@5588
     4
    Copyright   : 1998  University of Cambridge
paulson@5588
     5
    Description : The reals
paulson@5588
     6
*) 
paulson@5588
     7
paulson@5588
     8
RealDef = PReal +
paulson@5588
     9
paulson@5588
    10
constdefs
paulson@5588
    11
  realrel   ::  "((preal * preal) * (preal * preal)) set"
paulson@5588
    12
  "realrel == {p. ? x1 y1 x2 y2. p = ((x1,y1),(x2,y2)) & x1+y2 = x2+y1}" 
paulson@5588
    13
paulson@9391
    14
typedef real = "UNIV//realrel"  (Equiv.quotient_def)
paulson@5588
    15
paulson@5588
    16
paulson@5588
    17
instance
bauerg@10606
    18
   real  :: {ord, zero, plus, times, minus, inverse}
paulson@5588
    19
paulson@5588
    20
consts 
paulson@5588
    21
paulson@5588
    22
  "1r"       :: real               ("1r")  
paulson@5588
    23
paulson@5588
    24
defs
paulson@5588
    25
paulson@7077
    26
  real_zero_def  
bauerg@10606
    27
  "0 == Abs_real(realrel^^{(preal_of_prat(prat_of_pnat 1p),
paulson@7077
    28
                                preal_of_prat(prat_of_pnat 1p))})"
paulson@7077
    29
  real_one_def   
bauerg@10606
    30
  "1r == Abs_real(realrel^^{(preal_of_prat(prat_of_pnat 1p) + 
paulson@7077
    31
            preal_of_prat(prat_of_pnat 1p),preal_of_prat(prat_of_pnat 1p))})"
paulson@5588
    32
paulson@5588
    33
  real_minus_def
bauerg@10606
    34
  "- R ==  Abs_real(UN (x,y):Rep_real(R). realrel^^{(y,x)})"
bauerg@10606
    35
bauerg@10606
    36
  real_diff_def
bauerg@10606
    37
  "R - (S::real) == R + - S"
paulson@5588
    38
bauerg@10606
    39
  real_inverse_def
bauerg@10606
    40
  "inverse (R::real) == (@S. R ~= 0 & S*R = 1r)"
paulson@5588
    41
bauerg@10606
    42
  real_divide_def
bauerg@10606
    43
  "R / (S::real) == R * inverse S"
bauerg@10606
    44
  
paulson@5588
    45
constdefs
paulson@5588
    46
paulson@7077
    47
  real_of_preal :: preal => real            
paulson@7077
    48
  "real_of_preal m     ==
paulson@7077
    49
           Abs_real(realrel^^{(m+preal_of_prat(prat_of_pnat 1p),
paulson@7077
    50
                               preal_of_prat(prat_of_pnat 1p))})"
paulson@5588
    51
paulson@7077
    52
  real_of_posnat :: nat => real             
paulson@7077
    53
  "real_of_posnat n == real_of_preal(preal_of_prat(prat_of_pnat(pnat_of_nat n)))"
paulson@7077
    54
paulson@7077
    55
  real_of_nat :: nat => real          
paulson@7127
    56
  "real_of_nat n    == real_of_posnat n + (-1r)"
paulson@5588
    57
paulson@5588
    58
defs
paulson@5588
    59
paulson@5588
    60
  real_add_def  
paulson@5588
    61
  "P + Q == Abs_real(UN p1:Rep_real(P). UN p2:Rep_real(Q).
wenzelm@9365
    62
                (%(x1,y1). (%(x2,y2). realrel^^{(x1+x2, y1+y2)}) p2) p1)"
paulson@5588
    63
  
paulson@5588
    64
  real_mult_def  
paulson@5588
    65
  "P * Q == Abs_real(UN p1:Rep_real(P). UN p2:Rep_real(Q).
wenzelm@9365
    66
                (%(x1,y1). (%(x2,y2). realrel^^{(x1*x2+y1*y2,x1*y2+x2*y1)}) p2) p1)"
paulson@5588
    67
paulson@5588
    68
  real_less_def
paulson@5588
    69
  "P < Q == EX x1 y1 x2 y2. x1 + y2 < x2 + y1 & 
paulson@5588
    70
                                   (x1,y1):Rep_real(P) &
paulson@5588
    71
                                   (x2,y2):Rep_real(Q)" 
paulson@5588
    72
  real_le_def
paulson@5588
    73
  "P <= (Q::real) == ~(Q < P)"
paulson@5588
    74
paulson@5588
    75
end