src/FOL/FOL.thy
author berghofe
Sun Jan 10 18:41:07 2010 +0100 (2010-01-10)
changeset 34914 e391c3de0f6b
parent 32960 69916a850301
child 34989 b5c6e59e2cd7
permissions -rw-r--r--
Adapted to changes in setup of induct method.
wenzelm@9487
     1
(*  Title:      FOL/FOL.thy
wenzelm@9487
     2
    Author:     Lawrence C Paulson and Markus Wenzel
wenzelm@11678
     3
*)
wenzelm@9487
     4
wenzelm@11678
     5
header {* Classical first-order logic *}
wenzelm@4093
     6
wenzelm@18456
     7
theory FOL
paulson@15481
     8
imports IFOL
wenzelm@23154
     9
uses
wenzelm@24097
    10
  "~~/src/Provers/classical.ML"
wenzelm@24097
    11
  "~~/src/Provers/blast.ML"
wenzelm@24097
    12
  "~~/src/Provers/clasimp.ML"
wenzelm@24830
    13
  "~~/src/Tools/induct.ML"
wenzelm@23154
    14
  ("cladata.ML")
wenzelm@23154
    15
  ("simpdata.ML")
wenzelm@18456
    16
begin
wenzelm@9487
    17
wenzelm@9487
    18
wenzelm@9487
    19
subsection {* The classical axiom *}
wenzelm@4093
    20
wenzelm@7355
    21
axioms
wenzelm@7355
    22
  classical: "(~P ==> P) ==> P"
wenzelm@4093
    23
wenzelm@9487
    24
wenzelm@11678
    25
subsection {* Lemmas and proof tools *}
wenzelm@9487
    26
wenzelm@21539
    27
lemma ccontr: "(\<not> P \<Longrightarrow> False) \<Longrightarrow> P"
wenzelm@21539
    28
  by (erule FalseE [THEN classical])
wenzelm@21539
    29
wenzelm@21539
    30
(*** Classical introduction rules for | and EX ***)
wenzelm@21539
    31
wenzelm@21539
    32
lemma disjCI: "(~Q ==> P) ==> P|Q"
wenzelm@21539
    33
  apply (rule classical)
wenzelm@21539
    34
  apply (assumption | erule meta_mp | rule disjI1 notI)+
wenzelm@21539
    35
  apply (erule notE disjI2)+
wenzelm@21539
    36
  done
wenzelm@21539
    37
wenzelm@21539
    38
(*introduction rule involving only EX*)
wenzelm@21539
    39
lemma ex_classical:
wenzelm@21539
    40
  assumes r: "~(EX x. P(x)) ==> P(a)"
wenzelm@21539
    41
  shows "EX x. P(x)"
wenzelm@21539
    42
  apply (rule classical)
wenzelm@21539
    43
  apply (rule exI, erule r)
wenzelm@21539
    44
  done
wenzelm@21539
    45
wenzelm@21539
    46
(*version of above, simplifying ~EX to ALL~ *)
wenzelm@21539
    47
lemma exCI:
wenzelm@21539
    48
  assumes r: "ALL x. ~P(x) ==> P(a)"
wenzelm@21539
    49
  shows "EX x. P(x)"
wenzelm@21539
    50
  apply (rule ex_classical)
wenzelm@21539
    51
  apply (rule notI [THEN allI, THEN r])
wenzelm@21539
    52
  apply (erule notE)
wenzelm@21539
    53
  apply (erule exI)
wenzelm@21539
    54
  done
wenzelm@21539
    55
wenzelm@21539
    56
lemma excluded_middle: "~P | P"
wenzelm@21539
    57
  apply (rule disjCI)
wenzelm@21539
    58
  apply assumption
wenzelm@21539
    59
  done
wenzelm@21539
    60
wenzelm@27115
    61
lemma case_split [case_names True False]:
wenzelm@21539
    62
  assumes r1: "P ==> Q"
wenzelm@21539
    63
    and r2: "~P ==> Q"
wenzelm@21539
    64
  shows Q
wenzelm@21539
    65
  apply (rule excluded_middle [THEN disjE])
wenzelm@21539
    66
  apply (erule r2)
wenzelm@21539
    67
  apply (erule r1)
wenzelm@21539
    68
  done
wenzelm@21539
    69
wenzelm@21539
    70
ML {*
wenzelm@27239
    71
  fun case_tac ctxt a = res_inst_tac ctxt [(("P", 0), a)] @{thm case_split}
wenzelm@21539
    72
*}
wenzelm@21539
    73
wenzelm@30549
    74
method_setup case_tac = {*
wenzelm@30549
    75
  Args.goal_spec -- Scan.lift Args.name_source >>
wenzelm@30549
    76
  (fn (quant, s) => fn ctxt => SIMPLE_METHOD'' quant (case_tac ctxt s))
wenzelm@30549
    77
*} "case_tac emulation (dynamic instantiation!)"
wenzelm@27211
    78
wenzelm@21539
    79
wenzelm@21539
    80
(*** Special elimination rules *)
wenzelm@21539
    81
wenzelm@21539
    82
wenzelm@21539
    83
(*Classical implies (-->) elimination. *)
wenzelm@21539
    84
lemma impCE:
wenzelm@21539
    85
  assumes major: "P-->Q"
wenzelm@21539
    86
    and r1: "~P ==> R"
wenzelm@21539
    87
    and r2: "Q ==> R"
wenzelm@21539
    88
  shows R
wenzelm@21539
    89
  apply (rule excluded_middle [THEN disjE])
wenzelm@21539
    90
   apply (erule r1)
wenzelm@21539
    91
  apply (rule r2)
wenzelm@21539
    92
  apply (erule major [THEN mp])
wenzelm@21539
    93
  done
wenzelm@21539
    94
wenzelm@21539
    95
(*This version of --> elimination works on Q before P.  It works best for
wenzelm@21539
    96
  those cases in which P holds "almost everywhere".  Can't install as
wenzelm@21539
    97
  default: would break old proofs.*)
wenzelm@21539
    98
lemma impCE':
wenzelm@21539
    99
  assumes major: "P-->Q"
wenzelm@21539
   100
    and r1: "Q ==> R"
wenzelm@21539
   101
    and r2: "~P ==> R"
wenzelm@21539
   102
  shows R
wenzelm@21539
   103
  apply (rule excluded_middle [THEN disjE])
wenzelm@21539
   104
   apply (erule r2)
wenzelm@21539
   105
  apply (rule r1)
wenzelm@21539
   106
  apply (erule major [THEN mp])
wenzelm@21539
   107
  done
wenzelm@21539
   108
wenzelm@21539
   109
(*Double negation law*)
wenzelm@21539
   110
lemma notnotD: "~~P ==> P"
wenzelm@21539
   111
  apply (rule classical)
wenzelm@21539
   112
  apply (erule notE)
wenzelm@21539
   113
  apply assumption
wenzelm@21539
   114
  done
wenzelm@21539
   115
wenzelm@21539
   116
lemma contrapos2:  "[| Q; ~ P ==> ~ Q |] ==> P"
wenzelm@21539
   117
  apply (rule classical)
wenzelm@21539
   118
  apply (drule (1) meta_mp)
wenzelm@21539
   119
  apply (erule (1) notE)
wenzelm@21539
   120
  done
wenzelm@21539
   121
wenzelm@21539
   122
(*** Tactics for implication and contradiction ***)
wenzelm@21539
   123
wenzelm@21539
   124
(*Classical <-> elimination.  Proof substitutes P=Q in 
wenzelm@21539
   125
    ~P ==> ~Q    and    P ==> Q  *)
wenzelm@21539
   126
lemma iffCE:
wenzelm@21539
   127
  assumes major: "P<->Q"
wenzelm@21539
   128
    and r1: "[| P; Q |] ==> R"
wenzelm@21539
   129
    and r2: "[| ~P; ~Q |] ==> R"
wenzelm@21539
   130
  shows R
wenzelm@21539
   131
  apply (rule major [unfolded iff_def, THEN conjE])
wenzelm@21539
   132
  apply (elim impCE)
wenzelm@21539
   133
     apply (erule (1) r2)
wenzelm@21539
   134
    apply (erule (1) notE)+
wenzelm@21539
   135
  apply (erule (1) r1)
wenzelm@21539
   136
  done
wenzelm@21539
   137
wenzelm@21539
   138
wenzelm@21539
   139
(*Better for fast_tac: needs no quantifier duplication!*)
wenzelm@21539
   140
lemma alt_ex1E:
wenzelm@21539
   141
  assumes major: "EX! x. P(x)"
wenzelm@21539
   142
    and r: "!!x. [| P(x);  ALL y y'. P(y) & P(y') --> y=y' |] ==> R"
wenzelm@21539
   143
  shows R
wenzelm@21539
   144
  using major
wenzelm@21539
   145
proof (rule ex1E)
wenzelm@21539
   146
  fix x
wenzelm@21539
   147
  assume * : "\<forall>y. P(y) \<longrightarrow> y = x"
wenzelm@21539
   148
  assume "P(x)"
wenzelm@21539
   149
  then show R
wenzelm@21539
   150
  proof (rule r)
wenzelm@21539
   151
    { fix y y'
wenzelm@21539
   152
      assume "P(y)" and "P(y')"
wenzelm@21539
   153
      with * have "x = y" and "x = y'" by - (tactic "IntPr.fast_tac 1")+
wenzelm@21539
   154
      then have "y = y'" by (rule subst)
wenzelm@21539
   155
    } note r' = this
wenzelm@21539
   156
    show "\<forall>y y'. P(y) \<and> P(y') \<longrightarrow> y = y'" by (intro strip, elim conjE) (rule r')
wenzelm@21539
   157
  qed
wenzelm@21539
   158
qed
wenzelm@9525
   159
wenzelm@26411
   160
lemma imp_elim: "P --> Q ==> (~ R ==> P) ==> (Q ==> R) ==> R"
wenzelm@26411
   161
  by (rule classical) iprover
wenzelm@26411
   162
wenzelm@26411
   163
lemma swap: "~ P ==> (~ R ==> P) ==> R"
wenzelm@26411
   164
  by (rule classical) iprover
wenzelm@26411
   165
wenzelm@27849
   166
wenzelm@27849
   167
section {* Classical Reasoner *}
wenzelm@27849
   168
wenzelm@10383
   169
use "cladata.ML"
wenzelm@10383
   170
setup Cla.setup
wenzelm@32261
   171
ML {* Context.>> (Cla.map_cs (K FOL_cs)) *}
wenzelm@10383
   172
wenzelm@32176
   173
ML {*
wenzelm@32176
   174
  structure Blast = Blast
wenzelm@32176
   175
  (
wenzelm@32176
   176
    val thy = @{theory}
wenzelm@32960
   177
    type claset = Cla.claset
wenzelm@32176
   178
    val equality_name = @{const_name "op ="}
wenzelm@32176
   179
    val not_name = @{const_name Not}
wenzelm@32960
   180
    val notE = @{thm notE}
wenzelm@32960
   181
    val ccontr = @{thm ccontr}
wenzelm@32176
   182
    val contr_tac = Cla.contr_tac
wenzelm@32960
   183
    val dup_intr = Cla.dup_intr
wenzelm@32176
   184
    val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac
wenzelm@32176
   185
    val rep_cs = Cla.rep_cs
wenzelm@32176
   186
    val cla_modifiers = Cla.cla_modifiers
wenzelm@32176
   187
    val cla_meth' = Cla.cla_meth'
wenzelm@32176
   188
  );
wenzelm@32176
   189
  val blast_tac = Blast.blast_tac;
wenzelm@32176
   190
*}
wenzelm@32176
   191
wenzelm@9487
   192
setup Blast.setup
paulson@13550
   193
paulson@13550
   194
paulson@13550
   195
lemma ex1_functional: "[| EX! z. P(a,z);  P(a,b);  P(a,c) |] ==> b = c"
wenzelm@21539
   196
  by blast
wenzelm@20223
   197
wenzelm@20223
   198
(* Elimination of True from asumptions: *)
wenzelm@20223
   199
lemma True_implies_equals: "(True ==> PROP P) == PROP P"
wenzelm@20223
   200
proof
wenzelm@20223
   201
  assume "True \<Longrightarrow> PROP P"
wenzelm@20223
   202
  from this and TrueI show "PROP P" .
wenzelm@20223
   203
next
wenzelm@20223
   204
  assume "PROP P"
wenzelm@20223
   205
  then show "PROP P" .
wenzelm@20223
   206
qed
wenzelm@9487
   207
wenzelm@21539
   208
lemma uncurry: "P --> Q --> R ==> P & Q --> R"
wenzelm@21539
   209
  by blast
wenzelm@21539
   210
wenzelm@21539
   211
lemma iff_allI: "(!!x. P(x) <-> Q(x)) ==> (ALL x. P(x)) <-> (ALL x. Q(x))"
wenzelm@21539
   212
  by blast
wenzelm@21539
   213
wenzelm@21539
   214
lemma iff_exI: "(!!x. P(x) <-> Q(x)) ==> (EX x. P(x)) <-> (EX x. Q(x))"
wenzelm@21539
   215
  by blast
wenzelm@21539
   216
wenzelm@21539
   217
lemma all_comm: "(ALL x y. P(x,y)) <-> (ALL y x. P(x,y))" by blast
wenzelm@21539
   218
wenzelm@21539
   219
lemma ex_comm: "(EX x y. P(x,y)) <-> (EX y x. P(x,y))" by blast
wenzelm@21539
   220
wenzelm@26286
   221
wenzelm@26286
   222
wenzelm@26286
   223
(*** Classical simplification rules ***)
wenzelm@26286
   224
wenzelm@26286
   225
(*Avoids duplication of subgoals after expand_if, when the true and false
wenzelm@26286
   226
  cases boil down to the same thing.*)
wenzelm@26286
   227
lemma cases_simp: "(P --> Q) & (~P --> Q) <-> Q" by blast
wenzelm@26286
   228
wenzelm@26286
   229
wenzelm@26286
   230
(*** Miniscoping: pushing quantifiers in
wenzelm@26286
   231
     We do NOT distribute of ALL over &, or dually that of EX over |
wenzelm@26286
   232
     Baaz and Leitsch, On Skolemization and Proof Complexity (1994)
wenzelm@26286
   233
     show that this step can increase proof length!
wenzelm@26286
   234
***)
wenzelm@26286
   235
wenzelm@26286
   236
(*existential miniscoping*)
wenzelm@26286
   237
lemma int_ex_simps:
wenzelm@26286
   238
  "!!P Q. (EX x. P(x) & Q) <-> (EX x. P(x)) & Q"
wenzelm@26286
   239
  "!!P Q. (EX x. P & Q(x)) <-> P & (EX x. Q(x))"
wenzelm@26286
   240
  "!!P Q. (EX x. P(x) | Q) <-> (EX x. P(x)) | Q"
wenzelm@26286
   241
  "!!P Q. (EX x. P | Q(x)) <-> P | (EX x. Q(x))"
wenzelm@26286
   242
  by iprover+
wenzelm@26286
   243
wenzelm@26286
   244
(*classical rules*)
wenzelm@26286
   245
lemma cla_ex_simps:
wenzelm@26286
   246
  "!!P Q. (EX x. P(x) --> Q) <-> (ALL x. P(x)) --> Q"
wenzelm@26286
   247
  "!!P Q. (EX x. P --> Q(x)) <-> P --> (EX x. Q(x))"
wenzelm@26286
   248
  by blast+
wenzelm@26286
   249
wenzelm@26286
   250
lemmas ex_simps = int_ex_simps cla_ex_simps
wenzelm@26286
   251
wenzelm@26286
   252
(*universal miniscoping*)
wenzelm@26286
   253
lemma int_all_simps:
wenzelm@26286
   254
  "!!P Q. (ALL x. P(x) & Q) <-> (ALL x. P(x)) & Q"
wenzelm@26286
   255
  "!!P Q. (ALL x. P & Q(x)) <-> P & (ALL x. Q(x))"
wenzelm@26286
   256
  "!!P Q. (ALL x. P(x) --> Q) <-> (EX x. P(x)) --> Q"
wenzelm@26286
   257
  "!!P Q. (ALL x. P --> Q(x)) <-> P --> (ALL x. Q(x))"
wenzelm@26286
   258
  by iprover+
wenzelm@26286
   259
wenzelm@26286
   260
(*classical rules*)
wenzelm@26286
   261
lemma cla_all_simps:
wenzelm@26286
   262
  "!!P Q. (ALL x. P(x) | Q) <-> (ALL x. P(x)) | Q"
wenzelm@26286
   263
  "!!P Q. (ALL x. P | Q(x)) <-> P | (ALL x. Q(x))"
wenzelm@26286
   264
  by blast+
wenzelm@26286
   265
wenzelm@26286
   266
lemmas all_simps = int_all_simps cla_all_simps
wenzelm@26286
   267
wenzelm@26286
   268
wenzelm@26286
   269
(*** Named rewrite rules proved for IFOL ***)
wenzelm@26286
   270
wenzelm@26286
   271
lemma imp_disj1: "(P-->Q) | R <-> (P-->Q | R)" by blast
wenzelm@26286
   272
lemma imp_disj2: "Q | (P-->R) <-> (P-->Q | R)" by blast
wenzelm@26286
   273
wenzelm@26286
   274
lemma de_Morgan_conj: "(~(P & Q)) <-> (~P | ~Q)" by blast
wenzelm@26286
   275
wenzelm@26286
   276
lemma not_imp: "~(P --> Q) <-> (P & ~Q)" by blast
wenzelm@26286
   277
lemma not_iff: "~(P <-> Q) <-> (P <-> ~Q)" by blast
wenzelm@26286
   278
wenzelm@26286
   279
lemma not_all: "(~ (ALL x. P(x))) <-> (EX x.~P(x))" by blast
wenzelm@26286
   280
lemma imp_all: "((ALL x. P(x)) --> Q) <-> (EX x. P(x) --> Q)" by blast
wenzelm@26286
   281
wenzelm@26286
   282
wenzelm@26286
   283
lemmas meta_simps =
wenzelm@26286
   284
  triv_forall_equality (* prunes params *)
wenzelm@26286
   285
  True_implies_equals  (* prune asms `True' *)
wenzelm@26286
   286
wenzelm@26286
   287
lemmas IFOL_simps =
wenzelm@26286
   288
  refl [THEN P_iff_T] conj_simps disj_simps not_simps
wenzelm@26286
   289
  imp_simps iff_simps quant_simps
wenzelm@26286
   290
wenzelm@26286
   291
lemma notFalseI: "~False" by iprover
wenzelm@26286
   292
wenzelm@26286
   293
lemma cla_simps_misc:
wenzelm@26286
   294
  "~(P&Q) <-> ~P | ~Q"
wenzelm@26286
   295
  "P | ~P"
wenzelm@26286
   296
  "~P | P"
wenzelm@26286
   297
  "~ ~ P <-> P"
wenzelm@26286
   298
  "(~P --> P) <-> P"
wenzelm@26286
   299
  "(~P <-> ~Q) <-> (P<->Q)" by blast+
wenzelm@26286
   300
wenzelm@26286
   301
lemmas cla_simps =
wenzelm@26286
   302
  de_Morgan_conj de_Morgan_disj imp_disj1 imp_disj2
wenzelm@26286
   303
  not_imp not_all not_ex cases_simp cla_simps_misc
wenzelm@26286
   304
wenzelm@26286
   305
wenzelm@9487
   306
use "simpdata.ML"
wenzelm@9487
   307
setup simpsetup
wenzelm@9487
   308
setup "Simplifier.method_setup Splitter.split_modifiers"
wenzelm@9487
   309
setup Splitter.setup
wenzelm@26496
   310
setup clasimp_setup
wenzelm@18591
   311
setup EqSubst.setup
paulson@15481
   312
paulson@15481
   313
paulson@14085
   314
subsection {* Other simple lemmas *}
paulson@14085
   315
paulson@14085
   316
lemma [simp]: "((P-->R) <-> (Q-->R)) <-> ((P<->Q) | R)"
paulson@14085
   317
by blast
paulson@14085
   318
paulson@14085
   319
lemma [simp]: "((P-->Q) <-> (P-->R)) <-> (P --> (Q<->R))"
paulson@14085
   320
by blast
paulson@14085
   321
paulson@14085
   322
lemma not_disj_iff_imp: "~P | Q <-> (P-->Q)"
paulson@14085
   323
by blast
paulson@14085
   324
paulson@14085
   325
(** Monotonicity of implications **)
paulson@14085
   326
paulson@14085
   327
lemma conj_mono: "[| P1-->Q1; P2-->Q2 |] ==> (P1&P2) --> (Q1&Q2)"
paulson@14085
   328
by fast (*or (IntPr.fast_tac 1)*)
paulson@14085
   329
paulson@14085
   330
lemma disj_mono: "[| P1-->Q1; P2-->Q2 |] ==> (P1|P2) --> (Q1|Q2)"
paulson@14085
   331
by fast (*or (IntPr.fast_tac 1)*)
paulson@14085
   332
paulson@14085
   333
lemma imp_mono: "[| Q1-->P1; P2-->Q2 |] ==> (P1-->P2)-->(Q1-->Q2)"
paulson@14085
   334
by fast (*or (IntPr.fast_tac 1)*)
paulson@14085
   335
paulson@14085
   336
lemma imp_refl: "P-->P"
paulson@14085
   337
by (rule impI, assumption)
paulson@14085
   338
paulson@14085
   339
(*The quantifier monotonicity rules are also intuitionistically valid*)
paulson@14085
   340
lemma ex_mono: "(!!x. P(x) --> Q(x)) ==> (EX x. P(x)) --> (EX x. Q(x))"
paulson@14085
   341
by blast
paulson@14085
   342
paulson@14085
   343
lemma all_mono: "(!!x. P(x) --> Q(x)) ==> (ALL x. P(x)) --> (ALL x. Q(x))"
paulson@14085
   344
by blast
paulson@14085
   345
wenzelm@11678
   346
wenzelm@11678
   347
subsection {* Proof by cases and induction *}
wenzelm@11678
   348
wenzelm@11678
   349
text {* Proper handling of non-atomic rule statements. *}
wenzelm@11678
   350
wenzelm@11678
   351
constdefs
wenzelm@18456
   352
  induct_forall where "induct_forall(P) == \<forall>x. P(x)"
wenzelm@18456
   353
  induct_implies where "induct_implies(A, B) == A \<longrightarrow> B"
wenzelm@18456
   354
  induct_equal where "induct_equal(x, y) == x = y"
wenzelm@18456
   355
  induct_conj where "induct_conj(A, B) == A \<and> B"
wenzelm@11678
   356
wenzelm@11678
   357
lemma induct_forall_eq: "(!!x. P(x)) == Trueprop(induct_forall(\<lambda>x. P(x)))"
wenzelm@18816
   358
  unfolding atomize_all induct_forall_def .
wenzelm@11678
   359
wenzelm@11678
   360
lemma induct_implies_eq: "(A ==> B) == Trueprop(induct_implies(A, B))"
wenzelm@18816
   361
  unfolding atomize_imp induct_implies_def .
wenzelm@11678
   362
wenzelm@11678
   363
lemma induct_equal_eq: "(x == y) == Trueprop(induct_equal(x, y))"
wenzelm@18816
   364
  unfolding atomize_eq induct_equal_def .
wenzelm@11678
   365
wenzelm@28856
   366
lemma induct_conj_eq: "(A &&& B) == Trueprop(induct_conj(A, B))"
wenzelm@18816
   367
  unfolding atomize_conj induct_conj_def .
wenzelm@11988
   368
wenzelm@18456
   369
lemmas induct_atomize = induct_forall_eq induct_implies_eq induct_equal_eq induct_conj_eq
wenzelm@18456
   370
lemmas induct_rulify [symmetric, standard] = induct_atomize
wenzelm@18456
   371
lemmas induct_rulify_fallback =
wenzelm@18456
   372
  induct_forall_def induct_implies_def induct_equal_def induct_conj_def
wenzelm@11678
   373
wenzelm@18456
   374
hide const induct_forall induct_implies induct_equal induct_conj
wenzelm@11678
   375
wenzelm@11678
   376
wenzelm@11678
   377
text {* Method setup. *}
wenzelm@11678
   378
wenzelm@11678
   379
ML {*
wenzelm@32171
   380
  structure Induct = Induct
wenzelm@24830
   381
  (
wenzelm@22139
   382
    val cases_default = @{thm case_split}
wenzelm@22139
   383
    val atomize = @{thms induct_atomize}
wenzelm@22139
   384
    val rulify = @{thms induct_rulify}
wenzelm@22139
   385
    val rulify_fallback = @{thms induct_rulify_fallback}
berghofe@34914
   386
    fun dest_def _ = NONE
berghofe@34914
   387
    fun trivial_tac _ = no_tac
wenzelm@24830
   388
  );
wenzelm@11678
   389
*}
wenzelm@11678
   390
wenzelm@24830
   391
setup Induct.setup
wenzelm@24830
   392
declare case_split [cases type: o]
wenzelm@11678
   393
wenzelm@4854
   394
end