src/HOL/Map.thy
author paulson <lp15@cam.ac.uk>
Tue Apr 25 16:39:54 2017 +0100 (2017-04-25)
changeset 65578 e4997c181cce
parent 63834 6a757f36997e
child 66010 2f7d39285a1a
permissions -rw-r--r--
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
nipkow@3981
     1
(*  Title:      HOL/Map.thy
nipkow@3981
     2
    Author:     Tobias Nipkow, based on a theory by David von Oheimb
webertj@13908
     3
    Copyright   1997-2003 TU Muenchen
nipkow@3981
     4
wenzelm@60838
     5
The datatype of "maps"; strongly resembles maps in VDM.
nipkow@3981
     6
*)
nipkow@3981
     7
wenzelm@60758
     8
section \<open>Maps\<close>
nipkow@13914
     9
nipkow@15131
    10
theory Map
nipkow@15140
    11
imports List
nipkow@15131
    12
begin
nipkow@3981
    13
wenzelm@61069
    14
type_synonym ('a, 'b) "map" = "'a \<Rightarrow> 'b option" (infixr "\<rightharpoonup>" 0)
wenzelm@19656
    15
nipkow@19378
    16
abbreviation
wenzelm@60838
    17
  empty :: "'a \<rightharpoonup> 'b" where
wenzelm@60839
    18
  "empty \<equiv> \<lambda>x. None"
nipkow@19378
    19
wenzelm@19656
    20
definition
wenzelm@61069
    21
  map_comp :: "('b \<rightharpoonup> 'c) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'c)"  (infixl "\<circ>\<^sub>m" 55) where
wenzelm@61069
    22
  "f \<circ>\<^sub>m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)"
wenzelm@19656
    23
wenzelm@20800
    24
definition
wenzelm@60839
    25
  map_add :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b)"  (infixl "++" 100) where
wenzelm@60839
    26
  "m1 ++ m2 = (\<lambda>x. case m2 x of None \<Rightarrow> m1 x | Some y \<Rightarrow> Some y)"
wenzelm@20800
    27
wenzelm@21404
    28
definition
wenzelm@60839
    29
  restrict_map :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a set \<Rightarrow> ('a \<rightharpoonup> 'b)"  (infixl "|`"  110) where
wenzelm@60839
    30
  "m|`A = (\<lambda>x. if x \<in> A then m x else None)"
nipkow@13910
    31
wenzelm@21210
    32
notation (latex output)
wenzelm@19656
    33
  restrict_map  ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
wenzelm@19656
    34
wenzelm@20800
    35
definition
wenzelm@60839
    36
  dom :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a set" where
wenzelm@60839
    37
  "dom m = {a. m a \<noteq> None}"
wenzelm@20800
    38
wenzelm@21404
    39
definition
wenzelm@60839
    40
  ran :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'b set" where
wenzelm@60839
    41
  "ran m = {b. \<exists>a. m a = Some b}"
wenzelm@20800
    42
wenzelm@21404
    43
definition
wenzelm@60839
    44
  map_le :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> bool"  (infix "\<subseteq>\<^sub>m" 50) where
wenzelm@60839
    45
  "(m\<^sub>1 \<subseteq>\<^sub>m m\<^sub>2) \<longleftrightarrow> (\<forall>a \<in> dom m\<^sub>1. m\<^sub>1 a = m\<^sub>2 a)"
wenzelm@20800
    46
wenzelm@41229
    47
nonterminal maplets and maplet
nipkow@14180
    48
oheimb@5300
    49
syntax
wenzelm@61955
    50
  "_maplet"  :: "['a, 'a] \<Rightarrow> maplet"             ("_ /\<mapsto>/ _")
wenzelm@61955
    51
  "_maplets" :: "['a, 'a] \<Rightarrow> maplet"             ("_ /[\<mapsto>]/ _")
wenzelm@60839
    52
  ""         :: "maplet \<Rightarrow> maplets"             ("_")
wenzelm@60839
    53
  "_Maplets" :: "[maplet, maplets] \<Rightarrow> maplets" ("_,/ _")
wenzelm@61955
    54
  "_MapUpd"  :: "['a \<rightharpoonup> 'b, maplets] \<Rightarrow> 'a \<rightharpoonup> 'b" ("_/'(_')" [900, 0] 900)
wenzelm@60839
    55
  "_Map"     :: "maplets \<Rightarrow> 'a \<rightharpoonup> 'b"            ("(1[_])")
nipkow@3981
    56
wenzelm@61955
    57
syntax (ASCII)
wenzelm@61955
    58
  "_maplet"  :: "['a, 'a] \<Rightarrow> maplet"             ("_ /|->/ _")
wenzelm@61955
    59
  "_maplets" :: "['a, 'a] \<Rightarrow> maplet"             ("_ /[|->]/ _")
nipkow@14180
    60
oheimb@5300
    61
translations
wenzelm@60839
    62
  "_MapUpd m (_Maplets xy ms)"  \<rightleftharpoons> "_MapUpd (_MapUpd m xy) ms"
wenzelm@60839
    63
  "_MapUpd m (_maplet  x y)"    \<rightleftharpoons> "m(x := CONST Some y)"
wenzelm@60839
    64
  "_Map ms"                     \<rightleftharpoons> "_MapUpd (CONST empty) ms"
wenzelm@60839
    65
  "_Map (_Maplets ms1 ms2)"     \<leftharpoondown> "_MapUpd (_Map ms1) ms2"
wenzelm@60839
    66
  "_Maplets ms1 (_Maplets ms2 ms3)" \<leftharpoondown> "_Maplets (_Maplets ms1 ms2) ms3"
nipkow@14180
    67
wenzelm@61955
    68
primrec map_of :: "('a \<times> 'b) list \<Rightarrow> 'a \<rightharpoonup> 'b"
wenzelm@61955
    69
where
wenzelm@61955
    70
  "map_of [] = empty"
wenzelm@61955
    71
| "map_of (p # ps) = (map_of ps)(fst p \<mapsto> snd p)"
oheimb@5300
    72
wenzelm@61955
    73
definition map_upds :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'a \<rightharpoonup> 'b"
wenzelm@61955
    74
  where "map_upds m xs ys = m ++ map_of (rev (zip xs ys))"
haftmann@34941
    75
translations
wenzelm@60839
    76
  "_MapUpd m (_maplets x y)" \<rightleftharpoons> "CONST map_upds m x y"
haftmann@25965
    77
wenzelm@60839
    78
lemma map_of_Cons_code [code]:
haftmann@25965
    79
  "map_of [] k = None"
haftmann@25965
    80
  "map_of ((l, v) # ps) k = (if l = k then Some v else map_of ps k)"
haftmann@25965
    81
  by simp_all
haftmann@25965
    82
wenzelm@20800
    83
wenzelm@60758
    84
subsection \<open>@{term [source] empty}\<close>
webertj@13908
    85
wenzelm@20800
    86
lemma empty_upd_none [simp]: "empty(x := None) = empty"
wenzelm@60839
    87
  by (rule ext) simp
webertj@13908
    88
webertj@13908
    89
wenzelm@60758
    90
subsection \<open>@{term [source] map_upd}\<close>
webertj@13908
    91
wenzelm@60839
    92
lemma map_upd_triv: "t k = Some x \<Longrightarrow> t(k\<mapsto>x) = t"
wenzelm@60839
    93
  by (rule ext) simp
webertj@13908
    94
wenzelm@60839
    95
lemma map_upd_nonempty [simp]: "t(k\<mapsto>x) \<noteq> empty"
wenzelm@20800
    96
proof
wenzelm@20800
    97
  assume "t(k \<mapsto> x) = empty"
wenzelm@20800
    98
  then have "(t(k \<mapsto> x)) k = None" by simp
wenzelm@20800
    99
  then show False by simp
wenzelm@20800
   100
qed
webertj@13908
   101
wenzelm@20800
   102
lemma map_upd_eqD1:
wenzelm@20800
   103
  assumes "m(a\<mapsto>x) = n(a\<mapsto>y)"
wenzelm@20800
   104
  shows "x = y"
wenzelm@20800
   105
proof -
wenzelm@41550
   106
  from assms have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp
wenzelm@20800
   107
  then show ?thesis by simp
wenzelm@20800
   108
qed
oheimb@14100
   109
wenzelm@20800
   110
lemma map_upd_Some_unfold:
wenzelm@60838
   111
  "((m(a\<mapsto>b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"
nipkow@24331
   112
by auto
oheimb@14100
   113
wenzelm@20800
   114
lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A"
nipkow@24331
   115
by auto
nipkow@15303
   116
wenzelm@60839
   117
lemma finite_range_updI: "finite (range f) \<Longrightarrow> finite (range (f(a\<mapsto>b)))"
nipkow@24331
   118
unfolding image_def
nipkow@24331
   119
apply (simp (no_asm_use) add:full_SetCompr_eq)
nipkow@24331
   120
apply (rule finite_subset)
nipkow@24331
   121
 prefer 2 apply assumption
nipkow@24331
   122
apply (auto)
nipkow@24331
   123
done
webertj@13908
   124
webertj@13908
   125
wenzelm@60758
   126
subsection \<open>@{term [source] map_of}\<close>
webertj@13908
   127
nipkow@15304
   128
lemma map_of_eq_None_iff:
nipkow@24331
   129
  "(map_of xys x = None) = (x \<notin> fst ` (set xys))"
nipkow@24331
   130
by (induct xys) simp_all
nipkow@15304
   131
wenzelm@20800
   132
lemma map_of_eq_Some_iff [simp]:
nipkow@24331
   133
  "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)"
nipkow@24331
   134
apply (induct xys)
nipkow@24331
   135
 apply simp
nipkow@24331
   136
apply (auto simp: map_of_eq_None_iff [symmetric])
nipkow@24331
   137
done
nipkow@15304
   138
wenzelm@20800
   139
lemma Some_eq_map_of_iff [simp]:
nipkow@24331
   140
  "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)"
wenzelm@60839
   141
by (auto simp del: map_of_eq_Some_iff simp: map_of_eq_Some_iff [symmetric])
nipkow@15304
   142
paulson@17724
   143
lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk>
wenzelm@20800
   144
    \<Longrightarrow> map_of xys x = Some y"
nipkow@24331
   145
apply (induct xys)
nipkow@24331
   146
 apply simp
nipkow@24331
   147
apply force
nipkow@24331
   148
done
nipkow@15304
   149
wenzelm@20800
   150
lemma map_of_zip_is_None [simp]:
nipkow@24331
   151
  "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)"
nipkow@24331
   152
by (induct rule: list_induct2) simp_all
nipkow@15110
   153
haftmann@26443
   154
lemma map_of_zip_is_Some:
haftmann@26443
   155
  assumes "length xs = length ys"
haftmann@26443
   156
  shows "x \<in> set xs \<longleftrightarrow> (\<exists>y. map_of (zip xs ys) x = Some y)"
haftmann@26443
   157
using assms by (induct rule: list_induct2) simp_all
haftmann@26443
   158
haftmann@26443
   159
lemma map_of_zip_upd:
haftmann@26443
   160
  fixes x :: 'a and xs :: "'a list" and ys zs :: "'b list"
haftmann@26443
   161
  assumes "length ys = length xs"
haftmann@26443
   162
    and "length zs = length xs"
haftmann@26443
   163
    and "x \<notin> set xs"
haftmann@26443
   164
    and "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)"
haftmann@26443
   165
  shows "map_of (zip xs ys) = map_of (zip xs zs)"
haftmann@26443
   166
proof
haftmann@26443
   167
  fix x' :: 'a
haftmann@26443
   168
  show "map_of (zip xs ys) x' = map_of (zip xs zs) x'"
haftmann@26443
   169
  proof (cases "x = x'")
haftmann@26443
   170
    case True
haftmann@26443
   171
    from assms True map_of_zip_is_None [of xs ys x']
haftmann@26443
   172
      have "map_of (zip xs ys) x' = None" by simp
haftmann@26443
   173
    moreover from assms True map_of_zip_is_None [of xs zs x']
haftmann@26443
   174
      have "map_of (zip xs zs) x' = None" by simp
haftmann@26443
   175
    ultimately show ?thesis by simp
haftmann@26443
   176
  next
haftmann@26443
   177
    case False from assms
haftmann@26443
   178
      have "(map_of (zip xs ys)(x \<mapsto> y)) x' = (map_of (zip xs zs)(x \<mapsto> z)) x'" by auto
haftmann@26443
   179
    with False show ?thesis by simp
haftmann@26443
   180
  qed
haftmann@26443
   181
qed
haftmann@26443
   182
haftmann@26443
   183
lemma map_of_zip_inject:
haftmann@26443
   184
  assumes "length ys = length xs"
haftmann@26443
   185
    and "length zs = length xs"
haftmann@26443
   186
    and dist: "distinct xs"
haftmann@26443
   187
    and map_of: "map_of (zip xs ys) = map_of (zip xs zs)"
haftmann@26443
   188
  shows "ys = zs"
wenzelm@60839
   189
  using assms(1) assms(2)[symmetric]
wenzelm@60839
   190
  using dist map_of
wenzelm@60839
   191
proof (induct ys xs zs rule: list_induct3)
haftmann@26443
   192
  case Nil show ?case by simp
haftmann@26443
   193
next
haftmann@26443
   194
  case (Cons y ys x xs z zs)
wenzelm@60758
   195
  from \<open>map_of (zip (x#xs) (y#ys)) = map_of (zip (x#xs) (z#zs))\<close>
haftmann@26443
   196
    have map_of: "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" by simp
haftmann@26443
   197
  from Cons have "length ys = length xs" and "length zs = length xs"
haftmann@26443
   198
    and "x \<notin> set xs" by simp_all
haftmann@26443
   199
  then have "map_of (zip xs ys) = map_of (zip xs zs)" using map_of by (rule map_of_zip_upd)
wenzelm@60758
   200
  with Cons.hyps \<open>distinct (x # xs)\<close> have "ys = zs" by simp
haftmann@26443
   201
  moreover from map_of have "y = z" by (rule map_upd_eqD1)
haftmann@26443
   202
  ultimately show ?case by simp
haftmann@26443
   203
qed
haftmann@26443
   204
haftmann@33635
   205
lemma map_of_zip_map:
haftmann@33635
   206
  "map_of (zip xs (map f xs)) = (\<lambda>x. if x \<in> set xs then Some (f x) else None)"
nipkow@39302
   207
  by (induct xs) (simp_all add: fun_eq_iff)
haftmann@33635
   208
nipkow@15110
   209
lemma finite_range_map_of: "finite (range (map_of xys))"
nipkow@24331
   210
apply (induct xys)
nipkow@24331
   211
 apply (simp_all add: image_constant)
nipkow@24331
   212
apply (rule finite_subset)
nipkow@24331
   213
 prefer 2 apply assumption
nipkow@24331
   214
apply auto
nipkow@24331
   215
done
nipkow@15110
   216
wenzelm@20800
   217
lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs"
wenzelm@60841
   218
  by (induct xs) (auto split: if_splits)
webertj@13908
   219
wenzelm@20800
   220
lemma map_of_mapk_SomeI:
wenzelm@60839
   221
  "inj f \<Longrightarrow> map_of t k = Some x \<Longrightarrow>
haftmann@61032
   222
   map_of (map (case_prod (\<lambda>k. Pair (f k))) t) (f k) = Some x"
wenzelm@60839
   223
by (induct t) (auto simp: inj_eq)
webertj@13908
   224
wenzelm@60839
   225
lemma weak_map_of_SomeI: "(k, x) \<in> set l \<Longrightarrow> \<exists>x. map_of l k = Some x"
nipkow@24331
   226
by (induct l) auto
webertj@13908
   227
wenzelm@20800
   228
lemma map_of_filter_in:
haftmann@61032
   229
  "map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (case_prod P) xs) k = Some z"
nipkow@24331
   230
by (induct xs) auto
webertj@13908
   231
haftmann@35607
   232
lemma map_of_map:
blanchet@55466
   233
  "map_of (map (\<lambda>(k, v). (k, f v)) xs) = map_option f \<circ> map_of xs"
wenzelm@60839
   234
  by (induct xs) (auto simp: fun_eq_iff)
haftmann@35607
   235
blanchet@55466
   236
lemma dom_map_option:
blanchet@55466
   237
  "dom (\<lambda>k. map_option (f k) (m k)) = dom m"
haftmann@35607
   238
  by (simp add: dom_def)
webertj@13908
   239
haftmann@56545
   240
lemma dom_map_option_comp [simp]:
haftmann@56545
   241
  "dom (map_option g \<circ> m) = dom m"
haftmann@56545
   242
  using dom_map_option [of "\<lambda>_. g" m] by (simp add: comp_def)
haftmann@56545
   243
webertj@13908
   244
wenzelm@60758
   245
subsection \<open>@{const map_option} related\<close>
webertj@13908
   246
blanchet@55466
   247
lemma map_option_o_empty [simp]: "map_option f o empty = empty"
nipkow@24331
   248
by (rule ext) simp
webertj@13908
   249
blanchet@55466
   250
lemma map_option_o_map_upd [simp]:
wenzelm@60838
   251
  "map_option f o m(a\<mapsto>b) = (map_option f o m)(a\<mapsto>f b)"
nipkow@24331
   252
by (rule ext) simp
wenzelm@20800
   253
webertj@13908
   254
wenzelm@60758
   255
subsection \<open>@{term [source] map_comp} related\<close>
schirmer@17391
   256
wenzelm@20800
   257
lemma map_comp_empty [simp]:
nipkow@24331
   258
  "m \<circ>\<^sub>m empty = empty"
nipkow@24331
   259
  "empty \<circ>\<^sub>m m = empty"
wenzelm@60839
   260
by (auto simp: map_comp_def split: option.splits)
schirmer@17391
   261
wenzelm@20800
   262
lemma map_comp_simps [simp]:
nipkow@24331
   263
  "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None"
nipkow@24331
   264
  "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'"
wenzelm@60839
   265
by (auto simp: map_comp_def)
schirmer@17391
   266
schirmer@17391
   267
lemma map_comp_Some_iff:
nipkow@24331
   268
  "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)"
wenzelm@60839
   269
by (auto simp: map_comp_def split: option.splits)
schirmer@17391
   270
schirmer@17391
   271
lemma map_comp_None_iff:
nipkow@24331
   272
  "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) "
wenzelm@60839
   273
by (auto simp: map_comp_def split: option.splits)
webertj@13908
   274
wenzelm@20800
   275
wenzelm@61799
   276
subsection \<open>\<open>++\<close>\<close>
webertj@13908
   277
nipkow@14025
   278
lemma map_add_empty[simp]: "m ++ empty = m"
nipkow@24331
   279
by(simp add: map_add_def)
webertj@13908
   280
nipkow@14025
   281
lemma empty_map_add[simp]: "empty ++ m = m"
nipkow@24331
   282
by (rule ext) (simp add: map_add_def split: option.split)
webertj@13908
   283
nipkow@14025
   284
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"
nipkow@24331
   285
by (rule ext) (simp add: map_add_def split: option.split)
wenzelm@20800
   286
wenzelm@20800
   287
lemma map_add_Some_iff:
nipkow@24331
   288
  "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)"
nipkow@24331
   289
by (simp add: map_add_def split: option.split)
nipkow@14025
   290
wenzelm@20800
   291
lemma map_add_SomeD [dest!]:
nipkow@24331
   292
  "(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x"
nipkow@24331
   293
by (rule map_add_Some_iff [THEN iffD1])
webertj@13908
   294
wenzelm@60839
   295
lemma map_add_find_right [simp]: "n k = Some xx \<Longrightarrow> (m ++ n) k = Some xx"
nipkow@24331
   296
by (subst map_add_Some_iff) fast
webertj@13908
   297
nipkow@14025
   298
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)"
nipkow@24331
   299
by (simp add: map_add_def split: option.split)
webertj@13908
   300
wenzelm@60838
   301
lemma map_add_upd[simp]: "f ++ g(x\<mapsto>y) = (f ++ g)(x\<mapsto>y)"
nipkow@24331
   302
by (rule ext) (simp add: map_add_def)
webertj@13908
   303
nipkow@14186
   304
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)"
nipkow@24331
   305
by (simp add: map_upds_def)
nipkow@14186
   306
krauss@32236
   307
lemma map_add_upd_left: "m\<notin>dom e2 \<Longrightarrow> e1(m \<mapsto> u1) ++ e2 = (e1 ++ e2)(m \<mapsto> u1)"
krauss@32236
   308
by (rule ext) (auto simp: map_add_def dom_def split: option.split)
krauss@32236
   309
wenzelm@20800
   310
lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs"
nipkow@24331
   311
unfolding map_add_def
nipkow@24331
   312
apply (induct xs)
nipkow@24331
   313
 apply simp
nipkow@24331
   314
apply (rule ext)
nipkow@63648
   315
apply (simp split: option.split)
nipkow@24331
   316
done
webertj@13908
   317
nipkow@14025
   318
lemma finite_range_map_of_map_add:
wenzelm@60839
   319
  "finite (range f) \<Longrightarrow> finite (range (f ++ map_of l))"
nipkow@24331
   320
apply (induct l)
nipkow@24331
   321
 apply (auto simp del: fun_upd_apply)
nipkow@24331
   322
apply (erule finite_range_updI)
nipkow@24331
   323
done
webertj@13908
   324
wenzelm@20800
   325
lemma inj_on_map_add_dom [iff]:
nipkow@24331
   326
  "inj_on (m ++ m') (dom m') = inj_on m' (dom m')"
nipkow@44890
   327
by (fastforce simp: map_add_def dom_def inj_on_def split: option.splits)
wenzelm@20800
   328
haftmann@34979
   329
lemma map_upds_fold_map_upd:
haftmann@35552
   330
  "m(ks[\<mapsto>]vs) = foldl (\<lambda>m (k, v). m(k \<mapsto> v)) m (zip ks vs)"
haftmann@34979
   331
unfolding map_upds_def proof (rule sym, rule zip_obtain_same_length)
haftmann@34979
   332
  fix ks :: "'a list" and vs :: "'b list"
haftmann@34979
   333
  assume "length ks = length vs"
haftmann@35552
   334
  then show "foldl (\<lambda>m (k, v). m(k\<mapsto>v)) m (zip ks vs) = m ++ map_of (rev (zip ks vs))"
haftmann@35552
   335
    by(induct arbitrary: m rule: list_induct2) simp_all
haftmann@34979
   336
qed
haftmann@34979
   337
haftmann@34979
   338
lemma map_add_map_of_foldr:
haftmann@34979
   339
  "m ++ map_of ps = foldr (\<lambda>(k, v) m. m(k \<mapsto> v)) ps m"
wenzelm@60839
   340
  by (induct ps) (auto simp: fun_eq_iff map_add_def)
haftmann@34979
   341
nipkow@15304
   342
wenzelm@60758
   343
subsection \<open>@{term [source] restrict_map}\<close>
oheimb@14100
   344
wenzelm@20800
   345
lemma restrict_map_to_empty [simp]: "m|`{} = empty"
nipkow@24331
   346
by (simp add: restrict_map_def)
nipkow@14186
   347
haftmann@31380
   348
lemma restrict_map_insert: "f |` (insert a A) = (f |` A)(a := f a)"
wenzelm@60839
   349
by (auto simp: restrict_map_def)
haftmann@31380
   350
wenzelm@20800
   351
lemma restrict_map_empty [simp]: "empty|`D = empty"
nipkow@24331
   352
by (simp add: restrict_map_def)
nipkow@14186
   353
nipkow@15693
   354
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x"
nipkow@24331
   355
by (simp add: restrict_map_def)
oheimb@14100
   356
nipkow@15693
   357
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None"
nipkow@24331
   358
by (simp add: restrict_map_def)
oheimb@14100
   359
nipkow@15693
   360
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"
nipkow@62390
   361
by (auto simp: restrict_map_def ran_def split: if_split_asm)
oheimb@14100
   362
nipkow@15693
   363
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A"
nipkow@62390
   364
by (auto simp: restrict_map_def dom_def split: if_split_asm)
oheimb@14100
   365
nipkow@15693
   366
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
nipkow@24331
   367
by (rule ext) (auto simp: restrict_map_def)
oheimb@14100
   368
nipkow@15693
   369
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)"
nipkow@24331
   370
by (rule ext) (auto simp: restrict_map_def)
oheimb@14100
   371
wenzelm@20800
   372
lemma restrict_fun_upd [simp]:
nipkow@24331
   373
  "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
nipkow@39302
   374
by (simp add: restrict_map_def fun_eq_iff)
nipkow@14186
   375
wenzelm@20800
   376
lemma fun_upd_None_restrict [simp]:
wenzelm@60839
   377
  "(m|`D)(x := None) = (if x \<in> D then m|`(D - {x}) else m|`D)"
nipkow@39302
   378
by (simp add: restrict_map_def fun_eq_iff)
nipkow@14186
   379
wenzelm@20800
   380
lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
nipkow@39302
   381
by (simp add: restrict_map_def fun_eq_iff)
nipkow@14186
   382
wenzelm@20800
   383
lemma fun_upd_restrict_conv [simp]:
nipkow@24331
   384
  "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
nipkow@39302
   385
by (simp add: restrict_map_def fun_eq_iff)
nipkow@14186
   386
haftmann@35159
   387
lemma map_of_map_restrict:
haftmann@35159
   388
  "map_of (map (\<lambda>k. (k, f k)) ks) = (Some \<circ> f) |` set ks"
nipkow@39302
   389
  by (induct ks) (simp_all add: fun_eq_iff restrict_map_insert)
haftmann@35159
   390
haftmann@35619
   391
lemma restrict_complement_singleton_eq:
haftmann@35619
   392
  "f |` (- {x}) = f(x := None)"
nipkow@39302
   393
  by (simp add: restrict_map_def fun_eq_iff)
haftmann@35619
   394
oheimb@14100
   395
wenzelm@60758
   396
subsection \<open>@{term [source] map_upds}\<close>
nipkow@14025
   397
wenzelm@60838
   398
lemma map_upds_Nil1 [simp]: "m([] [\<mapsto>] bs) = m"
nipkow@24331
   399
by (simp add: map_upds_def)
nipkow@14025
   400
wenzelm@60838
   401
lemma map_upds_Nil2 [simp]: "m(as [\<mapsto>] []) = m"
nipkow@24331
   402
by (simp add:map_upds_def)
wenzelm@20800
   403
wenzelm@60838
   404
lemma map_upds_Cons [simp]: "m(a#as [\<mapsto>] b#bs) = (m(a\<mapsto>b))(as[\<mapsto>]bs)"
nipkow@24331
   405
by (simp add:map_upds_def)
nipkow@14025
   406
wenzelm@60839
   407
lemma map_upds_append1 [simp]: "size xs < size ys \<Longrightarrow>
nipkow@24331
   408
  m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)"
wenzelm@60839
   409
apply(induct xs arbitrary: ys m)
nipkow@24331
   410
 apply (clarsimp simp add: neq_Nil_conv)
nipkow@24331
   411
apply (case_tac ys)
nipkow@24331
   412
 apply simp
nipkow@24331
   413
apply simp
nipkow@24331
   414
done
nipkow@14187
   415
wenzelm@20800
   416
lemma map_upds_list_update2_drop [simp]:
bulwahn@46588
   417
  "size xs \<le> i \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)"
nipkow@24331
   418
apply (induct xs arbitrary: m ys i)
nipkow@24331
   419
 apply simp
nipkow@24331
   420
apply (case_tac ys)
nipkow@24331
   421
 apply simp
nipkow@24331
   422
apply (simp split: nat.split)
nipkow@24331
   423
done
nipkow@14025
   424
wenzelm@20800
   425
lemma map_upd_upds_conv_if:
wenzelm@60838
   426
  "(f(x\<mapsto>y))(xs [\<mapsto>] ys) =
wenzelm@60839
   427
   (if x \<in> set(take (length ys) xs) then f(xs [\<mapsto>] ys)
wenzelm@60838
   428
                                    else (f(xs [\<mapsto>] ys))(x\<mapsto>y))"
nipkow@24331
   429
apply (induct xs arbitrary: x y ys f)
nipkow@24331
   430
 apply simp
nipkow@24331
   431
apply (case_tac ys)
nipkow@62390
   432
 apply (auto split: if_split simp: fun_upd_twist)
nipkow@24331
   433
done
nipkow@14025
   434
nipkow@14025
   435
lemma map_upds_twist [simp]:
wenzelm@60839
   436
  "a \<notin> set as \<Longrightarrow> m(a\<mapsto>b)(as[\<mapsto>]bs) = m(as[\<mapsto>]bs)(a\<mapsto>b)"
nipkow@44890
   437
using set_take_subset by (fastforce simp add: map_upd_upds_conv_if)
nipkow@14025
   438
wenzelm@20800
   439
lemma map_upds_apply_nontin [simp]:
wenzelm@60839
   440
  "x \<notin> set xs \<Longrightarrow> (f(xs[\<mapsto>]ys)) x = f x"
nipkow@24331
   441
apply (induct xs arbitrary: ys)
nipkow@24331
   442
 apply simp
nipkow@24331
   443
apply (case_tac ys)
nipkow@24331
   444
 apply (auto simp: map_upd_upds_conv_if)
nipkow@24331
   445
done
nipkow@14025
   446
wenzelm@20800
   447
lemma fun_upds_append_drop [simp]:
nipkow@24331
   448
  "size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)"
nipkow@24331
   449
apply (induct xs arbitrary: m ys)
nipkow@24331
   450
 apply simp
nipkow@24331
   451
apply (case_tac ys)
nipkow@24331
   452
 apply simp_all
nipkow@24331
   453
done
nipkow@14300
   454
wenzelm@20800
   455
lemma fun_upds_append2_drop [simp]:
nipkow@24331
   456
  "size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)"
nipkow@24331
   457
apply (induct xs arbitrary: m ys)
nipkow@24331
   458
 apply simp
nipkow@24331
   459
apply (case_tac ys)
nipkow@24331
   460
 apply simp_all
nipkow@24331
   461
done
nipkow@14300
   462
nipkow@14300
   463
wenzelm@20800
   464
lemma restrict_map_upds[simp]:
wenzelm@20800
   465
  "\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
wenzelm@20800
   466
    \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)"
nipkow@24331
   467
apply (induct xs arbitrary: m ys)
nipkow@24331
   468
 apply simp
nipkow@24331
   469
apply (case_tac ys)
nipkow@24331
   470
 apply simp
nipkow@24331
   471
apply (simp add: Diff_insert [symmetric] insert_absorb)
nipkow@24331
   472
apply (simp add: map_upd_upds_conv_if)
nipkow@24331
   473
done
nipkow@14186
   474
nipkow@14186
   475
wenzelm@60758
   476
subsection \<open>@{term [source] dom}\<close>
webertj@13908
   477
nipkow@31080
   478
lemma dom_eq_empty_conv [simp]: "dom f = {} \<longleftrightarrow> f = empty"
huffman@44921
   479
  by (auto simp: dom_def)
nipkow@31080
   480
wenzelm@60839
   481
lemma domI: "m a = Some b \<Longrightarrow> a \<in> dom m"
wenzelm@60839
   482
  by (simp add: dom_def)
oheimb@14100
   483
(* declare domI [intro]? *)
webertj@13908
   484
wenzelm@60839
   485
lemma domD: "a \<in> dom m \<Longrightarrow> \<exists>b. m a = Some b"
wenzelm@60839
   486
  by (cases "m a") (auto simp add: dom_def)
webertj@13908
   487
wenzelm@60839
   488
lemma domIff [iff, simp del]: "a \<in> dom m \<longleftrightarrow> m a \<noteq> None"
wenzelm@60839
   489
  by (simp add: dom_def)
webertj@13908
   490
wenzelm@20800
   491
lemma dom_empty [simp]: "dom empty = {}"
wenzelm@60839
   492
  by (simp add: dom_def)
webertj@13908
   493
wenzelm@20800
   494
lemma dom_fun_upd [simp]:
wenzelm@60839
   495
  "dom(f(x := y)) = (if y = None then dom f - {x} else insert x (dom f))"
wenzelm@60839
   496
  by (auto simp: dom_def)
webertj@13908
   497
haftmann@34979
   498
lemma dom_if:
haftmann@34979
   499
  "dom (\<lambda>x. if P x then f x else g x) = dom f \<inter> {x. P x} \<union> dom g \<inter> {x. \<not> P x}"
haftmann@34979
   500
  by (auto split: if_splits)
nipkow@13937
   501
nipkow@15304
   502
lemma dom_map_of_conv_image_fst:
haftmann@34979
   503
  "dom (map_of xys) = fst ` set xys"
haftmann@34979
   504
  by (induct xys) (auto simp add: dom_if)
nipkow@15304
   505
wenzelm@60839
   506
lemma dom_map_of_zip [simp]: "length xs = length ys \<Longrightarrow> dom (map_of (zip xs ys)) = set xs"
wenzelm@60839
   507
  by (induct rule: list_induct2) (auto simp: dom_if)
nipkow@15110
   508
webertj@13908
   509
lemma finite_dom_map_of: "finite (dom (map_of l))"
wenzelm@60839
   510
  by (induct l) (auto simp: dom_def insert_Collect [symmetric])
webertj@13908
   511
wenzelm@20800
   512
lemma dom_map_upds [simp]:
wenzelm@60839
   513
  "dom(m(xs[\<mapsto>]ys)) = set(take (length ys) xs) \<union> dom m"
nipkow@24331
   514
apply (induct xs arbitrary: m ys)
nipkow@24331
   515
 apply simp
nipkow@24331
   516
apply (case_tac ys)
nipkow@24331
   517
 apply auto
nipkow@24331
   518
done
nipkow@13910
   519
wenzelm@60839
   520
lemma dom_map_add [simp]: "dom (m ++ n) = dom n \<union> dom m"
wenzelm@60839
   521
  by (auto simp: dom_def)
nipkow@13910
   522
wenzelm@20800
   523
lemma dom_override_on [simp]:
wenzelm@60839
   524
  "dom (override_on f g A) =
wenzelm@60839
   525
    (dom f  - {a. a \<in> A - dom g}) \<union> {a. a \<in> A \<inter> dom g}"
wenzelm@60839
   526
  by (auto simp: dom_def override_on_def)
webertj@13908
   527
wenzelm@60839
   528
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1 ++ m2 = m2 ++ m1"
wenzelm@60839
   529
  by (rule ext) (force simp: map_add_def dom_def split: option.split)
wenzelm@20800
   530
krauss@32236
   531
lemma map_add_dom_app_simps:
wenzelm@60839
   532
  "m \<in> dom l2 \<Longrightarrow> (l1 ++ l2) m = l2 m"
wenzelm@60839
   533
  "m \<notin> dom l1 \<Longrightarrow> (l1 ++ l2) m = l2 m"
wenzelm@60839
   534
  "m \<notin> dom l2 \<Longrightarrow> (l1 ++ l2) m = l1 m"
wenzelm@60839
   535
  by (auto simp add: map_add_def split: option.split_asm)
krauss@32236
   536
haftmann@29622
   537
lemma dom_const [simp]:
haftmann@35159
   538
  "dom (\<lambda>x. Some (f x)) = UNIV"
haftmann@29622
   539
  by auto
haftmann@29622
   540
nipkow@22230
   541
(* Due to John Matthews - could be rephrased with dom *)
nipkow@22230
   542
lemma finite_map_freshness:
nipkow@22230
   543
  "finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow>
nipkow@22230
   544
   \<exists>x. f x = None"
wenzelm@60839
   545
  by (bestsimp dest: ex_new_if_finite)
nipkow@14027
   546
haftmann@28790
   547
lemma dom_minus:
haftmann@28790
   548
  "f x = None \<Longrightarrow> dom f - insert x A = dom f - A"
haftmann@28790
   549
  unfolding dom_def by simp
haftmann@28790
   550
haftmann@28790
   551
lemma insert_dom:
haftmann@28790
   552
  "f x = Some y \<Longrightarrow> insert x (dom f) = dom f"
haftmann@28790
   553
  unfolding dom_def by auto
haftmann@28790
   554
haftmann@35607
   555
lemma map_of_map_keys:
haftmann@35607
   556
  "set xs = dom m \<Longrightarrow> map_of (map (\<lambda>k. (k, the (m k))) xs) = m"
haftmann@35607
   557
  by (rule ext) (auto simp add: map_of_map_restrict restrict_map_def)
haftmann@35607
   558
haftmann@39379
   559
lemma map_of_eqI:
haftmann@39379
   560
  assumes set_eq: "set (map fst xs) = set (map fst ys)"
haftmann@39379
   561
  assumes map_eq: "\<forall>k\<in>set (map fst xs). map_of xs k = map_of ys k"
haftmann@39379
   562
  shows "map_of xs = map_of ys"
haftmann@39379
   563
proof (rule ext)
haftmann@39379
   564
  fix k show "map_of xs k = map_of ys k"
haftmann@39379
   565
  proof (cases "map_of xs k")
wenzelm@60839
   566
    case None
wenzelm@60839
   567
    then have "k \<notin> set (map fst xs)" by (simp add: map_of_eq_None_iff)
haftmann@39379
   568
    with set_eq have "k \<notin> set (map fst ys)" by simp
haftmann@39379
   569
    then have "map_of ys k = None" by (simp add: map_of_eq_None_iff)
haftmann@39379
   570
    with None show ?thesis by simp
haftmann@39379
   571
  next
wenzelm@60839
   572
    case (Some v)
wenzelm@60839
   573
    then have "k \<in> set (map fst xs)" by (auto simp add: dom_map_of_conv_image_fst [symmetric])
haftmann@39379
   574
    with map_eq show ?thesis by auto
haftmann@39379
   575
  qed
haftmann@39379
   576
qed
haftmann@39379
   577
haftmann@39379
   578
lemma map_of_eq_dom:
haftmann@39379
   579
  assumes "map_of xs = map_of ys"
haftmann@39379
   580
  shows "fst ` set xs = fst ` set ys"
haftmann@39379
   581
proof -
haftmann@39379
   582
  from assms have "dom (map_of xs) = dom (map_of ys)" by simp
haftmann@39379
   583
  then show ?thesis by (simp add: dom_map_of_conv_image_fst)
haftmann@39379
   584
qed
haftmann@39379
   585
nipkow@53820
   586
lemma finite_set_of_finite_maps:
wenzelm@60839
   587
  assumes "finite A" "finite B"
wenzelm@60839
   588
  shows "finite {m. dom m = A \<and> ran m \<subseteq> B}" (is "finite ?S")
nipkow@53820
   589
proof -
nipkow@53820
   590
  let ?S' = "{m. \<forall>x. (x \<in> A \<longrightarrow> m x \<in> Some ` B) \<and> (x \<notin> A \<longrightarrow> m x = None)}"
nipkow@53820
   591
  have "?S = ?S'"
nipkow@53820
   592
  proof
wenzelm@60839
   593
    show "?S \<subseteq> ?S'" by (auto simp: dom_def ran_def image_def)
nipkow@53820
   594
    show "?S' \<subseteq> ?S"
nipkow@53820
   595
    proof
nipkow@53820
   596
      fix m assume "m \<in> ?S'"
nipkow@53820
   597
      hence 1: "dom m = A" by force
wenzelm@60839
   598
      hence 2: "ran m \<subseteq> B" using \<open>m \<in> ?S'\<close> by (auto simp: dom_def ran_def)
nipkow@53820
   599
      from 1 2 show "m \<in> ?S" by blast
nipkow@53820
   600
    qed
nipkow@53820
   601
  qed
nipkow@53820
   602
  with assms show ?thesis by(simp add: finite_set_of_finite_funs)
nipkow@53820
   603
qed
haftmann@28790
   604
wenzelm@60839
   605
wenzelm@60758
   606
subsection \<open>@{term [source] ran}\<close>
oheimb@14100
   607
wenzelm@60839
   608
lemma ranI: "m a = Some b \<Longrightarrow> b \<in> ran m"
wenzelm@60839
   609
  by (auto simp: ran_def)
oheimb@14100
   610
(* declare ranI [intro]? *)
webertj@13908
   611
wenzelm@20800
   612
lemma ran_empty [simp]: "ran empty = {}"
wenzelm@60839
   613
  by (auto simp: ran_def)
webertj@13908
   614
wenzelm@60839
   615
lemma ran_map_upd [simp]: "m a = None \<Longrightarrow> ran(m(a\<mapsto>b)) = insert b (ran m)"
wenzelm@60839
   616
  unfolding ran_def
nipkow@24331
   617
apply auto
wenzelm@60839
   618
apply (subgoal_tac "aa \<noteq> a")
nipkow@24331
   619
 apply auto
nipkow@24331
   620
done
wenzelm@20800
   621
wenzelm@60839
   622
lemma ran_distinct:
wenzelm@60839
   623
  assumes dist: "distinct (map fst al)"
haftmann@34979
   624
  shows "ran (map_of al) = snd ` set al"
wenzelm@60839
   625
  using assms
wenzelm@60839
   626
proof (induct al)
wenzelm@60839
   627
  case Nil
wenzelm@60839
   628
  then show ?case by simp
haftmann@34979
   629
next
haftmann@34979
   630
  case (Cons kv al)
haftmann@34979
   631
  then have "ran (map_of al) = snd ` set al" by simp
haftmann@34979
   632
  moreover from Cons.prems have "map_of al (fst kv) = None"
haftmann@34979
   633
    by (simp add: map_of_eq_None_iff)
haftmann@34979
   634
  ultimately show ?case by (simp only: map_of.simps ran_map_upd) simp
haftmann@34979
   635
qed
haftmann@34979
   636
Andreas@60057
   637
lemma ran_map_option: "ran (\<lambda>x. map_option f (m x)) = f ` ran m"
wenzelm@60839
   638
  by (auto simp add: ran_def)
wenzelm@60839
   639
nipkow@13910
   640
wenzelm@61799
   641
subsection \<open>\<open>map_le\<close>\<close>
nipkow@13910
   642
kleing@13912
   643
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"
wenzelm@60839
   644
  by (simp add: map_le_def)
nipkow@13910
   645
paulson@17724
   646
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f"
wenzelm@60839
   647
  by (force simp add: map_le_def)
nipkow@14187
   648
nipkow@13910
   649
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"
wenzelm@60839
   650
  by (fastforce simp add: map_le_def)
nipkow@13910
   651
paulson@17724
   652
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)"
wenzelm@60839
   653
  by (force simp add: map_le_def)
nipkow@14187
   654
wenzelm@20800
   655
lemma map_le_upds [simp]:
wenzelm@60839
   656
  "f \<subseteq>\<^sub>m g \<Longrightarrow> f(as [\<mapsto>] bs) \<subseteq>\<^sub>m g(as [\<mapsto>] bs)"
nipkow@24331
   657
apply (induct as arbitrary: f g bs)
nipkow@24331
   658
 apply simp
nipkow@24331
   659
apply (case_tac bs)
nipkow@24331
   660
 apply auto
nipkow@24331
   661
done
webertj@13908
   662
webertj@14033
   663
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"
wenzelm@60839
   664
  by (fastforce simp add: map_le_def dom_def)
webertj@14033
   665
webertj@14033
   666
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"
wenzelm@60839
   667
  by (simp add: map_le_def)
webertj@14033
   668
nipkow@14187
   669
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3"
wenzelm@60839
   670
  by (auto simp add: map_le_def dom_def)
webertj@14033
   671
webertj@14033
   672
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"
nipkow@24331
   673
unfolding map_le_def
nipkow@24331
   674
apply (rule ext)
nipkow@24331
   675
apply (case_tac "x \<in> dom f", simp)
nipkow@44890
   676
apply (case_tac "x \<in> dom g", simp, fastforce)
nipkow@24331
   677
done
webertj@14033
   678
wenzelm@60839
   679
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m g ++ f"
wenzelm@60839
   680
  by (fastforce simp: map_le_def)
webertj@14033
   681
wenzelm@60839
   682
lemma map_le_iff_map_add_commute: "f \<subseteq>\<^sub>m f ++ g \<longleftrightarrow> f ++ g = g ++ f"
wenzelm@60839
   683
  by (fastforce simp: map_add_def map_le_def fun_eq_iff split: option.splits)
nipkow@15304
   684
wenzelm@60839
   685
lemma map_add_le_mapE: "f ++ g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h"
wenzelm@60839
   686
  by (fastforce simp: map_le_def map_add_def dom_def)
nipkow@15303
   687
wenzelm@60839
   688
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h \<rbrakk> \<Longrightarrow> f ++ g \<subseteq>\<^sub>m h"
wenzelm@60839
   689
  by (auto simp: map_le_def map_add_def dom_def split: option.splits)
nipkow@15303
   690
nipkow@63828
   691
lemma map_add_subsumed1: "f \<subseteq>\<^sub>m g \<Longrightarrow> f++g = g"
nipkow@63828
   692
by (simp add: map_add_le_mapI map_le_antisym)
nipkow@63828
   693
nipkow@63828
   694
lemma map_add_subsumed2: "f \<subseteq>\<^sub>m g \<Longrightarrow> g++f = g"
nipkow@63828
   695
by (metis map_add_subsumed1 map_le_iff_map_add_commute)
nipkow@63828
   696
nipkow@31080
   697
lemma dom_eq_singleton_conv: "dom f = {x} \<longleftrightarrow> (\<exists>v. f = [x \<mapsto> v])"
wenzelm@63834
   698
  (is "?lhs \<longleftrightarrow> ?rhs")
wenzelm@63834
   699
proof
wenzelm@63834
   700
  assume ?rhs
wenzelm@63834
   701
  then show ?lhs by (auto split: if_split_asm)
nipkow@31080
   702
next
wenzelm@63834
   703
  assume ?lhs
wenzelm@63834
   704
  then obtain v where v: "f x = Some v" by auto
wenzelm@63834
   705
  show ?rhs
wenzelm@63834
   706
  proof
wenzelm@63834
   707
    show "f = [x \<mapsto> v]"
wenzelm@63834
   708
    proof (rule map_le_antisym)
wenzelm@63834
   709
      show "[x \<mapsto> v] \<subseteq>\<^sub>m f"
wenzelm@63834
   710
        using v by (auto simp add: map_le_def)
wenzelm@63834
   711
      show "f \<subseteq>\<^sub>m [x \<mapsto> v]"
wenzelm@63834
   712
        using \<open>dom f = {x}\<close> \<open>f x = Some v\<close> by (auto simp add: map_le_def)
wenzelm@63834
   713
    qed
wenzelm@63834
   714
  qed
nipkow@31080
   715
qed
nipkow@31080
   716
haftmann@35565
   717
wenzelm@60758
   718
subsection \<open>Various\<close>
haftmann@35565
   719
haftmann@35565
   720
lemma set_map_of_compr:
haftmann@35565
   721
  assumes distinct: "distinct (map fst xs)"
haftmann@35565
   722
  shows "set xs = {(k, v). map_of xs k = Some v}"
wenzelm@60839
   723
  using assms
wenzelm@60839
   724
proof (induct xs)
wenzelm@60839
   725
  case Nil
wenzelm@60839
   726
  then show ?case by simp
haftmann@35565
   727
next
haftmann@35565
   728
  case (Cons x xs)
haftmann@35565
   729
  obtain k v where "x = (k, v)" by (cases x) blast
haftmann@35565
   730
  with Cons.prems have "k \<notin> dom (map_of xs)"
haftmann@35565
   731
    by (simp add: dom_map_of_conv_image_fst)
haftmann@35565
   732
  then have *: "insert (k, v) {(k, v). map_of xs k = Some v} =
haftmann@35565
   733
    {(k', v'). (map_of xs(k \<mapsto> v)) k' = Some v'}"
haftmann@35565
   734
    by (auto split: if_splits)
haftmann@35565
   735
  from Cons have "set xs = {(k, v). map_of xs k = Some v}" by simp
wenzelm@60758
   736
  with * \<open>x = (k, v)\<close> show ?case by simp
haftmann@35565
   737
qed
haftmann@35565
   738
haftmann@35565
   739
lemma map_of_inject_set:
haftmann@35565
   740
  assumes distinct: "distinct (map fst xs)" "distinct (map fst ys)"
haftmann@35565
   741
  shows "map_of xs = map_of ys \<longleftrightarrow> set xs = set ys" (is "?lhs \<longleftrightarrow> ?rhs")
haftmann@35565
   742
proof
haftmann@35565
   743
  assume ?lhs
wenzelm@60758
   744
  moreover from \<open>distinct (map fst xs)\<close> have "set xs = {(k, v). map_of xs k = Some v}"
haftmann@35565
   745
    by (rule set_map_of_compr)
wenzelm@60758
   746
  moreover from \<open>distinct (map fst ys)\<close> have "set ys = {(k, v). map_of ys k = Some v}"
haftmann@35565
   747
    by (rule set_map_of_compr)
haftmann@35565
   748
  ultimately show ?rhs by simp
haftmann@35565
   749
next
wenzelm@53374
   750
  assume ?rhs show ?lhs
wenzelm@53374
   751
  proof
haftmann@35565
   752
    fix k
wenzelm@60839
   753
    show "map_of xs k = map_of ys k"
wenzelm@60839
   754
    proof (cases "map_of xs k")
haftmann@35565
   755
      case None
wenzelm@60758
   756
      with \<open>?rhs\<close> have "map_of ys k = None"
haftmann@35565
   757
        by (simp add: map_of_eq_None_iff)
wenzelm@53374
   758
      with None show ?thesis by simp
haftmann@35565
   759
    next
haftmann@35565
   760
      case (Some v)
wenzelm@60758
   761
      with distinct \<open>?rhs\<close> have "map_of ys k = Some v"
haftmann@35565
   762
        by simp
wenzelm@53374
   763
      with Some show ?thesis by simp
haftmann@35565
   764
    qed
haftmann@35565
   765
  qed
haftmann@35565
   766
qed
haftmann@35565
   767
nipkow@3981
   768
end