src/HOL/Product_Type.thy
author wenzelm
Thu May 24 17:25:53 2012 +0200 (2012-05-24)
changeset 47988 e4b69e10b990
parent 47740 a8989fe9a3a5
child 48891 c0eafbd55de3
permissions -rw-r--r--
tuned proofs;
nipkow@10213
     1
(*  Title:      HOL/Product_Type.thy
nipkow@10213
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
nipkow@10213
     3
    Copyright   1992  University of Cambridge
wenzelm@11777
     4
*)
nipkow@10213
     5
wenzelm@11838
     6
header {* Cartesian products *}
nipkow@10213
     7
nipkow@15131
     8
theory Product_Type
haftmann@33959
     9
imports Typedef Inductive Fun
wenzelm@46950
    10
keywords "inductive_set" "coinductive_set" :: thy_decl
haftmann@24699
    11
uses
haftmann@24699
    12
  ("Tools/split_rule.ML")
haftmann@31723
    13
  ("Tools/inductive_set.ML")
nipkow@15131
    14
begin
wenzelm@11838
    15
haftmann@24699
    16
subsection {* @{typ bool} is a datatype *}
haftmann@24699
    17
haftmann@27104
    18
rep_datatype True False by (auto intro: bool_induct)
haftmann@24699
    19
haftmann@24699
    20
declare case_split [cases type: bool]
haftmann@24699
    21
  -- "prefer plain propositional version"
haftmann@24699
    22
haftmann@28346
    23
lemma
haftmann@38857
    24
  shows [code]: "HOL.equal False P \<longleftrightarrow> \<not> P"
haftmann@38857
    25
    and [code]: "HOL.equal True P \<longleftrightarrow> P" 
haftmann@46630
    26
    and [code]: "HOL.equal P False \<longleftrightarrow> \<not> P"
haftmann@38857
    27
    and [code]: "HOL.equal P True \<longleftrightarrow> P"
haftmann@38857
    28
    and [code nbe]: "HOL.equal P P \<longleftrightarrow> True"
haftmann@38857
    29
  by (simp_all add: equal)
haftmann@25534
    30
haftmann@43654
    31
lemma If_case_cert:
haftmann@43654
    32
  assumes "CASE \<equiv> (\<lambda>b. If b f g)"
haftmann@43654
    33
  shows "(CASE True \<equiv> f) &&& (CASE False \<equiv> g)"
haftmann@43654
    34
  using assms by simp_all
haftmann@43654
    35
haftmann@43654
    36
setup {*
haftmann@43654
    37
  Code.add_case @{thm If_case_cert}
haftmann@43654
    38
*}
haftmann@43654
    39
haftmann@38857
    40
code_const "HOL.equal \<Colon> bool \<Rightarrow> bool \<Rightarrow> bool"
haftmann@39272
    41
  (Haskell infix 4 "==")
haftmann@25534
    42
haftmann@38857
    43
code_instance bool :: equal
haftmann@25534
    44
  (Haskell -)
haftmann@24699
    45
haftmann@26358
    46
haftmann@37166
    47
subsection {* The @{text unit} type *}
wenzelm@11838
    48
huffman@40590
    49
typedef (open) unit = "{True}"
wenzelm@45694
    50
  by auto
wenzelm@11838
    51
wenzelm@45694
    52
definition Unity :: unit  ("'(')")
wenzelm@45694
    53
  where "() = Abs_unit True"
wenzelm@11838
    54
blanchet@35828
    55
lemma unit_eq [no_atp]: "u = ()"
huffman@40590
    56
  by (induct u) (simp add: Unity_def)
wenzelm@11838
    57
wenzelm@11838
    58
text {*
wenzelm@11838
    59
  Simplification procedure for @{thm [source] unit_eq}.  Cannot use
wenzelm@11838
    60
  this rule directly --- it loops!
wenzelm@11838
    61
*}
wenzelm@11838
    62
wenzelm@43594
    63
simproc_setup unit_eq ("x::unit") = {*
wenzelm@43594
    64
  fn _ => fn _ => fn ct =>
wenzelm@43594
    65
    if HOLogic.is_unit (term_of ct) then NONE
wenzelm@43594
    66
    else SOME (mk_meta_eq @{thm unit_eq})
wenzelm@11838
    67
*}
wenzelm@11838
    68
haftmann@27104
    69
rep_datatype "()" by simp
haftmann@24699
    70
wenzelm@11838
    71
lemma unit_all_eq1: "(!!x::unit. PROP P x) == PROP P ()"
wenzelm@11838
    72
  by simp
wenzelm@11838
    73
wenzelm@11838
    74
lemma unit_all_eq2: "(!!x::unit. PROP P) == PROP P"
wenzelm@11838
    75
  by (rule triv_forall_equality)
wenzelm@11838
    76
wenzelm@11838
    77
text {*
wenzelm@43594
    78
  This rewrite counters the effect of simproc @{text unit_eq} on @{term
wenzelm@11838
    79
  [source] "%u::unit. f u"}, replacing it by @{term [source]
wenzelm@11838
    80
  f} rather than by @{term [source] "%u. f ()"}.
wenzelm@11838
    81
*}
wenzelm@11838
    82
haftmann@43866
    83
lemma unit_abs_eta_conv [simp, no_atp]: "(%u::unit. f ()) = f"
wenzelm@11838
    84
  by (rule ext) simp
nipkow@10213
    85
haftmann@43866
    86
lemma UNIV_unit [no_atp]:
haftmann@43866
    87
  "UNIV = {()}" by auto
haftmann@43866
    88
haftmann@30924
    89
instantiation unit :: default
haftmann@30924
    90
begin
haftmann@30924
    91
haftmann@30924
    92
definition "default = ()"
haftmann@30924
    93
haftmann@30924
    94
instance ..
haftmann@30924
    95
haftmann@30924
    96
end
nipkow@10213
    97
haftmann@28562
    98
lemma [code]:
haftmann@38857
    99
  "HOL.equal (u\<Colon>unit) v \<longleftrightarrow> True" unfolding equal unit_eq [of u] unit_eq [of v] by rule+
haftmann@26358
   100
haftmann@26358
   101
code_type unit
haftmann@26358
   102
  (SML "unit")
haftmann@26358
   103
  (OCaml "unit")
haftmann@26358
   104
  (Haskell "()")
haftmann@34886
   105
  (Scala "Unit")
haftmann@26358
   106
haftmann@37166
   107
code_const Unity
haftmann@37166
   108
  (SML "()")
haftmann@37166
   109
  (OCaml "()")
haftmann@37166
   110
  (Haskell "()")
haftmann@37166
   111
  (Scala "()")
haftmann@37166
   112
haftmann@38857
   113
code_instance unit :: equal
haftmann@26358
   114
  (Haskell -)
haftmann@26358
   115
haftmann@38857
   116
code_const "HOL.equal \<Colon> unit \<Rightarrow> unit \<Rightarrow> bool"
haftmann@39272
   117
  (Haskell infix 4 "==")
haftmann@26358
   118
haftmann@26358
   119
code_reserved SML
haftmann@26358
   120
  unit
haftmann@26358
   121
haftmann@26358
   122
code_reserved OCaml
haftmann@26358
   123
  unit
haftmann@26358
   124
haftmann@34886
   125
code_reserved Scala
haftmann@34886
   126
  Unit
haftmann@34886
   127
haftmann@26358
   128
haftmann@37166
   129
subsection {* The product type *}
nipkow@10213
   130
haftmann@37166
   131
subsubsection {* Type definition *}
haftmann@37166
   132
haftmann@37166
   133
definition Pair_Rep :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where
haftmann@26358
   134
  "Pair_Rep a b = (\<lambda>x y. x = a \<and> y = b)"
nipkow@10213
   135
wenzelm@45696
   136
definition "prod = {f. \<exists>a b. f = Pair_Rep (a\<Colon>'a) (b\<Colon>'b)}"
wenzelm@45696
   137
wenzelm@45696
   138
typedef (open) ('a, 'b) prod (infixr "*" 20) = "prod :: ('a \<Rightarrow> 'b \<Rightarrow> bool) set"
wenzelm@45696
   139
  unfolding prod_def by auto
nipkow@10213
   140
wenzelm@35427
   141
type_notation (xsymbols)
haftmann@37678
   142
  "prod"  ("(_ \<times>/ _)" [21, 20] 20)
wenzelm@35427
   143
type_notation (HTML output)
haftmann@37678
   144
  "prod"  ("(_ \<times>/ _)" [21, 20] 20)
nipkow@10213
   145
haftmann@37389
   146
definition Pair :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<times> 'b" where
haftmann@37389
   147
  "Pair a b = Abs_prod (Pair_Rep a b)"
haftmann@37166
   148
haftmann@37678
   149
rep_datatype Pair proof -
haftmann@37166
   150
  fix P :: "'a \<times> 'b \<Rightarrow> bool" and p
haftmann@37166
   151
  assume "\<And>a b. P (Pair a b)"
haftmann@37389
   152
  then show "P p" by (cases p) (auto simp add: prod_def Pair_def Pair_Rep_def)
haftmann@37166
   153
next
haftmann@37166
   154
  fix a c :: 'a and b d :: 'b
haftmann@37166
   155
  have "Pair_Rep a b = Pair_Rep c d \<longleftrightarrow> a = c \<and> b = d"
nipkow@39302
   156
    by (auto simp add: Pair_Rep_def fun_eq_iff)
haftmann@37389
   157
  moreover have "Pair_Rep a b \<in> prod" and "Pair_Rep c d \<in> prod"
haftmann@37389
   158
    by (auto simp add: prod_def)
haftmann@37166
   159
  ultimately show "Pair a b = Pair c d \<longleftrightarrow> a = c \<and> b = d"
haftmann@37389
   160
    by (simp add: Pair_def Abs_prod_inject)
haftmann@37166
   161
qed
haftmann@37166
   162
blanchet@37704
   163
declare prod.simps(2) [nitpick_simp del]
blanchet@37704
   164
huffman@40929
   165
declare prod.weak_case_cong [cong del]
haftmann@37411
   166
haftmann@37166
   167
haftmann@37166
   168
subsubsection {* Tuple syntax *}
haftmann@37166
   169
haftmann@37591
   170
abbreviation (input) split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c" where
haftmann@37591
   171
  "split \<equiv> prod_case"
wenzelm@19535
   172
wenzelm@11777
   173
text {*
wenzelm@11777
   174
  Patterns -- extends pre-defined type @{typ pttrn} used in
wenzelm@11777
   175
  abstractions.
wenzelm@11777
   176
*}
nipkow@10213
   177
wenzelm@41229
   178
nonterminal tuple_args and patterns
nipkow@10213
   179
nipkow@10213
   180
syntax
nipkow@10213
   181
  "_tuple"      :: "'a => tuple_args => 'a * 'b"        ("(1'(_,/ _'))")
nipkow@10213
   182
  "_tuple_arg"  :: "'a => tuple_args"                   ("_")
nipkow@10213
   183
  "_tuple_args" :: "'a => tuple_args => tuple_args"     ("_,/ _")
oheimb@11025
   184
  "_pattern"    :: "[pttrn, patterns] => pttrn"         ("'(_,/ _')")
oheimb@11025
   185
  ""            :: "pttrn => patterns"                  ("_")
oheimb@11025
   186
  "_patterns"   :: "[pttrn, patterns] => patterns"      ("_,/ _")
nipkow@10213
   187
nipkow@10213
   188
translations
wenzelm@35115
   189
  "(x, y)" == "CONST Pair x y"
nipkow@10213
   190
  "_tuple x (_tuple_args y z)" == "_tuple x (_tuple_arg (_tuple y z))"
haftmann@37591
   191
  "%(x, y, zs). b" == "CONST prod_case (%x (y, zs). b)"
haftmann@37591
   192
  "%(x, y). b" == "CONST prod_case (%x y. b)"
wenzelm@35115
   193
  "_abs (CONST Pair x y) t" => "%(x, y). t"
haftmann@37166
   194
  -- {* The last rule accommodates tuples in `case C ... (x,y) ... => ...'
haftmann@37166
   195
     The (x,y) is parsed as `Pair x y' because it is logic, not pttrn *}
nipkow@10213
   196
wenzelm@35115
   197
(*reconstruct pattern from (nested) splits, avoiding eta-contraction of body;
wenzelm@35115
   198
  works best with enclosing "let", if "let" does not avoid eta-contraction*)
schirmer@14359
   199
print_translation {*
wenzelm@35115
   200
let
wenzelm@35115
   201
  fun split_tr' [Abs (x, T, t as (Abs abs))] =
wenzelm@35115
   202
        (* split (%x y. t) => %(x,y) t *)
wenzelm@35115
   203
        let
wenzelm@42284
   204
          val (y, t') = Syntax_Trans.atomic_abs_tr' abs;
wenzelm@42284
   205
          val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, T, t');
wenzelm@35115
   206
        in
wenzelm@35115
   207
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   208
            (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   209
        end
haftmann@37591
   210
    | split_tr' [Abs (x, T, (s as Const (@{const_syntax prod_case}, _) $ t))] =
wenzelm@35115
   211
        (* split (%x. (split (%y z. t))) => %(x,y,z). t *)
wenzelm@35115
   212
        let
wenzelm@35115
   213
          val Const (@{syntax_const "_abs"}, _) $
wenzelm@35115
   214
            (Const (@{syntax_const "_pattern"}, _) $ y $ z) $ t' = split_tr' [t];
wenzelm@42284
   215
          val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, T, t');
wenzelm@35115
   216
        in
wenzelm@35115
   217
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   218
            (Syntax.const @{syntax_const "_pattern"} $ x' $
wenzelm@35115
   219
              (Syntax.const @{syntax_const "_patterns"} $ y $ z)) $ t''
wenzelm@35115
   220
        end
haftmann@37591
   221
    | split_tr' [Const (@{const_syntax prod_case}, _) $ t] =
wenzelm@35115
   222
        (* split (split (%x y z. t)) => %((x, y), z). t *)
wenzelm@35115
   223
        split_tr' [(split_tr' [t])] (* inner split_tr' creates next pattern *)
wenzelm@35115
   224
    | split_tr' [Const (@{syntax_const "_abs"}, _) $ x_y $ Abs abs] =
wenzelm@35115
   225
        (* split (%pttrn z. t) => %(pttrn,z). t *)
wenzelm@42284
   226
        let val (z, t) = Syntax_Trans.atomic_abs_tr' abs in
wenzelm@35115
   227
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   228
            (Syntax.const @{syntax_const "_pattern"} $ x_y $ z) $ t
wenzelm@35115
   229
        end
wenzelm@35115
   230
    | split_tr' _ = raise Match;
haftmann@37591
   231
in [(@{const_syntax prod_case}, split_tr')] end
schirmer@14359
   232
*}
schirmer@14359
   233
schirmer@15422
   234
(* print "split f" as "\<lambda>(x,y). f x y" and "split (\<lambda>x. f x)" as "\<lambda>(x,y). f x y" *) 
schirmer@15422
   235
typed_print_translation {*
schirmer@15422
   236
let
wenzelm@42247
   237
  fun split_guess_names_tr' T [Abs (x, _, Abs _)] = raise Match
wenzelm@42247
   238
    | split_guess_names_tr' T [Abs (x, xT, t)] =
schirmer@15422
   239
        (case (head_of t) of
haftmann@37591
   240
          Const (@{const_syntax prod_case}, _) => raise Match
wenzelm@35115
   241
        | _ =>
wenzelm@35115
   242
          let 
wenzelm@35115
   243
            val (_ :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
wenzelm@42284
   244
            val (y, t') = Syntax_Trans.atomic_abs_tr' ("y", yT, incr_boundvars 1 t $ Bound 0);
wenzelm@42284
   245
            val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, xT, t');
wenzelm@35115
   246
          in
wenzelm@35115
   247
            Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   248
              (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   249
          end)
wenzelm@42247
   250
    | split_guess_names_tr' T [t] =
wenzelm@35115
   251
        (case head_of t of
haftmann@37591
   252
          Const (@{const_syntax prod_case}, _) => raise Match
wenzelm@35115
   253
        | _ =>
wenzelm@35115
   254
          let
wenzelm@35115
   255
            val (xT :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
wenzelm@42284
   256
            val (y, t') =
wenzelm@42284
   257
              Syntax_Trans.atomic_abs_tr' ("y", yT, incr_boundvars 2 t $ Bound 1 $ Bound 0);
wenzelm@42284
   258
            val (x', t'') = Syntax_Trans.atomic_abs_tr' ("x", xT, t');
wenzelm@35115
   259
          in
wenzelm@35115
   260
            Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   261
              (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   262
          end)
wenzelm@42247
   263
    | split_guess_names_tr' _ _ = raise Match;
haftmann@37591
   264
in [(@{const_syntax prod_case}, split_guess_names_tr')] end
schirmer@15422
   265
*}
schirmer@15422
   266
nipkow@42059
   267
(* Force eta-contraction for terms of the form "Q A (%p. prod_case P p)"
nipkow@42059
   268
   where Q is some bounded quantifier or set operator.
nipkow@42059
   269
   Reason: the above prints as "Q p : A. case p of (x,y) \<Rightarrow> P x y"
nipkow@42059
   270
   whereas we want "Q (x,y):A. P x y".
nipkow@42059
   271
   Otherwise prevent eta-contraction.
nipkow@42059
   272
*)
nipkow@42059
   273
print_translation {*
nipkow@42059
   274
let
nipkow@42059
   275
  fun contract Q f ts =
nipkow@42059
   276
    case ts of
nipkow@42059
   277
      [A, Abs(_, _, (s as Const (@{const_syntax prod_case},_) $ t) $ Bound 0)]
wenzelm@42083
   278
      => if Term.is_dependent t then f ts else Syntax.const Q $ A $ s
nipkow@42059
   279
    | _ => f ts;
nipkow@42059
   280
  fun contract2 (Q,f) = (Q, contract Q f);
nipkow@42059
   281
  val pairs =
wenzelm@42284
   282
    [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Ball} @{syntax_const "_Ball"},
wenzelm@42284
   283
     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Bex} @{syntax_const "_Bex"},
wenzelm@42284
   284
     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"},
wenzelm@42284
   285
     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"}]
nipkow@42059
   286
in map contract2 pairs end
nipkow@42059
   287
*}
nipkow@10213
   288
haftmann@37166
   289
subsubsection {* Code generator setup *}
haftmann@37166
   290
haftmann@37678
   291
code_type prod
haftmann@37166
   292
  (SML infix 2 "*")
haftmann@37166
   293
  (OCaml infix 2 "*")
haftmann@37166
   294
  (Haskell "!((_),/ (_))")
haftmann@37166
   295
  (Scala "((_),/ (_))")
haftmann@37166
   296
haftmann@37166
   297
code_const Pair
haftmann@37166
   298
  (SML "!((_),/ (_))")
haftmann@37166
   299
  (OCaml "!((_),/ (_))")
haftmann@37166
   300
  (Haskell "!((_),/ (_))")
haftmann@37166
   301
  (Scala "!((_),/ (_))")
haftmann@37166
   302
haftmann@38857
   303
code_instance prod :: equal
haftmann@37166
   304
  (Haskell -)
haftmann@37166
   305
haftmann@38857
   306
code_const "HOL.equal \<Colon> 'a \<times> 'b \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool"
haftmann@39272
   307
  (Haskell infix 4 "==")
haftmann@37166
   308
haftmann@37166
   309
haftmann@37166
   310
subsubsection {* Fundamental operations and properties *}
wenzelm@11838
   311
haftmann@26358
   312
lemma surj_pair [simp]: "EX x y. p = (x, y)"
haftmann@37166
   313
  by (cases p) simp
nipkow@10213
   314
haftmann@37389
   315
definition fst :: "'a \<times> 'b \<Rightarrow> 'a" where
haftmann@37389
   316
  "fst p = (case p of (a, b) \<Rightarrow> a)"
wenzelm@11838
   317
haftmann@37389
   318
definition snd :: "'a \<times> 'b \<Rightarrow> 'b" where
haftmann@37389
   319
  "snd p = (case p of (a, b) \<Rightarrow> b)"
wenzelm@11838
   320
haftmann@22886
   321
lemma fst_conv [simp, code]: "fst (a, b) = a"
haftmann@37166
   322
  unfolding fst_def by simp
wenzelm@11838
   323
haftmann@22886
   324
lemma snd_conv [simp, code]: "snd (a, b) = b"
haftmann@37166
   325
  unfolding snd_def by simp
oheimb@11025
   326
haftmann@37166
   327
code_const fst and snd
haftmann@37166
   328
  (Haskell "fst" and "snd")
haftmann@26358
   329
blanchet@41792
   330
lemma prod_case_unfold [nitpick_unfold]: "prod_case = (%c p. c (fst p) (snd p))"
nipkow@39302
   331
  by (simp add: fun_eq_iff split: prod.split)
haftmann@26358
   332
wenzelm@11838
   333
lemma fst_eqD: "fst (x, y) = a ==> x = a"
wenzelm@11838
   334
  by simp
wenzelm@11838
   335
wenzelm@11838
   336
lemma snd_eqD: "snd (x, y) = a ==> y = a"
wenzelm@11838
   337
  by simp
wenzelm@11838
   338
haftmann@26358
   339
lemma pair_collapse [simp]: "(fst p, snd p) = p"
wenzelm@11838
   340
  by (cases p) simp
wenzelm@11838
   341
haftmann@26358
   342
lemmas surjective_pairing = pair_collapse [symmetric]
wenzelm@11838
   343
huffman@44066
   344
lemma prod_eq_iff: "s = t \<longleftrightarrow> fst s = fst t \<and> snd s = snd t"
haftmann@37166
   345
  by (cases s, cases t) simp
haftmann@37166
   346
haftmann@37166
   347
lemma prod_eqI [intro?]: "fst p = fst q \<Longrightarrow> snd p = snd q \<Longrightarrow> p = q"
huffman@44066
   348
  by (simp add: prod_eq_iff)
haftmann@37166
   349
haftmann@37166
   350
lemma split_conv [simp, code]: "split f (a, b) = f a b"
haftmann@37591
   351
  by (fact prod.cases)
haftmann@37166
   352
haftmann@37166
   353
lemma splitI: "f a b \<Longrightarrow> split f (a, b)"
haftmann@37166
   354
  by (rule split_conv [THEN iffD2])
haftmann@37166
   355
haftmann@37166
   356
lemma splitD: "split f (a, b) \<Longrightarrow> f a b"
haftmann@37166
   357
  by (rule split_conv [THEN iffD1])
haftmann@37166
   358
haftmann@37166
   359
lemma split_Pair [simp]: "(\<lambda>(x, y). (x, y)) = id"
nipkow@39302
   360
  by (simp add: fun_eq_iff split: prod.split)
haftmann@37166
   361
haftmann@37166
   362
lemma split_eta: "(\<lambda>(x, y). f (x, y)) = f"
haftmann@37166
   363
  -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *}
nipkow@39302
   364
  by (simp add: fun_eq_iff split: prod.split)
haftmann@37166
   365
haftmann@37166
   366
lemma split_comp: "split (f \<circ> g) x = f (g (fst x)) (snd x)"
haftmann@37166
   367
  by (cases x) simp
haftmann@37166
   368
haftmann@37166
   369
lemma split_twice: "split f (split g p) = split (\<lambda>x y. split f (g x y)) p"
haftmann@37166
   370
  by (cases p) simp
haftmann@37166
   371
haftmann@37166
   372
lemma The_split: "The (split P) = (THE xy. P (fst xy) (snd xy))"
haftmann@37591
   373
  by (simp add: prod_case_unfold)
haftmann@37166
   374
haftmann@37166
   375
lemma split_weak_cong: "p = q \<Longrightarrow> split c p = split c q"
haftmann@37166
   376
  -- {* Prevents simplification of @{term c}: much faster *}
huffman@40929
   377
  by (fact prod.weak_case_cong)
haftmann@37166
   378
haftmann@37166
   379
lemma cond_split_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g"
haftmann@37166
   380
  by (simp add: split_eta)
haftmann@37166
   381
blanchet@47740
   382
lemma split_paired_all [no_atp]: "(!!x. PROP P x) == (!!a b. PROP P (a, b))"
wenzelm@11820
   383
proof
wenzelm@11820
   384
  fix a b
wenzelm@11820
   385
  assume "!!x. PROP P x"
wenzelm@19535
   386
  then show "PROP P (a, b)" .
wenzelm@11820
   387
next
wenzelm@11820
   388
  fix x
wenzelm@11820
   389
  assume "!!a b. PROP P (a, b)"
wenzelm@19535
   390
  from `PROP P (fst x, snd x)` show "PROP P x" by simp
wenzelm@11820
   391
qed
wenzelm@11820
   392
wenzelm@11838
   393
text {*
wenzelm@11838
   394
  The rule @{thm [source] split_paired_all} does not work with the
wenzelm@11838
   395
  Simplifier because it also affects premises in congrence rules,
wenzelm@11838
   396
  where this can lead to premises of the form @{text "!!a b. ... =
wenzelm@11838
   397
  ?P(a, b)"} which cannot be solved by reflexivity.
wenzelm@11838
   398
*}
wenzelm@11838
   399
haftmann@26358
   400
lemmas split_tupled_all = split_paired_all unit_all_eq2
haftmann@26358
   401
wenzelm@26480
   402
ML {*
wenzelm@11838
   403
  (* replace parameters of product type by individual component parameters *)
wenzelm@11838
   404
  val safe_full_simp_tac = generic_simp_tac true (true, false, false);
wenzelm@11838
   405
  local (* filtering with exists_paired_all is an essential optimization *)
wenzelm@16121
   406
    fun exists_paired_all (Const ("all", _) $ Abs (_, T, t)) =
wenzelm@11838
   407
          can HOLogic.dest_prodT T orelse exists_paired_all t
wenzelm@11838
   408
      | exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u
wenzelm@11838
   409
      | exists_paired_all (Abs (_, _, t)) = exists_paired_all t
wenzelm@11838
   410
      | exists_paired_all _ = false;
wenzelm@11838
   411
    val ss = HOL_basic_ss
wenzelm@26340
   412
      addsimps [@{thm split_paired_all}, @{thm unit_all_eq2}, @{thm unit_abs_eta_conv}]
wenzelm@43594
   413
      addsimprocs [@{simproc unit_eq}];
wenzelm@11838
   414
  in
wenzelm@11838
   415
    val split_all_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   416
      if exists_paired_all t then safe_full_simp_tac ss i else no_tac);
wenzelm@11838
   417
    val unsafe_split_all_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   418
      if exists_paired_all t then full_simp_tac ss i else no_tac);
wenzelm@11838
   419
    fun split_all th =
wenzelm@26340
   420
   if exists_paired_all (Thm.prop_of th) then full_simplify ss th else th;
wenzelm@11838
   421
  end;
wenzelm@26340
   422
*}
wenzelm@11838
   423
wenzelm@26340
   424
declaration {* fn _ =>
wenzelm@26340
   425
  Classical.map_cs (fn cs => cs addSbefore ("split_all_tac", split_all_tac))
wenzelm@16121
   426
*}
wenzelm@11838
   427
blanchet@47740
   428
lemma split_paired_All [simp, no_atp]: "(ALL x. P x) = (ALL a b. P (a, b))"
wenzelm@11838
   429
  -- {* @{text "[iff]"} is not a good idea because it makes @{text blast} loop *}
wenzelm@11838
   430
  by fast
wenzelm@11838
   431
blanchet@47740
   432
lemma split_paired_Ex [simp, no_atp]: "(EX x. P x) = (EX a b. P (a, b))"
haftmann@26358
   433
  by fast
haftmann@26358
   434
blanchet@47740
   435
lemma split_paired_The [no_atp]: "(THE x. P x) = (THE (a, b). P (a, b))"
wenzelm@11838
   436
  -- {* Can't be added to simpset: loops! *}
haftmann@26358
   437
  by (simp add: split_eta)
wenzelm@11838
   438
wenzelm@11838
   439
text {*
wenzelm@11838
   440
  Simplification procedure for @{thm [source] cond_split_eta}.  Using
wenzelm@11838
   441
  @{thm [source] split_eta} as a rewrite rule is not general enough,
wenzelm@11838
   442
  and using @{thm [source] cond_split_eta} directly would render some
wenzelm@11838
   443
  existing proofs very inefficient; similarly for @{text
haftmann@26358
   444
  split_beta}.
haftmann@26358
   445
*}
wenzelm@11838
   446
wenzelm@26480
   447
ML {*
wenzelm@11838
   448
local
wenzelm@35364
   449
  val cond_split_eta_ss = HOL_basic_ss addsimps @{thms cond_split_eta};
wenzelm@35364
   450
  fun Pair_pat k 0 (Bound m) = (m = k)
wenzelm@35364
   451
    | Pair_pat k i (Const (@{const_name Pair},  _) $ Bound m $ t) =
wenzelm@35364
   452
        i > 0 andalso m = k + i andalso Pair_pat k (i - 1) t
wenzelm@35364
   453
    | Pair_pat _ _ _ = false;
wenzelm@35364
   454
  fun no_args k i (Abs (_, _, t)) = no_args (k + 1) i t
wenzelm@35364
   455
    | no_args k i (t $ u) = no_args k i t andalso no_args k i u
wenzelm@35364
   456
    | no_args k i (Bound m) = m < k orelse m > k + i
wenzelm@35364
   457
    | no_args _ _ _ = true;
wenzelm@35364
   458
  fun split_pat tp i (Abs  (_, _, t)) = if tp 0 i t then SOME (i, t) else NONE
haftmann@37591
   459
    | split_pat tp i (Const (@{const_name prod_case}, _) $ Abs (_, _, t)) = split_pat tp (i + 1) t
wenzelm@35364
   460
    | split_pat tp i _ = NONE;
wenzelm@20044
   461
  fun metaeq ss lhs rhs = mk_meta_eq (Goal.prove (Simplifier.the_context ss) [] []
wenzelm@35364
   462
        (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)))
wenzelm@18328
   463
        (K (simp_tac (Simplifier.inherit_context ss cond_split_eta_ss) 1)));
wenzelm@11838
   464
wenzelm@35364
   465
  fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k + 1) i t
wenzelm@35364
   466
    | beta_term_pat k i (t $ u) =
wenzelm@35364
   467
        Pair_pat k i (t $ u) orelse (beta_term_pat k i t andalso beta_term_pat k i u)
wenzelm@35364
   468
    | beta_term_pat k i t = no_args k i t;
wenzelm@35364
   469
  fun eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg
wenzelm@35364
   470
    | eta_term_pat _ _ _ = false;
wenzelm@11838
   471
  fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t)
wenzelm@35364
   472
    | subst arg k i (t $ u) =
wenzelm@35364
   473
        if Pair_pat k i (t $ u) then incr_boundvars k arg
wenzelm@35364
   474
        else (subst arg k i t $ subst arg k i u)
wenzelm@35364
   475
    | subst arg k i t = t;
wenzelm@43595
   476
in
haftmann@37591
   477
  fun beta_proc ss (s as Const (@{const_name prod_case}, _) $ Abs (_, _, t) $ arg) =
wenzelm@11838
   478
        (case split_pat beta_term_pat 1 t of
wenzelm@35364
   479
          SOME (i, f) => SOME (metaeq ss s (subst arg 0 i f))
skalberg@15531
   480
        | NONE => NONE)
wenzelm@35364
   481
    | beta_proc _ _ = NONE;
haftmann@37591
   482
  fun eta_proc ss (s as Const (@{const_name prod_case}, _) $ Abs (_, _, t)) =
wenzelm@11838
   483
        (case split_pat eta_term_pat 1 t of
wenzelm@35364
   484
          SOME (_, ft) => SOME (metaeq ss s (let val (f $ arg) = ft in f end))
skalberg@15531
   485
        | NONE => NONE)
wenzelm@35364
   486
    | eta_proc _ _ = NONE;
wenzelm@11838
   487
end;
wenzelm@11838
   488
*}
wenzelm@43595
   489
simproc_setup split_beta ("split f z") = {* fn _ => fn ss => fn ct => beta_proc ss (term_of ct) *}
wenzelm@43595
   490
simproc_setup split_eta ("split f") = {* fn _ => fn ss => fn ct => eta_proc ss (term_of ct) *}
wenzelm@11838
   491
berghofe@26798
   492
lemma split_beta [mono]: "(%(x, y). P x y) z = P (fst z) (snd z)"
wenzelm@11838
   493
  by (subst surjective_pairing, rule split_conv)
wenzelm@11838
   494
blanchet@35828
   495
lemma split_split [no_atp]: "R(split c p) = (ALL x y. p = (x, y) --> R(c x y))"
wenzelm@11838
   496
  -- {* For use with @{text split} and the Simplifier. *}
paulson@15481
   497
  by (insert surj_pair [of p], clarify, simp)
wenzelm@11838
   498
wenzelm@11838
   499
text {*
wenzelm@11838
   500
  @{thm [source] split_split} could be declared as @{text "[split]"}
wenzelm@11838
   501
  done after the Splitter has been speeded up significantly;
wenzelm@11838
   502
  precompute the constants involved and don't do anything unless the
wenzelm@11838
   503
  current goal contains one of those constants.
wenzelm@11838
   504
*}
wenzelm@11838
   505
blanchet@35828
   506
lemma split_split_asm [no_atp]: "R (split c p) = (~(EX x y. p = (x, y) & (~R (c x y))))"
paulson@14208
   507
by (subst split_split, simp)
wenzelm@11838
   508
wenzelm@11838
   509
text {*
wenzelm@11838
   510
  \medskip @{term split} used as a logical connective or set former.
wenzelm@11838
   511
wenzelm@11838
   512
  \medskip These rules are for use with @{text blast}; could instead
huffman@40929
   513
  call @{text simp} using @{thm [source] prod.split} as rewrite. *}
wenzelm@11838
   514
wenzelm@11838
   515
lemma splitI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> split c p"
wenzelm@11838
   516
  apply (simp only: split_tupled_all)
wenzelm@11838
   517
  apply (simp (no_asm_simp))
wenzelm@11838
   518
  done
wenzelm@11838
   519
wenzelm@11838
   520
lemma splitI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> split c p x"
wenzelm@11838
   521
  apply (simp only: split_tupled_all)
wenzelm@11838
   522
  apply (simp (no_asm_simp))
wenzelm@11838
   523
  done
wenzelm@11838
   524
wenzelm@11838
   525
lemma splitE: "split c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
haftmann@37591
   526
  by (induct p) auto
wenzelm@11838
   527
wenzelm@11838
   528
lemma splitE': "split c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
haftmann@37591
   529
  by (induct p) auto
wenzelm@11838
   530
wenzelm@11838
   531
lemma splitE2:
wenzelm@11838
   532
  "[| Q (split P z);  !!x y. [|z = (x, y); Q (P x y)|] ==> R |] ==> R"
wenzelm@11838
   533
proof -
wenzelm@11838
   534
  assume q: "Q (split P z)"
wenzelm@11838
   535
  assume r: "!!x y. [|z = (x, y); Q (P x y)|] ==> R"
wenzelm@11838
   536
  show R
wenzelm@11838
   537
    apply (rule r surjective_pairing)+
wenzelm@11838
   538
    apply (rule split_beta [THEN subst], rule q)
wenzelm@11838
   539
    done
wenzelm@11838
   540
qed
wenzelm@11838
   541
wenzelm@11838
   542
lemma splitD': "split R (a,b) c ==> R a b c"
wenzelm@11838
   543
  by simp
wenzelm@11838
   544
wenzelm@11838
   545
lemma mem_splitI: "z: c a b ==> z: split c (a, b)"
wenzelm@11838
   546
  by simp
wenzelm@11838
   547
wenzelm@11838
   548
lemma mem_splitI2: "!!p. [| !!a b. p = (a, b) ==> z: c a b |] ==> z: split c p"
paulson@14208
   549
by (simp only: split_tupled_all, simp)
wenzelm@11838
   550
wenzelm@18372
   551
lemma mem_splitE:
haftmann@37166
   552
  assumes major: "z \<in> split c p"
haftmann@37166
   553
    and cases: "\<And>x y. p = (x, y) \<Longrightarrow> z \<in> c x y \<Longrightarrow> Q"
wenzelm@18372
   554
  shows Q
haftmann@37591
   555
  by (rule major [unfolded prod_case_unfold] cases surjective_pairing)+
wenzelm@11838
   556
wenzelm@11838
   557
declare mem_splitI2 [intro!] mem_splitI [intro!] splitI2' [intro!] splitI2 [intro!] splitI [intro!]
wenzelm@11838
   558
declare mem_splitE [elim!] splitE' [elim!] splitE [elim!]
wenzelm@11838
   559
wenzelm@26340
   560
ML {*
wenzelm@11838
   561
local (* filtering with exists_p_split is an essential optimization *)
haftmann@37591
   562
  fun exists_p_split (Const (@{const_name prod_case},_) $ _ $ (Const (@{const_name Pair},_)$_$_)) = true
wenzelm@11838
   563
    | exists_p_split (t $ u) = exists_p_split t orelse exists_p_split u
wenzelm@11838
   564
    | exists_p_split (Abs (_, _, t)) = exists_p_split t
wenzelm@11838
   565
    | exists_p_split _ = false;
wenzelm@35364
   566
  val ss = HOL_basic_ss addsimps @{thms split_conv};
wenzelm@11838
   567
in
wenzelm@11838
   568
val split_conv_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   569
    if exists_p_split t then safe_full_simp_tac ss i else no_tac);
wenzelm@11838
   570
end;
wenzelm@26340
   571
*}
wenzelm@26340
   572
wenzelm@11838
   573
(* This prevents applications of splitE for already splitted arguments leading
wenzelm@11838
   574
   to quite time-consuming computations (in particular for nested tuples) *)
wenzelm@26340
   575
declaration {* fn _ =>
wenzelm@26340
   576
  Classical.map_cs (fn cs => cs addSbefore ("split_conv_tac", split_conv_tac))
wenzelm@16121
   577
*}
wenzelm@11838
   578
blanchet@35828
   579
lemma split_eta_SetCompr [simp,no_atp]: "(%u. EX x y. u = (x, y) & P (x, y)) = P"
wenzelm@18372
   580
  by (rule ext) fast
wenzelm@11838
   581
blanchet@35828
   582
lemma split_eta_SetCompr2 [simp,no_atp]: "(%u. EX x y. u = (x, y) & P x y) = split P"
wenzelm@18372
   583
  by (rule ext) fast
wenzelm@11838
   584
wenzelm@11838
   585
lemma split_part [simp]: "(%(a,b). P & Q a b) = (%ab. P & split Q ab)"
wenzelm@11838
   586
  -- {* Allows simplifications of nested splits in case of independent predicates. *}
wenzelm@18372
   587
  by (rule ext) blast
wenzelm@11838
   588
nipkow@14337
   589
(* Do NOT make this a simp rule as it
nipkow@14337
   590
   a) only helps in special situations
nipkow@14337
   591
   b) can lead to nontermination in the presence of split_def
nipkow@14337
   592
*)
nipkow@14337
   593
lemma split_comp_eq: 
paulson@20415
   594
  fixes f :: "'a => 'b => 'c" and g :: "'d => 'a"
paulson@20415
   595
  shows "(%u. f (g (fst u)) (snd u)) = (split (%x. f (g x)))"
wenzelm@18372
   596
  by (rule ext) auto
oheimb@14101
   597
haftmann@26358
   598
lemma pair_imageI [intro]: "(a, b) : A ==> f a b : (%(a, b). f a b) ` A"
haftmann@26358
   599
  apply (rule_tac x = "(a, b)" in image_eqI)
haftmann@26358
   600
   apply auto
haftmann@26358
   601
  done
haftmann@26358
   602
wenzelm@11838
   603
lemma The_split_eq [simp]: "(THE (x',y'). x = x' & y = y') = (x, y)"
wenzelm@11838
   604
  by blast
wenzelm@11838
   605
wenzelm@11838
   606
(*
wenzelm@11838
   607
the following  would be slightly more general,
wenzelm@11838
   608
but cannot be used as rewrite rule:
wenzelm@11838
   609
### Cannot add premise as rewrite rule because it contains (type) unknowns:
wenzelm@11838
   610
### ?y = .x
wenzelm@11838
   611
Goal "[| P y; !!x. P x ==> x = y |] ==> (@(x',y). x = x' & P y) = (x,y)"
paulson@14208
   612
by (rtac some_equality 1)
paulson@14208
   613
by ( Simp_tac 1)
paulson@14208
   614
by (split_all_tac 1)
paulson@14208
   615
by (Asm_full_simp_tac 1)
wenzelm@11838
   616
qed "The_split_eq";
wenzelm@11838
   617
*)
wenzelm@11838
   618
wenzelm@11838
   619
text {*
wenzelm@11838
   620
  Setup of internal @{text split_rule}.
wenzelm@11838
   621
*}
wenzelm@11838
   622
wenzelm@45607
   623
lemmas prod_caseI = prod.cases [THEN iffD2]
haftmann@24699
   624
haftmann@24699
   625
lemma prod_caseI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> prod_case c p"
haftmann@37678
   626
  by (fact splitI2)
haftmann@24699
   627
haftmann@24699
   628
lemma prod_caseI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> prod_case c p x"
haftmann@37678
   629
  by (fact splitI2')
haftmann@24699
   630
haftmann@24699
   631
lemma prod_caseE: "prod_case c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
haftmann@37678
   632
  by (fact splitE)
haftmann@24699
   633
haftmann@24699
   634
lemma prod_caseE': "prod_case c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
haftmann@37678
   635
  by (fact splitE')
haftmann@24699
   636
haftmann@37678
   637
declare prod_caseI [intro!]
haftmann@24699
   638
bulwahn@26143
   639
lemma prod_case_beta:
bulwahn@26143
   640
  "prod_case f p = f (fst p) (snd p)"
haftmann@37591
   641
  by (fact split_beta)
bulwahn@26143
   642
haftmann@24699
   643
lemma prod_cases3 [cases type]:
haftmann@24699
   644
  obtains (fields) a b c where "y = (a, b, c)"
haftmann@24699
   645
  by (cases y, case_tac b) blast
haftmann@24699
   646
haftmann@24699
   647
lemma prod_induct3 [case_names fields, induct type]:
haftmann@24699
   648
    "(!!a b c. P (a, b, c)) ==> P x"
haftmann@24699
   649
  by (cases x) blast
haftmann@24699
   650
haftmann@24699
   651
lemma prod_cases4 [cases type]:
haftmann@24699
   652
  obtains (fields) a b c d where "y = (a, b, c, d)"
haftmann@24699
   653
  by (cases y, case_tac c) blast
haftmann@24699
   654
haftmann@24699
   655
lemma prod_induct4 [case_names fields, induct type]:
haftmann@24699
   656
    "(!!a b c d. P (a, b, c, d)) ==> P x"
haftmann@24699
   657
  by (cases x) blast
haftmann@24699
   658
haftmann@24699
   659
lemma prod_cases5 [cases type]:
haftmann@24699
   660
  obtains (fields) a b c d e where "y = (a, b, c, d, e)"
haftmann@24699
   661
  by (cases y, case_tac d) blast
haftmann@24699
   662
haftmann@24699
   663
lemma prod_induct5 [case_names fields, induct type]:
haftmann@24699
   664
    "(!!a b c d e. P (a, b, c, d, e)) ==> P x"
haftmann@24699
   665
  by (cases x) blast
haftmann@24699
   666
haftmann@24699
   667
lemma prod_cases6 [cases type]:
haftmann@24699
   668
  obtains (fields) a b c d e f where "y = (a, b, c, d, e, f)"
haftmann@24699
   669
  by (cases y, case_tac e) blast
haftmann@24699
   670
haftmann@24699
   671
lemma prod_induct6 [case_names fields, induct type]:
haftmann@24699
   672
    "(!!a b c d e f. P (a, b, c, d, e, f)) ==> P x"
haftmann@24699
   673
  by (cases x) blast
haftmann@24699
   674
haftmann@24699
   675
lemma prod_cases7 [cases type]:
haftmann@24699
   676
  obtains (fields) a b c d e f g where "y = (a, b, c, d, e, f, g)"
haftmann@24699
   677
  by (cases y, case_tac f) blast
haftmann@24699
   678
haftmann@24699
   679
lemma prod_induct7 [case_names fields, induct type]:
haftmann@24699
   680
    "(!!a b c d e f g. P (a, b, c, d, e, f, g)) ==> P x"
haftmann@24699
   681
  by (cases x) blast
haftmann@24699
   682
haftmann@37166
   683
lemma split_def:
haftmann@37166
   684
  "split = (\<lambda>c p. c (fst p) (snd p))"
haftmann@37591
   685
  by (fact prod_case_unfold)
haftmann@37166
   686
haftmann@37166
   687
definition internal_split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c" where
haftmann@37166
   688
  "internal_split == split"
haftmann@37166
   689
haftmann@37166
   690
lemma internal_split_conv: "internal_split c (a, b) = c a b"
haftmann@37166
   691
  by (simp only: internal_split_def split_conv)
haftmann@37166
   692
haftmann@37166
   693
use "Tools/split_rule.ML"
haftmann@37166
   694
setup Split_Rule.setup
haftmann@37166
   695
haftmann@37166
   696
hide_const internal_split
haftmann@37166
   697
haftmann@24699
   698
haftmann@26358
   699
subsubsection {* Derived operations *}
haftmann@26358
   700
haftmann@37387
   701
definition curry    :: "('a \<times> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'c" where
haftmann@37387
   702
  "curry = (\<lambda>c x y. c (x, y))"
haftmann@37166
   703
haftmann@37166
   704
lemma curry_conv [simp, code]: "curry f a b = f (a, b)"
haftmann@37166
   705
  by (simp add: curry_def)
haftmann@37166
   706
haftmann@37166
   707
lemma curryI [intro!]: "f (a, b) \<Longrightarrow> curry f a b"
haftmann@37166
   708
  by (simp add: curry_def)
haftmann@37166
   709
haftmann@37166
   710
lemma curryD [dest!]: "curry f a b \<Longrightarrow> f (a, b)"
haftmann@37166
   711
  by (simp add: curry_def)
haftmann@37166
   712
haftmann@37166
   713
lemma curryE: "curry f a b \<Longrightarrow> (f (a, b) \<Longrightarrow> Q) \<Longrightarrow> Q"
haftmann@37166
   714
  by (simp add: curry_def)
haftmann@37166
   715
haftmann@37166
   716
lemma curry_split [simp]: "curry (split f) = f"
haftmann@37166
   717
  by (simp add: curry_def split_def)
haftmann@37166
   718
haftmann@37166
   719
lemma split_curry [simp]: "split (curry f) = f"
haftmann@37166
   720
  by (simp add: curry_def split_def)
haftmann@37166
   721
haftmann@26358
   722
text {*
haftmann@26358
   723
  The composition-uncurry combinator.
haftmann@26358
   724
*}
haftmann@26358
   725
haftmann@37751
   726
notation fcomp (infixl "\<circ>>" 60)
haftmann@26358
   727
haftmann@37751
   728
definition scomp :: "('a \<Rightarrow> 'b \<times> 'c) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> 'd) \<Rightarrow> 'a \<Rightarrow> 'd" (infixl "\<circ>\<rightarrow>" 60) where
haftmann@37751
   729
  "f \<circ>\<rightarrow> g = (\<lambda>x. prod_case g (f x))"
haftmann@26358
   730
haftmann@37678
   731
lemma scomp_unfold: "scomp = (\<lambda>f g x. g (fst (f x)) (snd (f x)))"
nipkow@39302
   732
  by (simp add: fun_eq_iff scomp_def prod_case_unfold)
haftmann@37678
   733
haftmann@37751
   734
lemma scomp_apply [simp]: "(f \<circ>\<rightarrow> g) x = prod_case g (f x)"
haftmann@37751
   735
  by (simp add: scomp_unfold prod_case_unfold)
haftmann@26358
   736
haftmann@37751
   737
lemma Pair_scomp: "Pair x \<circ>\<rightarrow> f = f x"
huffman@44921
   738
  by (simp add: fun_eq_iff)
haftmann@26358
   739
haftmann@37751
   740
lemma scomp_Pair: "x \<circ>\<rightarrow> Pair = x"
huffman@44921
   741
  by (simp add: fun_eq_iff)
haftmann@26358
   742
haftmann@37751
   743
lemma scomp_scomp: "(f \<circ>\<rightarrow> g) \<circ>\<rightarrow> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>\<rightarrow> h)"
nipkow@39302
   744
  by (simp add: fun_eq_iff scomp_unfold)
haftmann@26358
   745
haftmann@37751
   746
lemma scomp_fcomp: "(f \<circ>\<rightarrow> g) \<circ>> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>> h)"
nipkow@39302
   747
  by (simp add: fun_eq_iff scomp_unfold fcomp_def)
haftmann@26358
   748
haftmann@37751
   749
lemma fcomp_scomp: "(f \<circ>> g) \<circ>\<rightarrow> h = f \<circ>> (g \<circ>\<rightarrow> h)"
huffman@44921
   750
  by (simp add: fun_eq_iff scomp_unfold)
haftmann@26358
   751
haftmann@31202
   752
code_const scomp
haftmann@31202
   753
  (Eval infixl 3 "#->")
haftmann@31202
   754
haftmann@37751
   755
no_notation fcomp (infixl "\<circ>>" 60)
haftmann@37751
   756
no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
haftmann@26358
   757
haftmann@26358
   758
text {*
haftmann@40607
   759
  @{term map_pair} --- action of the product functor upon
krauss@36664
   760
  functions.
haftmann@26358
   761
*}
haftmann@21195
   762
haftmann@40607
   763
definition map_pair :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'd" where
haftmann@40607
   764
  "map_pair f g = (\<lambda>(x, y). (f x, g y))"
haftmann@26358
   765
haftmann@40607
   766
lemma map_pair_simp [simp, code]:
haftmann@40607
   767
  "map_pair f g (a, b) = (f a, g b)"
haftmann@40607
   768
  by (simp add: map_pair_def)
haftmann@26358
   769
haftmann@41505
   770
enriched_type map_pair: map_pair
huffman@44921
   771
  by (auto simp add: split_paired_all)
nipkow@37278
   772
haftmann@40607
   773
lemma fst_map_pair [simp]:
haftmann@40607
   774
  "fst (map_pair f g x) = f (fst x)"
haftmann@40607
   775
  by (cases x) simp_all
nipkow@37278
   776
haftmann@40607
   777
lemma snd_prod_fun [simp]:
haftmann@40607
   778
  "snd (map_pair f g x) = g (snd x)"
haftmann@40607
   779
  by (cases x) simp_all
nipkow@37278
   780
haftmann@40607
   781
lemma fst_comp_map_pair [simp]:
haftmann@40607
   782
  "fst \<circ> map_pair f g = f \<circ> fst"
haftmann@40607
   783
  by (rule ext) simp_all
nipkow@37278
   784
haftmann@40607
   785
lemma snd_comp_map_pair [simp]:
haftmann@40607
   786
  "snd \<circ> map_pair f g = g \<circ> snd"
haftmann@40607
   787
  by (rule ext) simp_all
haftmann@26358
   788
haftmann@40607
   789
lemma map_pair_compose:
haftmann@40607
   790
  "map_pair (f1 o f2) (g1 o g2) = (map_pair f1 g1 o map_pair f2 g2)"
haftmann@40607
   791
  by (rule ext) (simp add: map_pair.compositionality comp_def)
haftmann@26358
   792
haftmann@40607
   793
lemma map_pair_ident [simp]:
haftmann@40607
   794
  "map_pair (%x. x) (%y. y) = (%z. z)"
haftmann@40607
   795
  by (rule ext) (simp add: map_pair.identity)
haftmann@40607
   796
haftmann@40607
   797
lemma map_pair_imageI [intro]:
haftmann@40607
   798
  "(a, b) \<in> R \<Longrightarrow> (f a, g b) \<in> map_pair f g ` R"
haftmann@40607
   799
  by (rule image_eqI) simp_all
haftmann@21195
   800
haftmann@26358
   801
lemma prod_fun_imageE [elim!]:
haftmann@40607
   802
  assumes major: "c \<in> map_pair f g ` R"
haftmann@40607
   803
    and cases: "\<And>x y. c = (f x, g y) \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> P"
haftmann@26358
   804
  shows P
haftmann@26358
   805
  apply (rule major [THEN imageE])
haftmann@37166
   806
  apply (case_tac x)
haftmann@26358
   807
  apply (rule cases)
haftmann@40607
   808
  apply simp_all
haftmann@26358
   809
  done
haftmann@26358
   810
haftmann@37166
   811
definition apfst :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'b" where
haftmann@40607
   812
  "apfst f = map_pair f id"
haftmann@26358
   813
haftmann@37166
   814
definition apsnd :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'a \<times> 'c" where
haftmann@40607
   815
  "apsnd f = map_pair id f"
haftmann@26358
   816
haftmann@26358
   817
lemma apfst_conv [simp, code]:
haftmann@26358
   818
  "apfst f (x, y) = (f x, y)" 
haftmann@26358
   819
  by (simp add: apfst_def)
haftmann@26358
   820
hoelzl@33638
   821
lemma apsnd_conv [simp, code]:
haftmann@26358
   822
  "apsnd f (x, y) = (x, f y)" 
haftmann@26358
   823
  by (simp add: apsnd_def)
haftmann@21195
   824
haftmann@33594
   825
lemma fst_apfst [simp]:
haftmann@33594
   826
  "fst (apfst f x) = f (fst x)"
haftmann@33594
   827
  by (cases x) simp
haftmann@33594
   828
haftmann@33594
   829
lemma fst_apsnd [simp]:
haftmann@33594
   830
  "fst (apsnd f x) = fst x"
haftmann@33594
   831
  by (cases x) simp
haftmann@33594
   832
haftmann@33594
   833
lemma snd_apfst [simp]:
haftmann@33594
   834
  "snd (apfst f x) = snd x"
haftmann@33594
   835
  by (cases x) simp
haftmann@33594
   836
haftmann@33594
   837
lemma snd_apsnd [simp]:
haftmann@33594
   838
  "snd (apsnd f x) = f (snd x)"
haftmann@33594
   839
  by (cases x) simp
haftmann@33594
   840
haftmann@33594
   841
lemma apfst_compose:
haftmann@33594
   842
  "apfst f (apfst g x) = apfst (f \<circ> g) x"
haftmann@33594
   843
  by (cases x) simp
haftmann@33594
   844
haftmann@33594
   845
lemma apsnd_compose:
haftmann@33594
   846
  "apsnd f (apsnd g x) = apsnd (f \<circ> g) x"
haftmann@33594
   847
  by (cases x) simp
haftmann@33594
   848
haftmann@33594
   849
lemma apfst_apsnd [simp]:
haftmann@33594
   850
  "apfst f (apsnd g x) = (f (fst x), g (snd x))"
haftmann@33594
   851
  by (cases x) simp
haftmann@33594
   852
haftmann@33594
   853
lemma apsnd_apfst [simp]:
haftmann@33594
   854
  "apsnd f (apfst g x) = (g (fst x), f (snd x))"
haftmann@33594
   855
  by (cases x) simp
haftmann@33594
   856
haftmann@33594
   857
lemma apfst_id [simp] :
haftmann@33594
   858
  "apfst id = id"
nipkow@39302
   859
  by (simp add: fun_eq_iff)
haftmann@33594
   860
haftmann@33594
   861
lemma apsnd_id [simp] :
haftmann@33594
   862
  "apsnd id = id"
nipkow@39302
   863
  by (simp add: fun_eq_iff)
haftmann@33594
   864
haftmann@33594
   865
lemma apfst_eq_conv [simp]:
haftmann@33594
   866
  "apfst f x = apfst g x \<longleftrightarrow> f (fst x) = g (fst x)"
haftmann@33594
   867
  by (cases x) simp
haftmann@33594
   868
haftmann@33594
   869
lemma apsnd_eq_conv [simp]:
haftmann@33594
   870
  "apsnd f x = apsnd g x \<longleftrightarrow> f (snd x) = g (snd x)"
haftmann@33594
   871
  by (cases x) simp
haftmann@33594
   872
hoelzl@33638
   873
lemma apsnd_apfst_commute:
hoelzl@33638
   874
  "apsnd f (apfst g p) = apfst g (apsnd f p)"
hoelzl@33638
   875
  by simp
haftmann@21195
   876
haftmann@26358
   877
text {*
haftmann@26358
   878
  Disjoint union of a family of sets -- Sigma.
haftmann@26358
   879
*}
haftmann@26358
   880
haftmann@45986
   881
definition Sigma :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<times> 'b) set" where
haftmann@26358
   882
  Sigma_def: "Sigma A B == UN x:A. UN y:B x. {Pair x y}"
haftmann@26358
   883
haftmann@26358
   884
abbreviation
haftmann@45986
   885
  Times :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set"
haftmann@26358
   886
    (infixr "<*>" 80) where
haftmann@26358
   887
  "A <*> B == Sigma A (%_. B)"
haftmann@26358
   888
haftmann@26358
   889
notation (xsymbols)
haftmann@26358
   890
  Times  (infixr "\<times>" 80)
berghofe@15394
   891
haftmann@26358
   892
notation (HTML output)
haftmann@26358
   893
  Times  (infixr "\<times>" 80)
haftmann@26358
   894
nipkow@45662
   895
hide_const (open) Times
nipkow@45662
   896
haftmann@26358
   897
syntax
wenzelm@35115
   898
  "_Sigma" :: "[pttrn, 'a set, 'b set] => ('a * 'b) set"  ("(3SIGMA _:_./ _)" [0, 0, 10] 10)
haftmann@26358
   899
translations
wenzelm@35115
   900
  "SIGMA x:A. B" == "CONST Sigma A (%x. B)"
haftmann@26358
   901
haftmann@26358
   902
lemma SigmaI [intro!]: "[| a:A;  b:B(a) |] ==> (a,b) : Sigma A B"
haftmann@26358
   903
  by (unfold Sigma_def) blast
haftmann@26358
   904
haftmann@26358
   905
lemma SigmaE [elim!]:
haftmann@26358
   906
    "[| c: Sigma A B;
haftmann@26358
   907
        !!x y.[| x:A;  y:B(x);  c=(x,y) |] ==> P
haftmann@26358
   908
     |] ==> P"
haftmann@26358
   909
  -- {* The general elimination rule. *}
haftmann@26358
   910
  by (unfold Sigma_def) blast
haftmann@20588
   911
haftmann@26358
   912
text {*
haftmann@26358
   913
  Elimination of @{term "(a, b) : A \<times> B"} -- introduces no
haftmann@26358
   914
  eigenvariables.
haftmann@26358
   915
*}
haftmann@26358
   916
haftmann@26358
   917
lemma SigmaD1: "(a, b) : Sigma A B ==> a : A"
haftmann@26358
   918
  by blast
haftmann@26358
   919
haftmann@26358
   920
lemma SigmaD2: "(a, b) : Sigma A B ==> b : B a"
haftmann@26358
   921
  by blast
haftmann@26358
   922
haftmann@26358
   923
lemma SigmaE2:
haftmann@26358
   924
    "[| (a, b) : Sigma A B;
haftmann@26358
   925
        [| a:A;  b:B(a) |] ==> P
haftmann@26358
   926
     |] ==> P"
haftmann@26358
   927
  by blast
haftmann@20588
   928
haftmann@26358
   929
lemma Sigma_cong:
haftmann@26358
   930
     "\<lbrakk>A = B; !!x. x \<in> B \<Longrightarrow> C x = D x\<rbrakk>
haftmann@26358
   931
      \<Longrightarrow> (SIGMA x: A. C x) = (SIGMA x: B. D x)"
haftmann@26358
   932
  by auto
haftmann@26358
   933
haftmann@26358
   934
lemma Sigma_mono: "[| A <= C; !!x. x:A ==> B x <= D x |] ==> Sigma A B <= Sigma C D"
haftmann@26358
   935
  by blast
haftmann@26358
   936
haftmann@26358
   937
lemma Sigma_empty1 [simp]: "Sigma {} B = {}"
haftmann@26358
   938
  by blast
haftmann@26358
   939
haftmann@26358
   940
lemma Sigma_empty2 [simp]: "A <*> {} = {}"
haftmann@26358
   941
  by blast
haftmann@26358
   942
haftmann@26358
   943
lemma UNIV_Times_UNIV [simp]: "UNIV <*> UNIV = UNIV"
haftmann@26358
   944
  by auto
haftmann@21908
   945
haftmann@26358
   946
lemma Compl_Times_UNIV1 [simp]: "- (UNIV <*> A) = UNIV <*> (-A)"
haftmann@26358
   947
  by auto
haftmann@26358
   948
haftmann@26358
   949
lemma Compl_Times_UNIV2 [simp]: "- (A <*> UNIV) = (-A) <*> UNIV"
haftmann@26358
   950
  by auto
haftmann@26358
   951
haftmann@26358
   952
lemma mem_Sigma_iff [iff]: "((a,b): Sigma A B) = (a:A & b:B(a))"
haftmann@26358
   953
  by blast
haftmann@26358
   954
haftmann@26358
   955
lemma Times_subset_cancel2: "x:C ==> (A <*> C <= B <*> C) = (A <= B)"
haftmann@26358
   956
  by blast
haftmann@26358
   957
haftmann@26358
   958
lemma Times_eq_cancel2: "x:C ==> (A <*> C = B <*> C) = (A = B)"
haftmann@26358
   959
  by (blast elim: equalityE)
haftmann@20588
   960
haftmann@26358
   961
lemma SetCompr_Sigma_eq:
haftmann@26358
   962
    "Collect (split (%x y. P x & Q x y)) = (SIGMA x:Collect P. Collect (Q x))"
haftmann@26358
   963
  by blast
haftmann@26358
   964
haftmann@26358
   965
lemma Collect_split [simp]: "{(a,b). P a & Q b} = Collect P <*> Collect Q"
haftmann@26358
   966
  by blast
haftmann@26358
   967
haftmann@26358
   968
lemma UN_Times_distrib:
haftmann@26358
   969
  "(UN (a,b):(A <*> B). E a <*> F b) = (UNION A E) <*> (UNION B F)"
haftmann@26358
   970
  -- {* Suggested by Pierre Chartier *}
haftmann@26358
   971
  by blast
haftmann@26358
   972
blanchet@47740
   973
lemma split_paired_Ball_Sigma [simp, no_atp]:
haftmann@26358
   974
    "(ALL z: Sigma A B. P z) = (ALL x:A. ALL y: B x. P(x,y))"
haftmann@26358
   975
  by blast
haftmann@26358
   976
blanchet@47740
   977
lemma split_paired_Bex_Sigma [simp, no_atp]:
haftmann@26358
   978
    "(EX z: Sigma A B. P z) = (EX x:A. EX y: B x. P(x,y))"
haftmann@26358
   979
  by blast
haftmann@21908
   980
haftmann@26358
   981
lemma Sigma_Un_distrib1: "(SIGMA i:I Un J. C(i)) = (SIGMA i:I. C(i)) Un (SIGMA j:J. C(j))"
haftmann@26358
   982
  by blast
haftmann@26358
   983
haftmann@26358
   984
lemma Sigma_Un_distrib2: "(SIGMA i:I. A(i) Un B(i)) = (SIGMA i:I. A(i)) Un (SIGMA i:I. B(i))"
haftmann@26358
   985
  by blast
haftmann@26358
   986
haftmann@26358
   987
lemma Sigma_Int_distrib1: "(SIGMA i:I Int J. C(i)) = (SIGMA i:I. C(i)) Int (SIGMA j:J. C(j))"
haftmann@26358
   988
  by blast
haftmann@26358
   989
haftmann@26358
   990
lemma Sigma_Int_distrib2: "(SIGMA i:I. A(i) Int B(i)) = (SIGMA i:I. A(i)) Int (SIGMA i:I. B(i))"
haftmann@26358
   991
  by blast
haftmann@26358
   992
haftmann@26358
   993
lemma Sigma_Diff_distrib1: "(SIGMA i:I - J. C(i)) = (SIGMA i:I. C(i)) - (SIGMA j:J. C(j))"
haftmann@26358
   994
  by blast
haftmann@26358
   995
haftmann@26358
   996
lemma Sigma_Diff_distrib2: "(SIGMA i:I. A(i) - B(i)) = (SIGMA i:I. A(i)) - (SIGMA i:I. B(i))"
haftmann@26358
   997
  by blast
haftmann@21908
   998
haftmann@26358
   999
lemma Sigma_Union: "Sigma (Union X) B = (UN A:X. Sigma A B)"
haftmann@26358
  1000
  by blast
haftmann@26358
  1001
haftmann@26358
  1002
text {*
haftmann@26358
  1003
  Non-dependent versions are needed to avoid the need for higher-order
haftmann@26358
  1004
  matching, especially when the rules are re-oriented.
haftmann@26358
  1005
*}
haftmann@21908
  1006
haftmann@26358
  1007
lemma Times_Un_distrib1: "(A Un B) <*> C = (A <*> C) Un (B <*> C)"
nipkow@28719
  1008
by blast
haftmann@26358
  1009
haftmann@26358
  1010
lemma Times_Int_distrib1: "(A Int B) <*> C = (A <*> C) Int (B <*> C)"
nipkow@28719
  1011
by blast
haftmann@26358
  1012
haftmann@26358
  1013
lemma Times_Diff_distrib1: "(A - B) <*> C = (A <*> C) - (B <*> C)"
nipkow@28719
  1014
by blast
haftmann@26358
  1015
hoelzl@36622
  1016
lemma Times_empty[simp]: "A \<times> B = {} \<longleftrightarrow> A = {} \<or> B = {}"
hoelzl@36622
  1017
  by auto
hoelzl@36622
  1018
hoelzl@36622
  1019
lemma fst_image_times[simp]: "fst ` (A \<times> B) = (if B = {} then {} else A)"
huffman@44921
  1020
  by force
hoelzl@36622
  1021
hoelzl@36622
  1022
lemma snd_image_times[simp]: "snd ` (A \<times> B) = (if A = {} then {} else B)"
huffman@44921
  1023
  by force
hoelzl@36622
  1024
nipkow@28719
  1025
lemma insert_times_insert[simp]:
nipkow@28719
  1026
  "insert a A \<times> insert b B =
nipkow@28719
  1027
   insert (a,b) (A \<times> insert b B \<union> insert a A \<times> B)"
nipkow@28719
  1028
by blast
haftmann@26358
  1029
paulson@33271
  1030
lemma vimage_Times: "f -` (A \<times> B) = ((fst \<circ> f) -` A) \<inter> ((snd \<circ> f) -` B)"
wenzelm@47988
  1031
  apply auto
wenzelm@47988
  1032
  apply (case_tac "f x")
wenzelm@47988
  1033
  apply auto
wenzelm@47988
  1034
  done
paulson@33271
  1035
haftmann@35822
  1036
lemma swap_inj_on:
hoelzl@36622
  1037
  "inj_on (\<lambda>(i, j). (j, i)) A"
hoelzl@36622
  1038
  by (auto intro!: inj_onI)
haftmann@35822
  1039
haftmann@35822
  1040
lemma swap_product:
haftmann@35822
  1041
  "(%(i, j). (j, i)) ` (A \<times> B) = B \<times> A"
haftmann@35822
  1042
  by (simp add: split_def image_def) blast
haftmann@35822
  1043
hoelzl@36622
  1044
lemma image_split_eq_Sigma:
hoelzl@36622
  1045
  "(\<lambda>x. (f x, g x)) ` A = Sigma (f ` A) (\<lambda>x. g ` (f -` {x} \<inter> A))"
haftmann@46128
  1046
proof (safe intro!: imageI)
hoelzl@36622
  1047
  fix a b assume *: "a \<in> A" "b \<in> A" and eq: "f a = f b"
hoelzl@36622
  1048
  show "(f b, g a) \<in> (\<lambda>x. (f x, g x)) ` A"
hoelzl@36622
  1049
    using * eq[symmetric] by auto
hoelzl@36622
  1050
qed simp_all
haftmann@35822
  1051
haftmann@46128
  1052
definition product :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set" where
haftmann@46128
  1053
  [code_abbrev]: "product A B = A \<times> B"
haftmann@46128
  1054
haftmann@46128
  1055
hide_const (open) product
haftmann@46128
  1056
haftmann@46128
  1057
lemma member_product:
haftmann@46128
  1058
  "x \<in> Product_Type.product A B \<longleftrightarrow> x \<in> A \<times> B"
haftmann@46128
  1059
  by (simp add: product_def)
haftmann@46128
  1060
haftmann@40607
  1061
text {* The following @{const map_pair} lemmas are due to Joachim Breitner: *}
haftmann@40607
  1062
haftmann@40607
  1063
lemma map_pair_inj_on:
haftmann@40607
  1064
  assumes "inj_on f A" and "inj_on g B"
haftmann@40607
  1065
  shows "inj_on (map_pair f g) (A \<times> B)"
haftmann@40607
  1066
proof (rule inj_onI)
haftmann@40607
  1067
  fix x :: "'a \<times> 'c" and y :: "'a \<times> 'c"
haftmann@40607
  1068
  assume "x \<in> A \<times> B" hence "fst x \<in> A" and "snd x \<in> B" by auto
haftmann@40607
  1069
  assume "y \<in> A \<times> B" hence "fst y \<in> A" and "snd y \<in> B" by auto
haftmann@40607
  1070
  assume "map_pair f g x = map_pair f g y"
haftmann@40607
  1071
  hence "fst (map_pair f g x) = fst (map_pair f g y)" by (auto)
haftmann@40607
  1072
  hence "f (fst x) = f (fst y)" by (cases x,cases y,auto)
haftmann@40607
  1073
  with `inj_on f A` and `fst x \<in> A` and `fst y \<in> A`
haftmann@40607
  1074
  have "fst x = fst y" by (auto dest:dest:inj_onD)
haftmann@40607
  1075
  moreover from `map_pair f g x = map_pair f g y`
haftmann@40607
  1076
  have "snd (map_pair f g x) = snd (map_pair f g y)" by (auto)
haftmann@40607
  1077
  hence "g (snd x) = g (snd y)" by (cases x,cases y,auto)
haftmann@40607
  1078
  with `inj_on g B` and `snd x \<in> B` and `snd y \<in> B`
haftmann@40607
  1079
  have "snd x = snd y" by (auto dest:dest:inj_onD)
haftmann@40607
  1080
  ultimately show "x = y" by(rule prod_eqI)
haftmann@40607
  1081
qed
haftmann@40607
  1082
haftmann@40607
  1083
lemma map_pair_surj:
hoelzl@40702
  1084
  fixes f :: "'a \<Rightarrow> 'b" and g :: "'c \<Rightarrow> 'd"
haftmann@40607
  1085
  assumes "surj f" and "surj g"
haftmann@40607
  1086
  shows "surj (map_pair f g)"
haftmann@40607
  1087
unfolding surj_def
haftmann@40607
  1088
proof
haftmann@40607
  1089
  fix y :: "'b \<times> 'd"
haftmann@40607
  1090
  from `surj f` obtain a where "fst y = f a" by (auto elim:surjE)
haftmann@40607
  1091
  moreover
haftmann@40607
  1092
  from `surj g` obtain b where "snd y = g b" by (auto elim:surjE)
haftmann@40607
  1093
  ultimately have "(fst y, snd y) = map_pair f g (a,b)" by auto
haftmann@40607
  1094
  thus "\<exists>x. y = map_pair f g x" by auto
haftmann@40607
  1095
qed
haftmann@40607
  1096
haftmann@40607
  1097
lemma map_pair_surj_on:
haftmann@40607
  1098
  assumes "f ` A = A'" and "g ` B = B'"
haftmann@40607
  1099
  shows "map_pair f g ` (A \<times> B) = A' \<times> B'"
haftmann@40607
  1100
unfolding image_def
haftmann@40607
  1101
proof(rule set_eqI,rule iffI)
haftmann@40607
  1102
  fix x :: "'a \<times> 'c"
haftmann@40607
  1103
  assume "x \<in> {y\<Colon>'a \<times> 'c. \<exists>x\<Colon>'b \<times> 'd\<in>A \<times> B. y = map_pair f g x}"
haftmann@40607
  1104
  then obtain y where "y \<in> A \<times> B" and "x = map_pair f g y" by blast
haftmann@40607
  1105
  from `image f A = A'` and `y \<in> A \<times> B` have "f (fst y) \<in> A'" by auto
haftmann@40607
  1106
  moreover from `image g B = B'` and `y \<in> A \<times> B` have "g (snd y) \<in> B'" by auto
haftmann@40607
  1107
  ultimately have "(f (fst y), g (snd y)) \<in> (A' \<times> B')" by auto
haftmann@40607
  1108
  with `x = map_pair f g y` show "x \<in> A' \<times> B'" by (cases y, auto)
haftmann@40607
  1109
next
haftmann@40607
  1110
  fix x :: "'a \<times> 'c"
haftmann@40607
  1111
  assume "x \<in> A' \<times> B'" hence "fst x \<in> A'" and "snd x \<in> B'" by auto
haftmann@40607
  1112
  from `image f A = A'` and `fst x \<in> A'` have "fst x \<in> image f A" by auto
haftmann@40607
  1113
  then obtain a where "a \<in> A" and "fst x = f a" by (rule imageE)
haftmann@40607
  1114
  moreover from `image g B = B'` and `snd x \<in> B'`
haftmann@40607
  1115
  obtain b where "b \<in> B" and "snd x = g b" by auto
haftmann@40607
  1116
  ultimately have "(fst x, snd x) = map_pair f g (a,b)" by auto
haftmann@40607
  1117
  moreover from `a \<in> A` and  `b \<in> B` have "(a , b) \<in> A \<times> B" by auto
haftmann@40607
  1118
  ultimately have "\<exists>y \<in> A \<times> B. x = map_pair f g y" by auto
haftmann@40607
  1119
  thus "x \<in> {x. \<exists>y \<in> A \<times> B. x = map_pair f g y}" by auto
haftmann@40607
  1120
qed
haftmann@40607
  1121
haftmann@21908
  1122
haftmann@37166
  1123
subsection {* Inductively defined sets *}
berghofe@15394
  1124
haftmann@31723
  1125
use "Tools/inductive_set.ML"
haftmann@31723
  1126
setup Inductive_Set.setup
haftmann@24699
  1127
haftmann@37166
  1128
haftmann@37166
  1129
subsection {* Legacy theorem bindings and duplicates *}
haftmann@37166
  1130
haftmann@37166
  1131
lemma PairE:
haftmann@37166
  1132
  obtains x y where "p = (x, y)"
haftmann@37166
  1133
  by (fact prod.exhaust)
haftmann@37166
  1134
haftmann@37166
  1135
lemma Pair_inject:
haftmann@37166
  1136
  assumes "(a, b) = (a', b')"
haftmann@37166
  1137
    and "a = a' ==> b = b' ==> R"
haftmann@37166
  1138
  shows R
haftmann@37166
  1139
  using assms by simp
haftmann@37166
  1140
haftmann@37166
  1141
lemmas Pair_eq = prod.inject
haftmann@37166
  1142
haftmann@37166
  1143
lemmas split = split_conv  -- {* for backwards compatibility *}
haftmann@37166
  1144
huffman@44066
  1145
lemmas Pair_fst_snd_eq = prod_eq_iff
huffman@44066
  1146
huffman@45204
  1147
hide_const (open) prod
huffman@45204
  1148
nipkow@10213
  1149
end