src/HOL/Product_Type.thy
author wenzelm
Tue May 02 20:42:30 2006 +0200 (2006-05-02)
changeset 19535 e4fdeb32eadf
parent 19179 61ef97e3f531
child 19656 09be06943252
permissions -rw-r--r--
replaced syntax/translations by abbreviation;
tuned proofs;
tuned;
nipkow@10213
     1
(*  Title:      HOL/Product_Type.thy
nipkow@10213
     2
    ID:         $Id$
nipkow@10213
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
nipkow@10213
     4
    Copyright   1992  University of Cambridge
wenzelm@11777
     5
*)
nipkow@10213
     6
wenzelm@11838
     7
header {* Cartesian products *}
nipkow@10213
     8
nipkow@15131
     9
theory Product_Type
nipkow@15140
    10
imports Fun
haftmann@16417
    11
uses ("Tools/split_rule.ML")
nipkow@15131
    12
begin
wenzelm@11838
    13
wenzelm@11838
    14
subsection {* Unit *}
wenzelm@11838
    15
wenzelm@11838
    16
typedef unit = "{True}"
wenzelm@11838
    17
proof
wenzelm@11838
    18
  show "True : ?unit" by blast
wenzelm@11838
    19
qed
wenzelm@11838
    20
wenzelm@11838
    21
constdefs
wenzelm@11838
    22
  Unity :: unit    ("'(')")
wenzelm@11838
    23
  "() == Abs_unit True"
wenzelm@11838
    24
wenzelm@11838
    25
lemma unit_eq: "u = ()"
wenzelm@11838
    26
  by (induct u) (simp add: unit_def Unity_def)
wenzelm@11838
    27
wenzelm@11838
    28
text {*
wenzelm@11838
    29
  Simplification procedure for @{thm [source] unit_eq}.  Cannot use
wenzelm@11838
    30
  this rule directly --- it loops!
wenzelm@11838
    31
*}
wenzelm@11838
    32
wenzelm@11838
    33
ML_setup {*
wenzelm@13462
    34
  val unit_eq_proc =
wenzelm@13462
    35
    let val unit_meta_eq = mk_meta_eq (thm "unit_eq") in
wenzelm@13462
    36
      Simplifier.simproc (Theory.sign_of (the_context ())) "unit_eq" ["x::unit"]
skalberg@15531
    37
      (fn _ => fn _ => fn t => if HOLogic.is_unit t then NONE else SOME unit_meta_eq)
wenzelm@13462
    38
    end;
wenzelm@11838
    39
wenzelm@11838
    40
  Addsimprocs [unit_eq_proc];
wenzelm@11838
    41
*}
wenzelm@11838
    42
wenzelm@11838
    43
lemma unit_all_eq1: "(!!x::unit. PROP P x) == PROP P ()"
wenzelm@11838
    44
  by simp
wenzelm@11838
    45
wenzelm@11838
    46
lemma unit_all_eq2: "(!!x::unit. PROP P) == PROP P"
wenzelm@11838
    47
  by (rule triv_forall_equality)
wenzelm@11838
    48
wenzelm@11838
    49
lemma unit_induct [induct type: unit]: "P () ==> P x"
wenzelm@11838
    50
  by simp
wenzelm@11838
    51
wenzelm@11838
    52
text {*
wenzelm@11838
    53
  This rewrite counters the effect of @{text unit_eq_proc} on @{term
wenzelm@11838
    54
  [source] "%u::unit. f u"}, replacing it by @{term [source]
wenzelm@11838
    55
  f} rather than by @{term [source] "%u. f ()"}.
wenzelm@11838
    56
*}
wenzelm@11838
    57
wenzelm@11838
    58
lemma unit_abs_eta_conv [simp]: "(%u::unit. f ()) = f"
wenzelm@11838
    59
  by (rule ext) simp
nipkow@10213
    60
nipkow@10213
    61
wenzelm@11838
    62
subsection {* Pairs *}
nipkow@10213
    63
wenzelm@11777
    64
subsubsection {* Type definition *}
nipkow@10213
    65
nipkow@10213
    66
constdefs
oheimb@11025
    67
  Pair_Rep :: "['a, 'b] => ['a, 'b] => bool"
wenzelm@11032
    68
  "Pair_Rep == (%a b. %x y. x=a & y=b)"
nipkow@10213
    69
nipkow@10213
    70
global
nipkow@10213
    71
nipkow@10213
    72
typedef (Prod)
wenzelm@11838
    73
  ('a, 'b) "*"    (infixr 20)
wenzelm@11032
    74
    = "{f. EX a b. f = Pair_Rep (a::'a) (b::'b)}"
oheimb@11025
    75
proof
oheimb@11025
    76
  fix a b show "Pair_Rep a b : ?Prod"
oheimb@11025
    77
    by blast
oheimb@11025
    78
qed
nipkow@10213
    79
wenzelm@12114
    80
syntax (xsymbols)
schirmer@15422
    81
  "*"      :: "[type, type] => type"         ("(_ \<times>/ _)" [21, 20] 20)
nipkow@10213
    82
syntax (HTML output)
schirmer@15422
    83
  "*"      :: "[type, type] => type"         ("(_ \<times>/ _)" [21, 20] 20)
nipkow@10213
    84
wenzelm@11777
    85
local
nipkow@10213
    86
wenzelm@11777
    87
wenzelm@19535
    88
subsubsection {* Definitions *}
wenzelm@11777
    89
wenzelm@11777
    90
global
nipkow@10213
    91
nipkow@10213
    92
consts
oheimb@11025
    93
  fst      :: "'a * 'b => 'a"
oheimb@11025
    94
  snd      :: "'a * 'b => 'b"
oheimb@11025
    95
  split    :: "[['a, 'b] => 'c, 'a * 'b] => 'c"
skalberg@14189
    96
  curry    :: "['a * 'b => 'c, 'a, 'b] => 'c"
oheimb@11025
    97
  prod_fun :: "['a => 'b, 'c => 'd, 'a * 'c] => 'b * 'd"
oheimb@11025
    98
  Pair     :: "['a, 'b] => 'a * 'b"
oheimb@11025
    99
  Sigma    :: "['a set, 'a => 'b set] => ('a * 'b) set"
nipkow@10213
   100
wenzelm@11777
   101
local
nipkow@10213
   102
wenzelm@19535
   103
defs
wenzelm@19535
   104
  Pair_def:     "Pair a b == Abs_Prod (Pair_Rep a b)"
wenzelm@19535
   105
  fst_def:      "fst p == THE a. EX b. p = Pair a b"
wenzelm@19535
   106
  snd_def:      "snd p == THE b. EX a. p = Pair a b"
wenzelm@19535
   107
  split_def:    "split == (%c p. c (fst p) (snd p))"
wenzelm@19535
   108
  curry_def:    "curry == (%c x y. c (Pair x y))"
wenzelm@19535
   109
  prod_fun_def: "prod_fun f g == split (%x y. Pair (f x) (g y))"
wenzelm@19535
   110
  Sigma_def:    "Sigma A B == UN x:A. UN y:B x. {Pair x y}"
wenzelm@19535
   111
wenzelm@19535
   112
abbreviation
wenzelm@19535
   113
  Times :: "['a set, 'b set] => ('a * 'b) set"  (infixr "<*>" 80)
wenzelm@19535
   114
  "A <*> B == Sigma A (%_. B)"
wenzelm@19535
   115
wenzelm@19535
   116
abbreviation (xsymbols)
wenzelm@19535
   117
  Times1  (infixr "\<times>" 80)
wenzelm@19535
   118
  "Times1 == Times"
wenzelm@19535
   119
wenzelm@19535
   120
abbreviation (HTML output)
wenzelm@19535
   121
  Times2  (infixr "\<times>" 80)
wenzelm@19535
   122
  "Times2 == Times"
wenzelm@19535
   123
wenzelm@19535
   124
wenzelm@19535
   125
subsubsection {* Concrete syntax *}
wenzelm@19535
   126
wenzelm@11777
   127
text {*
wenzelm@11777
   128
  Patterns -- extends pre-defined type @{typ pttrn} used in
wenzelm@11777
   129
  abstractions.
wenzelm@11777
   130
*}
nipkow@10213
   131
nipkow@10213
   132
nonterminals
nipkow@10213
   133
  tuple_args patterns
nipkow@10213
   134
nipkow@10213
   135
syntax
nipkow@10213
   136
  "_tuple"      :: "'a => tuple_args => 'a * 'b"        ("(1'(_,/ _'))")
nipkow@10213
   137
  "_tuple_arg"  :: "'a => tuple_args"                   ("_")
nipkow@10213
   138
  "_tuple_args" :: "'a => tuple_args => tuple_args"     ("_,/ _")
oheimb@11025
   139
  "_pattern"    :: "[pttrn, patterns] => pttrn"         ("'(_,/ _')")
oheimb@11025
   140
  ""            :: "pttrn => patterns"                  ("_")
oheimb@11025
   141
  "_patterns"   :: "[pttrn, patterns] => patterns"      ("_,/ _")
oheimb@11025
   142
  "@Sigma" ::"[pttrn, 'a set, 'b set] => ('a * 'b) set" ("(3SIGMA _:_./ _)" 10)
nipkow@10213
   143
nipkow@10213
   144
translations
nipkow@10213
   145
  "(x, y)"       == "Pair x y"
nipkow@10213
   146
  "_tuple x (_tuple_args y z)" == "_tuple x (_tuple_arg (_tuple y z))"
nipkow@10213
   147
  "%(x,y,zs).b"  == "split(%x (y,zs).b)"
nipkow@10213
   148
  "%(x,y).b"     == "split(%x y. b)"
nipkow@10213
   149
  "_abs (Pair x y) t" => "%(x,y).t"
nipkow@10213
   150
  (* The last rule accommodates tuples in `case C ... (x,y) ... => ...'
nipkow@10213
   151
     The (x,y) is parsed as `Pair x y' because it is logic, not pttrn *)
wenzelm@19535
   152
  "SIGMA x:A. B" == "Sigma A (%x. B)"
nipkow@10213
   153
schirmer@14359
   154
(* reconstructs pattern from (nested) splits, avoiding eta-contraction of body*)
schirmer@14359
   155
(* works best with enclosing "let", if "let" does not avoid eta-contraction   *)
schirmer@14359
   156
print_translation {*
schirmer@14359
   157
let fun split_tr' [Abs (x,T,t as (Abs abs))] =
schirmer@14359
   158
      (* split (%x y. t) => %(x,y) t *)
schirmer@14359
   159
      let val (y,t') = atomic_abs_tr' abs;
schirmer@14359
   160
          val (x',t'') = atomic_abs_tr' (x,T,t');
schirmer@14359
   161
    
schirmer@14359
   162
      in Syntax.const "_abs" $ (Syntax.const "_pattern" $x'$y) $ t'' end
schirmer@14359
   163
    | split_tr' [Abs (x,T,(s as Const ("split",_)$t))] =
schirmer@14359
   164
       (* split (%x. (split (%y z. t))) => %(x,y,z). t *)
schirmer@14359
   165
       let val (Const ("_abs",_)$(Const ("_pattern",_)$y$z)$t') = split_tr' [t];
schirmer@14359
   166
           val (x',t'') = atomic_abs_tr' (x,T,t');
schirmer@14359
   167
       in Syntax.const "_abs"$ 
schirmer@14359
   168
           (Syntax.const "_pattern"$x'$(Syntax.const "_patterns"$y$z))$t'' end
schirmer@14359
   169
    | split_tr' [Const ("split",_)$t] =
schirmer@14359
   170
       (* split (split (%x y z. t)) => %((x,y),z). t *)   
schirmer@14359
   171
       split_tr' [(split_tr' [t])] (* inner split_tr' creates next pattern *)
schirmer@14359
   172
    | split_tr' [Const ("_abs",_)$x_y$(Abs abs)] =
schirmer@14359
   173
       (* split (%pttrn z. t) => %(pttrn,z). t *)
schirmer@14359
   174
       let val (z,t) = atomic_abs_tr' abs;
schirmer@14359
   175
       in Syntax.const "_abs" $ (Syntax.const "_pattern" $x_y$z) $ t end
schirmer@14359
   176
    | split_tr' _ =  raise Match;
schirmer@14359
   177
in [("split", split_tr')]
schirmer@14359
   178
end
schirmer@14359
   179
*}
schirmer@14359
   180
schirmer@15422
   181
(* print "split f" as "\<lambda>(x,y). f x y" and "split (\<lambda>x. f x)" as "\<lambda>(x,y). f x y" *) 
schirmer@15422
   182
typed_print_translation {*
schirmer@15422
   183
let
schirmer@15422
   184
  fun split_guess_names_tr' _ T [Abs (x,_,Abs _)] = raise Match
schirmer@15422
   185
    | split_guess_names_tr' _ T  [Abs (x,xT,t)] =
schirmer@15422
   186
        (case (head_of t) of
schirmer@15422
   187
           Const ("split",_) => raise Match
schirmer@15422
   188
         | _ => let 
schirmer@15422
   189
                  val (_::yT::_) = binder_types (domain_type T) handle Bind => raise Match;
schirmer@15422
   190
                  val (y,t') = atomic_abs_tr' ("y",yT,(incr_boundvars 1 t)$Bound 0); 
schirmer@15422
   191
                  val (x',t'') = atomic_abs_tr' (x,xT,t');
schirmer@15422
   192
                in Syntax.const "_abs" $ (Syntax.const "_pattern" $x'$y) $ t'' end)
schirmer@15422
   193
    | split_guess_names_tr' _ T [t] =
schirmer@15422
   194
       (case (head_of t) of
schirmer@15422
   195
           Const ("split",_) => raise Match 
schirmer@15422
   196
         | _ => let 
schirmer@15422
   197
                  val (xT::yT::_) = binder_types (domain_type T) handle Bind => raise Match;
schirmer@15422
   198
                  val (y,t') = 
schirmer@15422
   199
                        atomic_abs_tr' ("y",yT,(incr_boundvars 2 t)$Bound 1$Bound 0); 
schirmer@15422
   200
                  val (x',t'') = atomic_abs_tr' ("x",xT,t');
schirmer@15422
   201
                in Syntax.const "_abs" $ (Syntax.const "_pattern" $x'$y) $ t'' end)
schirmer@15422
   202
    | split_guess_names_tr' _ _ _ = raise Match;
schirmer@15422
   203
in [("split", split_guess_names_tr')]
schirmer@15422
   204
end 
schirmer@15422
   205
*}
schirmer@15422
   206
nipkow@10213
   207
wenzelm@11966
   208
subsubsection {* Lemmas and proof tool setup *}
wenzelm@11838
   209
wenzelm@11838
   210
lemma ProdI: "Pair_Rep a b : Prod"
wenzelm@19535
   211
  unfolding Prod_def by blast
wenzelm@11838
   212
wenzelm@11838
   213
lemma Pair_Rep_inject: "Pair_Rep a b = Pair_Rep a' b' ==> a = a' & b = b'"
wenzelm@11838
   214
  apply (unfold Pair_Rep_def)
paulson@14208
   215
  apply (drule fun_cong [THEN fun_cong], blast)
wenzelm@11838
   216
  done
nipkow@10213
   217
wenzelm@11838
   218
lemma inj_on_Abs_Prod: "inj_on Abs_Prod Prod"
wenzelm@11838
   219
  apply (rule inj_on_inverseI)
wenzelm@11838
   220
  apply (erule Abs_Prod_inverse)
wenzelm@11838
   221
  done
wenzelm@11838
   222
wenzelm@11838
   223
lemma Pair_inject:
wenzelm@18372
   224
  assumes "(a, b) = (a', b')"
wenzelm@18372
   225
    and "a = a' ==> b = b' ==> R"
wenzelm@18372
   226
  shows R
wenzelm@18372
   227
  apply (insert prems [unfolded Pair_def])
wenzelm@18372
   228
  apply (rule inj_on_Abs_Prod [THEN inj_onD, THEN Pair_Rep_inject, THEN conjE])
wenzelm@18372
   229
  apply (assumption | rule ProdI)+
wenzelm@18372
   230
  done
nipkow@10213
   231
wenzelm@11838
   232
lemma Pair_eq [iff]: "((a, b) = (a', b')) = (a = a' & b = b')"
wenzelm@11838
   233
  by (blast elim!: Pair_inject)
wenzelm@11838
   234
wenzelm@11838
   235
lemma fst_conv [simp]: "fst (a, b) = a"
wenzelm@19535
   236
  unfolding fst_def by blast
wenzelm@11838
   237
wenzelm@11838
   238
lemma snd_conv [simp]: "snd (a, b) = b"
wenzelm@19535
   239
  unfolding snd_def by blast
oheimb@11025
   240
wenzelm@11838
   241
lemma fst_eqD: "fst (x, y) = a ==> x = a"
wenzelm@11838
   242
  by simp
wenzelm@11838
   243
wenzelm@11838
   244
lemma snd_eqD: "snd (x, y) = a ==> y = a"
wenzelm@11838
   245
  by simp
wenzelm@11838
   246
wenzelm@11838
   247
lemma PairE_lemma: "EX x y. p = (x, y)"
wenzelm@11838
   248
  apply (unfold Pair_def)
wenzelm@11838
   249
  apply (rule Rep_Prod [unfolded Prod_def, THEN CollectE])
wenzelm@11838
   250
  apply (erule exE, erule exE, rule exI, rule exI)
wenzelm@11838
   251
  apply (rule Rep_Prod_inverse [symmetric, THEN trans])
wenzelm@11838
   252
  apply (erule arg_cong)
wenzelm@11838
   253
  done
wenzelm@11032
   254
wenzelm@11838
   255
lemma PairE [cases type: *]: "(!!x y. p = (x, y) ==> Q) ==> Q"
wenzelm@19535
   256
  using PairE_lemma [of p] by blast
wenzelm@11838
   257
wenzelm@16121
   258
ML {*
wenzelm@11838
   259
  local val PairE = thm "PairE" in
wenzelm@11838
   260
    fun pair_tac s =
wenzelm@11838
   261
      EVERY' [res_inst_tac [("p", s)] PairE, hyp_subst_tac, K prune_params_tac];
wenzelm@11838
   262
  end;
wenzelm@11838
   263
*}
wenzelm@11032
   264
wenzelm@11838
   265
lemma surjective_pairing: "p = (fst p, snd p)"
wenzelm@11838
   266
  -- {* Do not add as rewrite rule: invalidates some proofs in IMP *}
wenzelm@11838
   267
  by (cases p) simp
wenzelm@11838
   268
paulson@17085
   269
lemmas pair_collapse = surjective_pairing [symmetric]
paulson@17085
   270
declare pair_collapse [simp]
oheimb@11025
   271
wenzelm@11838
   272
lemma surj_pair [simp]: "EX x y. z = (x, y)"
wenzelm@11838
   273
  apply (rule exI)
wenzelm@11838
   274
  apply (rule exI)
wenzelm@11838
   275
  apply (rule surjective_pairing)
wenzelm@11838
   276
  done
wenzelm@11838
   277
wenzelm@11838
   278
lemma split_paired_all: "(!!x. PROP P x) == (!!a b. PROP P (a, b))"
wenzelm@11820
   279
proof
wenzelm@11820
   280
  fix a b
wenzelm@11820
   281
  assume "!!x. PROP P x"
wenzelm@19535
   282
  then show "PROP P (a, b)" .
wenzelm@11820
   283
next
wenzelm@11820
   284
  fix x
wenzelm@11820
   285
  assume "!!a b. PROP P (a, b)"
wenzelm@19535
   286
  from `PROP P (fst x, snd x)` show "PROP P x" by simp
wenzelm@11820
   287
qed
wenzelm@11820
   288
wenzelm@11838
   289
lemmas split_tupled_all = split_paired_all unit_all_eq2
wenzelm@11838
   290
wenzelm@11838
   291
text {*
wenzelm@11838
   292
  The rule @{thm [source] split_paired_all} does not work with the
wenzelm@11838
   293
  Simplifier because it also affects premises in congrence rules,
wenzelm@11838
   294
  where this can lead to premises of the form @{text "!!a b. ... =
wenzelm@11838
   295
  ?P(a, b)"} which cannot be solved by reflexivity.
wenzelm@11838
   296
*}
wenzelm@11838
   297
wenzelm@16121
   298
ML_setup {*
wenzelm@11838
   299
  (* replace parameters of product type by individual component parameters *)
wenzelm@11838
   300
  val safe_full_simp_tac = generic_simp_tac true (true, false, false);
wenzelm@11838
   301
  local (* filtering with exists_paired_all is an essential optimization *)
wenzelm@16121
   302
    fun exists_paired_all (Const ("all", _) $ Abs (_, T, t)) =
wenzelm@11838
   303
          can HOLogic.dest_prodT T orelse exists_paired_all t
wenzelm@11838
   304
      | exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u
wenzelm@11838
   305
      | exists_paired_all (Abs (_, _, t)) = exists_paired_all t
wenzelm@11838
   306
      | exists_paired_all _ = false;
wenzelm@11838
   307
    val ss = HOL_basic_ss
wenzelm@16121
   308
      addsimps [thm "split_paired_all", thm "unit_all_eq2", thm "unit_abs_eta_conv"]
wenzelm@11838
   309
      addsimprocs [unit_eq_proc];
wenzelm@11838
   310
  in
wenzelm@11838
   311
    val split_all_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   312
      if exists_paired_all t then safe_full_simp_tac ss i else no_tac);
wenzelm@11838
   313
    val unsafe_split_all_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   314
      if exists_paired_all t then full_simp_tac ss i else no_tac);
wenzelm@11838
   315
    fun split_all th =
wenzelm@11838
   316
   if exists_paired_all (#prop (Thm.rep_thm th)) then full_simplify ss th else th;
wenzelm@11838
   317
  end;
wenzelm@11838
   318
wenzelm@17875
   319
change_claset (fn cs => cs addSbefore ("split_all_tac", split_all_tac));
wenzelm@16121
   320
*}
wenzelm@11838
   321
wenzelm@11838
   322
lemma split_paired_All [simp]: "(ALL x. P x) = (ALL a b. P (a, b))"
wenzelm@11838
   323
  -- {* @{text "[iff]"} is not a good idea because it makes @{text blast} loop *}
wenzelm@11838
   324
  by fast
wenzelm@11838
   325
skalberg@14189
   326
lemma curry_split [simp]: "curry (split f) = f"
skalberg@14189
   327
  by (simp add: curry_def split_def)
skalberg@14189
   328
skalberg@14189
   329
lemma split_curry [simp]: "split (curry f) = f"
skalberg@14189
   330
  by (simp add: curry_def split_def)
skalberg@14189
   331
skalberg@14189
   332
lemma curryI [intro!]: "f (a,b) ==> curry f a b"
skalberg@14189
   333
  by (simp add: curry_def)
skalberg@14189
   334
skalberg@14190
   335
lemma curryD [dest!]: "curry f a b ==> f (a,b)"
skalberg@14189
   336
  by (simp add: curry_def)
skalberg@14189
   337
skalberg@14190
   338
lemma curryE: "[| curry f a b ; f (a,b) ==> Q |] ==> Q"
skalberg@14189
   339
  by (simp add: curry_def)
skalberg@14189
   340
skalberg@14189
   341
lemma curry_conv [simp]: "curry f a b = f (a,b)"
skalberg@14189
   342
  by (simp add: curry_def)
skalberg@14189
   343
wenzelm@11838
   344
lemma prod_induct [induct type: *]: "!!x. (!!a b. P (a, b)) ==> P x"
wenzelm@11838
   345
  by fast
wenzelm@11838
   346
wenzelm@11838
   347
lemma split_paired_Ex [simp]: "(EX x. P x) = (EX a b. P (a, b))"
wenzelm@11838
   348
  by fast
wenzelm@11838
   349
wenzelm@11838
   350
lemma split_conv [simp]: "split c (a, b) = c a b"
wenzelm@11838
   351
  by (simp add: split_def)
wenzelm@11838
   352
wenzelm@11838
   353
lemmas split = split_conv  -- {* for backwards compatibility *}
wenzelm@11838
   354
wenzelm@11838
   355
lemmas splitI = split_conv [THEN iffD2, standard]
wenzelm@11838
   356
lemmas splitD = split_conv [THEN iffD1, standard]
wenzelm@11838
   357
wenzelm@11838
   358
lemma split_Pair_apply: "split (%x y. f (x, y)) = f"
wenzelm@11838
   359
  -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *}
wenzelm@11838
   360
  apply (rule ext)
paulson@14208
   361
  apply (tactic {* pair_tac "x" 1 *}, simp)
wenzelm@11838
   362
  done
wenzelm@11838
   363
wenzelm@11838
   364
lemma split_paired_The: "(THE x. P x) = (THE (a, b). P (a, b))"
wenzelm@11838
   365
  -- {* Can't be added to simpset: loops! *}
wenzelm@11838
   366
  by (simp add: split_Pair_apply)
wenzelm@11838
   367
wenzelm@11838
   368
lemma The_split: "The (split P) = (THE xy. P (fst xy) (snd xy))"
wenzelm@11838
   369
  by (simp add: split_def)
wenzelm@11838
   370
wenzelm@11838
   371
lemma Pair_fst_snd_eq: "!!s t. (s = t) = (fst s = fst t & snd s = snd t)"
paulson@14208
   372
by (simp only: split_tupled_all, simp)
wenzelm@11838
   373
wenzelm@11838
   374
lemma prod_eqI [intro?]: "fst p = fst q ==> snd p = snd q ==> p = q"
wenzelm@11838
   375
  by (simp add: Pair_fst_snd_eq)
wenzelm@11838
   376
wenzelm@11838
   377
lemma split_weak_cong: "p = q ==> split c p = split c q"
wenzelm@11838
   378
  -- {* Prevents simplification of @{term c}: much faster *}
wenzelm@11838
   379
  by (erule arg_cong)
wenzelm@11838
   380
wenzelm@11838
   381
lemma split_eta: "(%(x, y). f (x, y)) = f"
wenzelm@11838
   382
  apply (rule ext)
wenzelm@11838
   383
  apply (simp only: split_tupled_all)
wenzelm@11838
   384
  apply (rule split_conv)
wenzelm@11838
   385
  done
wenzelm@11838
   386
wenzelm@11838
   387
lemma cond_split_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g"
wenzelm@11838
   388
  by (simp add: split_eta)
wenzelm@11838
   389
wenzelm@11838
   390
text {*
wenzelm@11838
   391
  Simplification procedure for @{thm [source] cond_split_eta}.  Using
wenzelm@11838
   392
  @{thm [source] split_eta} as a rewrite rule is not general enough,
wenzelm@11838
   393
  and using @{thm [source] cond_split_eta} directly would render some
wenzelm@11838
   394
  existing proofs very inefficient; similarly for @{text
wenzelm@11838
   395
  split_beta}. *}
wenzelm@11838
   396
wenzelm@11838
   397
ML_setup {*
wenzelm@11838
   398
wenzelm@11838
   399
local
wenzelm@18328
   400
  val cond_split_eta_ss = HOL_basic_ss addsimps [thm "cond_split_eta"]
wenzelm@11838
   401
  fun  Pair_pat k 0 (Bound m) = (m = k)
wenzelm@11838
   402
  |    Pair_pat k i (Const ("Pair",  _) $ Bound m $ t) = i > 0 andalso
wenzelm@11838
   403
                        m = k+i andalso Pair_pat k (i-1) t
wenzelm@11838
   404
  |    Pair_pat _ _ _ = false;
wenzelm@11838
   405
  fun no_args k i (Abs (_, _, t)) = no_args (k+1) i t
wenzelm@11838
   406
  |   no_args k i (t $ u) = no_args k i t andalso no_args k i u
wenzelm@11838
   407
  |   no_args k i (Bound m) = m < k orelse m > k+i
wenzelm@11838
   408
  |   no_args _ _ _ = true;
skalberg@15531
   409
  fun split_pat tp i (Abs  (_,_,t)) = if tp 0 i t then SOME (i,t) else NONE
wenzelm@11838
   410
  |   split_pat tp i (Const ("split", _) $ Abs (_, _, t)) = split_pat tp (i+1) t
skalberg@15531
   411
  |   split_pat tp i _ = NONE;
wenzelm@17956
   412
  fun metaeq thy ss lhs rhs = mk_meta_eq (Goal.prove thy [] []
wenzelm@13480
   413
        (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs,rhs)))
wenzelm@18328
   414
        (K (simp_tac (Simplifier.inherit_context ss cond_split_eta_ss) 1)));
wenzelm@11838
   415
wenzelm@11838
   416
  fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k+1) i t
wenzelm@11838
   417
  |   beta_term_pat k i (t $ u) = Pair_pat k i (t $ u) orelse
wenzelm@11838
   418
                        (beta_term_pat k i t andalso beta_term_pat k i u)
wenzelm@11838
   419
  |   beta_term_pat k i t = no_args k i t;
wenzelm@11838
   420
  fun  eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg
wenzelm@11838
   421
  |    eta_term_pat _ _ _ = false;
wenzelm@11838
   422
  fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t)
wenzelm@11838
   423
  |   subst arg k i (t $ u) = if Pair_pat k i (t $ u) then incr_boundvars k arg
wenzelm@11838
   424
                              else (subst arg k i t $ subst arg k i u)
wenzelm@11838
   425
  |   subst arg k i t = t;
wenzelm@17002
   426
  fun beta_proc thy ss (s as Const ("split", _) $ Abs (_, _, t) $ arg) =
wenzelm@11838
   427
        (case split_pat beta_term_pat 1 t of
wenzelm@17002
   428
        SOME (i,f) => SOME (metaeq thy ss s (subst arg 0 i f))
skalberg@15531
   429
        | NONE => NONE)
skalberg@15531
   430
  |   beta_proc _ _ _ = NONE;
wenzelm@17002
   431
  fun eta_proc thy ss (s as Const ("split", _) $ Abs (_, _, t)) =
wenzelm@11838
   432
        (case split_pat eta_term_pat 1 t of
wenzelm@17002
   433
          SOME (_,ft) => SOME (metaeq thy ss s (let val (f $ arg) = ft in f end))
skalberg@15531
   434
        | NONE => NONE)
skalberg@15531
   435
  |   eta_proc _ _ _ = NONE;
wenzelm@11838
   436
in
wenzelm@13462
   437
  val split_beta_proc = Simplifier.simproc (Theory.sign_of (the_context ()))
wenzelm@13462
   438
    "split_beta" ["split f z"] beta_proc;
wenzelm@13462
   439
  val split_eta_proc = Simplifier.simproc (Theory.sign_of (the_context ()))
wenzelm@13462
   440
    "split_eta" ["split f"] eta_proc;
wenzelm@11838
   441
end;
wenzelm@11838
   442
wenzelm@11838
   443
Addsimprocs [split_beta_proc, split_eta_proc];
wenzelm@11838
   444
*}
wenzelm@11838
   445
wenzelm@11838
   446
lemma split_beta: "(%(x, y). P x y) z = P (fst z) (snd z)"
wenzelm@11838
   447
  by (subst surjective_pairing, rule split_conv)
wenzelm@11838
   448
wenzelm@11838
   449
lemma split_split: "R (split c p) = (ALL x y. p = (x, y) --> R (c x y))"
wenzelm@11838
   450
  -- {* For use with @{text split} and the Simplifier. *}
paulson@15481
   451
  by (insert surj_pair [of p], clarify, simp)
wenzelm@11838
   452
wenzelm@11838
   453
text {*
wenzelm@11838
   454
  @{thm [source] split_split} could be declared as @{text "[split]"}
wenzelm@11838
   455
  done after the Splitter has been speeded up significantly;
wenzelm@11838
   456
  precompute the constants involved and don't do anything unless the
wenzelm@11838
   457
  current goal contains one of those constants.
wenzelm@11838
   458
*}
wenzelm@11838
   459
wenzelm@11838
   460
lemma split_split_asm: "R (split c p) = (~(EX x y. p = (x, y) & (~R (c x y))))"
paulson@14208
   461
by (subst split_split, simp)
wenzelm@11838
   462
wenzelm@11838
   463
wenzelm@11838
   464
text {*
wenzelm@11838
   465
  \medskip @{term split} used as a logical connective or set former.
wenzelm@11838
   466
wenzelm@11838
   467
  \medskip These rules are for use with @{text blast}; could instead
wenzelm@11838
   468
  call @{text simp} using @{thm [source] split} as rewrite. *}
wenzelm@11838
   469
wenzelm@11838
   470
lemma splitI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> split c p"
wenzelm@11838
   471
  apply (simp only: split_tupled_all)
wenzelm@11838
   472
  apply (simp (no_asm_simp))
wenzelm@11838
   473
  done
wenzelm@11838
   474
wenzelm@11838
   475
lemma splitI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> split c p x"
wenzelm@11838
   476
  apply (simp only: split_tupled_all)
wenzelm@11838
   477
  apply (simp (no_asm_simp))
wenzelm@11838
   478
  done
wenzelm@11838
   479
wenzelm@11838
   480
lemma splitE: "split c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
wenzelm@11838
   481
  by (induct p) (auto simp add: split_def)
wenzelm@11838
   482
wenzelm@11838
   483
lemma splitE': "split c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
wenzelm@11838
   484
  by (induct p) (auto simp add: split_def)
wenzelm@11838
   485
wenzelm@11838
   486
lemma splitE2:
wenzelm@11838
   487
  "[| Q (split P z);  !!x y. [|z = (x, y); Q (P x y)|] ==> R |] ==> R"
wenzelm@11838
   488
proof -
wenzelm@11838
   489
  assume q: "Q (split P z)"
wenzelm@11838
   490
  assume r: "!!x y. [|z = (x, y); Q (P x y)|] ==> R"
wenzelm@11838
   491
  show R
wenzelm@11838
   492
    apply (rule r surjective_pairing)+
wenzelm@11838
   493
    apply (rule split_beta [THEN subst], rule q)
wenzelm@11838
   494
    done
wenzelm@11838
   495
qed
wenzelm@11838
   496
wenzelm@11838
   497
lemma splitD': "split R (a,b) c ==> R a b c"
wenzelm@11838
   498
  by simp
wenzelm@11838
   499
wenzelm@11838
   500
lemma mem_splitI: "z: c a b ==> z: split c (a, b)"
wenzelm@11838
   501
  by simp
wenzelm@11838
   502
wenzelm@11838
   503
lemma mem_splitI2: "!!p. [| !!a b. p = (a, b) ==> z: c a b |] ==> z: split c p"
paulson@14208
   504
by (simp only: split_tupled_all, simp)
wenzelm@11838
   505
wenzelm@18372
   506
lemma mem_splitE:
wenzelm@18372
   507
  assumes major: "z: split c p"
wenzelm@18372
   508
    and cases: "!!x y. [| p = (x,y); z: c x y |] ==> Q"
wenzelm@18372
   509
  shows Q
wenzelm@18372
   510
  by (rule major [unfolded split_def] cases surjective_pairing)+
wenzelm@11838
   511
wenzelm@11838
   512
declare mem_splitI2 [intro!] mem_splitI [intro!] splitI2' [intro!] splitI2 [intro!] splitI [intro!]
wenzelm@11838
   513
declare mem_splitE [elim!] splitE' [elim!] splitE [elim!]
wenzelm@11838
   514
wenzelm@16121
   515
ML_setup {*
wenzelm@11838
   516
local (* filtering with exists_p_split is an essential optimization *)
wenzelm@16121
   517
  fun exists_p_split (Const ("split",_) $ _ $ (Const ("Pair",_)$_$_)) = true
wenzelm@11838
   518
    | exists_p_split (t $ u) = exists_p_split t orelse exists_p_split u
wenzelm@11838
   519
    | exists_p_split (Abs (_, _, t)) = exists_p_split t
wenzelm@11838
   520
    | exists_p_split _ = false;
wenzelm@16121
   521
  val ss = HOL_basic_ss addsimps [thm "split_conv"];
wenzelm@11838
   522
in
wenzelm@11838
   523
val split_conv_tac = SUBGOAL (fn (t, i) =>
wenzelm@11838
   524
    if exists_p_split t then safe_full_simp_tac ss i else no_tac);
wenzelm@11838
   525
end;
wenzelm@11838
   526
(* This prevents applications of splitE for already splitted arguments leading
wenzelm@11838
   527
   to quite time-consuming computations (in particular for nested tuples) *)
wenzelm@17875
   528
change_claset (fn cs => cs addSbefore ("split_conv_tac", split_conv_tac));
wenzelm@16121
   529
*}
wenzelm@11838
   530
wenzelm@11838
   531
lemma split_eta_SetCompr [simp]: "(%u. EX x y. u = (x, y) & P (x, y)) = P"
wenzelm@18372
   532
  by (rule ext) fast
wenzelm@11838
   533
wenzelm@11838
   534
lemma split_eta_SetCompr2 [simp]: "(%u. EX x y. u = (x, y) & P x y) = split P"
wenzelm@18372
   535
  by (rule ext) fast
wenzelm@11838
   536
wenzelm@11838
   537
lemma split_part [simp]: "(%(a,b). P & Q a b) = (%ab. P & split Q ab)"
wenzelm@11838
   538
  -- {* Allows simplifications of nested splits in case of independent predicates. *}
wenzelm@18372
   539
  by (rule ext) blast
wenzelm@11838
   540
nipkow@14337
   541
(* Do NOT make this a simp rule as it
nipkow@14337
   542
   a) only helps in special situations
nipkow@14337
   543
   b) can lead to nontermination in the presence of split_def
nipkow@14337
   544
*)
nipkow@14337
   545
lemma split_comp_eq: 
oheimb@14101
   546
"(%u. f (g (fst u)) (snd u)) = (split (%x. f (g x)))"
wenzelm@18372
   547
  by (rule ext) auto
oheimb@14101
   548
wenzelm@11838
   549
lemma The_split_eq [simp]: "(THE (x',y'). x = x' & y = y') = (x, y)"
wenzelm@11838
   550
  by blast
wenzelm@11838
   551
wenzelm@11838
   552
(*
wenzelm@11838
   553
the following  would be slightly more general,
wenzelm@11838
   554
but cannot be used as rewrite rule:
wenzelm@11838
   555
### Cannot add premise as rewrite rule because it contains (type) unknowns:
wenzelm@11838
   556
### ?y = .x
wenzelm@11838
   557
Goal "[| P y; !!x. P x ==> x = y |] ==> (@(x',y). x = x' & P y) = (x,y)"
paulson@14208
   558
by (rtac some_equality 1)
paulson@14208
   559
by ( Simp_tac 1)
paulson@14208
   560
by (split_all_tac 1)
paulson@14208
   561
by (Asm_full_simp_tac 1)
wenzelm@11838
   562
qed "The_split_eq";
wenzelm@11838
   563
*)
wenzelm@11838
   564
wenzelm@11838
   565
lemma injective_fst_snd: "!!x y. [|fst x = fst y; snd x = snd y|] ==> x = y"
wenzelm@11838
   566
  by auto
wenzelm@11838
   567
wenzelm@11838
   568
wenzelm@11838
   569
text {*
wenzelm@11838
   570
  \bigskip @{term prod_fun} --- action of the product functor upon
wenzelm@11838
   571
  functions.
wenzelm@11838
   572
*}
wenzelm@11838
   573
wenzelm@11838
   574
lemma prod_fun [simp]: "prod_fun f g (a, b) = (f a, g b)"
wenzelm@11838
   575
  by (simp add: prod_fun_def)
wenzelm@11838
   576
wenzelm@11838
   577
lemma prod_fun_compose: "prod_fun (f1 o f2) (g1 o g2) = (prod_fun f1 g1 o prod_fun f2 g2)"
wenzelm@11838
   578
  apply (rule ext)
paulson@14208
   579
  apply (tactic {* pair_tac "x" 1 *}, simp)
wenzelm@11838
   580
  done
wenzelm@11838
   581
wenzelm@11838
   582
lemma prod_fun_ident [simp]: "prod_fun (%x. x) (%y. y) = (%z. z)"
wenzelm@11838
   583
  apply (rule ext)
paulson@14208
   584
  apply (tactic {* pair_tac "z" 1 *}, simp)
wenzelm@11838
   585
  done
wenzelm@11838
   586
wenzelm@11838
   587
lemma prod_fun_imageI [intro]: "(a, b) : r ==> (f a, g b) : prod_fun f g ` r"
wenzelm@11838
   588
  apply (rule image_eqI)
paulson@14208
   589
  apply (rule prod_fun [symmetric], assumption)
wenzelm@11838
   590
  done
wenzelm@11838
   591
wenzelm@11838
   592
lemma prod_fun_imageE [elim!]:
wenzelm@18372
   593
  assumes major: "c: (prod_fun f g)`r"
wenzelm@18372
   594
    and cases: "!!x y. [| c=(f(x),g(y));  (x,y):r |] ==> P"
wenzelm@18372
   595
  shows P
wenzelm@18372
   596
  apply (rule major [THEN imageE])
wenzelm@18372
   597
  apply (rule_tac p = x in PairE)
wenzelm@18372
   598
  apply (rule cases)
wenzelm@18372
   599
   apply (blast intro: prod_fun)
wenzelm@18372
   600
  apply blast
wenzelm@18372
   601
  done
wenzelm@11838
   602
wenzelm@11838
   603
oheimb@14101
   604
constdefs
oheimb@14101
   605
  upd_fst :: "('a => 'c) => 'a * 'b => 'c * 'b"
oheimb@14101
   606
 "upd_fst f == prod_fun f id"
oheimb@14101
   607
oheimb@14101
   608
  upd_snd :: "('b => 'c) => 'a * 'b => 'a * 'c"
oheimb@14101
   609
 "upd_snd f == prod_fun id f"
oheimb@14101
   610
oheimb@14101
   611
lemma upd_fst_conv [simp]: "upd_fst f (x,y) = (f x,y)" 
wenzelm@18372
   612
  by (simp add: upd_fst_def)
oheimb@14101
   613
oheimb@14101
   614
lemma upd_snd_conv [simp]: "upd_snd f (x,y) = (x,f y)" 
wenzelm@18372
   615
  by (simp add: upd_snd_def)
oheimb@14101
   616
wenzelm@11838
   617
text {*
wenzelm@11838
   618
  \bigskip Disjoint union of a family of sets -- Sigma.
wenzelm@11838
   619
*}
wenzelm@11838
   620
wenzelm@11838
   621
lemma SigmaI [intro!]: "[| a:A;  b:B(a) |] ==> (a,b) : Sigma A B"
wenzelm@11838
   622
  by (unfold Sigma_def) blast
wenzelm@11838
   623
paulson@14952
   624
lemma SigmaE [elim!]:
wenzelm@11838
   625
    "[| c: Sigma A B;
wenzelm@11838
   626
        !!x y.[| x:A;  y:B(x);  c=(x,y) |] ==> P
wenzelm@11838
   627
     |] ==> P"
wenzelm@11838
   628
  -- {* The general elimination rule. *}
wenzelm@11838
   629
  by (unfold Sigma_def) blast
wenzelm@11838
   630
wenzelm@11838
   631
text {*
schirmer@15422
   632
  Elimination of @{term "(a, b) : A \<times> B"} -- introduces no
wenzelm@11838
   633
  eigenvariables.
wenzelm@11838
   634
*}
wenzelm@11838
   635
wenzelm@11838
   636
lemma SigmaD1: "(a, b) : Sigma A B ==> a : A"
wenzelm@18372
   637
  by blast
wenzelm@11838
   638
wenzelm@11838
   639
lemma SigmaD2: "(a, b) : Sigma A B ==> b : B a"
wenzelm@18372
   640
  by blast
wenzelm@11838
   641
wenzelm@11838
   642
lemma SigmaE2:
wenzelm@11838
   643
    "[| (a, b) : Sigma A B;
wenzelm@11838
   644
        [| a:A;  b:B(a) |] ==> P
wenzelm@11838
   645
     |] ==> P"
paulson@14952
   646
  by blast
wenzelm@11838
   647
paulson@14952
   648
lemma Sigma_cong:
schirmer@15422
   649
     "\<lbrakk>A = B; !!x. x \<in> B \<Longrightarrow> C x = D x\<rbrakk>
schirmer@15422
   650
      \<Longrightarrow> (SIGMA x: A. C x) = (SIGMA x: B. D x)"
wenzelm@18372
   651
  by auto
wenzelm@11838
   652
wenzelm@11838
   653
lemma Sigma_mono: "[| A <= C; !!x. x:A ==> B x <= D x |] ==> Sigma A B <= Sigma C D"
wenzelm@11838
   654
  by blast
wenzelm@11838
   655
wenzelm@11838
   656
lemma Sigma_empty1 [simp]: "Sigma {} B = {}"
wenzelm@11838
   657
  by blast
wenzelm@11838
   658
wenzelm@11838
   659
lemma Sigma_empty2 [simp]: "A <*> {} = {}"
wenzelm@11838
   660
  by blast
wenzelm@11838
   661
wenzelm@11838
   662
lemma UNIV_Times_UNIV [simp]: "UNIV <*> UNIV = UNIV"
wenzelm@11838
   663
  by auto
wenzelm@11838
   664
wenzelm@11838
   665
lemma Compl_Times_UNIV1 [simp]: "- (UNIV <*> A) = UNIV <*> (-A)"
wenzelm@11838
   666
  by auto
wenzelm@11838
   667
wenzelm@11838
   668
lemma Compl_Times_UNIV2 [simp]: "- (A <*> UNIV) = (-A) <*> UNIV"
wenzelm@11838
   669
  by auto
wenzelm@11838
   670
wenzelm@11838
   671
lemma mem_Sigma_iff [iff]: "((a,b): Sigma A B) = (a:A & b:B(a))"
wenzelm@11838
   672
  by blast
wenzelm@11838
   673
wenzelm@11838
   674
lemma Times_subset_cancel2: "x:C ==> (A <*> C <= B <*> C) = (A <= B)"
wenzelm@11838
   675
  by blast
wenzelm@11838
   676
wenzelm@11838
   677
lemma Times_eq_cancel2: "x:C ==> (A <*> C = B <*> C) = (A = B)"
wenzelm@11838
   678
  by (blast elim: equalityE)
wenzelm@11838
   679
wenzelm@11838
   680
lemma SetCompr_Sigma_eq:
wenzelm@11838
   681
    "Collect (split (%x y. P x & Q x y)) = (SIGMA x:Collect P. Collect (Q x))"
wenzelm@11838
   682
  by blast
wenzelm@11838
   683
wenzelm@11838
   684
text {*
wenzelm@11838
   685
  \bigskip Complex rules for Sigma.
wenzelm@11838
   686
*}
wenzelm@11838
   687
wenzelm@11838
   688
lemma Collect_split [simp]: "{(a,b). P a & Q b} = Collect P <*> Collect Q"
wenzelm@11838
   689
  by blast
wenzelm@11838
   690
wenzelm@11838
   691
lemma UN_Times_distrib:
wenzelm@11838
   692
  "(UN (a,b):(A <*> B). E a <*> F b) = (UNION A E) <*> (UNION B F)"
wenzelm@11838
   693
  -- {* Suggested by Pierre Chartier *}
wenzelm@11838
   694
  by blast
wenzelm@11838
   695
wenzelm@11838
   696
lemma split_paired_Ball_Sigma [simp]:
wenzelm@11838
   697
    "(ALL z: Sigma A B. P z) = (ALL x:A. ALL y: B x. P(x,y))"
wenzelm@11838
   698
  by blast
wenzelm@11838
   699
wenzelm@11838
   700
lemma split_paired_Bex_Sigma [simp]:
wenzelm@11838
   701
    "(EX z: Sigma A B. P z) = (EX x:A. EX y: B x. P(x,y))"
wenzelm@11838
   702
  by blast
wenzelm@11838
   703
wenzelm@11838
   704
lemma Sigma_Un_distrib1: "(SIGMA i:I Un J. C(i)) = (SIGMA i:I. C(i)) Un (SIGMA j:J. C(j))"
wenzelm@11838
   705
  by blast
wenzelm@11838
   706
wenzelm@11838
   707
lemma Sigma_Un_distrib2: "(SIGMA i:I. A(i) Un B(i)) = (SIGMA i:I. A(i)) Un (SIGMA i:I. B(i))"
wenzelm@11838
   708
  by blast
wenzelm@11838
   709
wenzelm@11838
   710
lemma Sigma_Int_distrib1: "(SIGMA i:I Int J. C(i)) = (SIGMA i:I. C(i)) Int (SIGMA j:J. C(j))"
wenzelm@11838
   711
  by blast
wenzelm@11838
   712
wenzelm@11838
   713
lemma Sigma_Int_distrib2: "(SIGMA i:I. A(i) Int B(i)) = (SIGMA i:I. A(i)) Int (SIGMA i:I. B(i))"
wenzelm@11838
   714
  by blast
wenzelm@11838
   715
wenzelm@11838
   716
lemma Sigma_Diff_distrib1: "(SIGMA i:I - J. C(i)) = (SIGMA i:I. C(i)) - (SIGMA j:J. C(j))"
wenzelm@11838
   717
  by blast
wenzelm@11838
   718
wenzelm@11838
   719
lemma Sigma_Diff_distrib2: "(SIGMA i:I. A(i) - B(i)) = (SIGMA i:I. A(i)) - (SIGMA i:I. B(i))"
wenzelm@11838
   720
  by blast
wenzelm@11838
   721
wenzelm@11838
   722
lemma Sigma_Union: "Sigma (Union X) B = (UN A:X. Sigma A B)"
wenzelm@11838
   723
  by blast
wenzelm@11838
   724
wenzelm@11838
   725
text {*
wenzelm@11838
   726
  Non-dependent versions are needed to avoid the need for higher-order
wenzelm@11838
   727
  matching, especially when the rules are re-oriented.
wenzelm@11838
   728
*}
wenzelm@11838
   729
wenzelm@11838
   730
lemma Times_Un_distrib1: "(A Un B) <*> C = (A <*> C) Un (B <*> C)"
wenzelm@11838
   731
  by blast
wenzelm@11838
   732
wenzelm@11838
   733
lemma Times_Int_distrib1: "(A Int B) <*> C = (A <*> C) Int (B <*> C)"
wenzelm@11838
   734
  by blast
wenzelm@11838
   735
wenzelm@11838
   736
lemma Times_Diff_distrib1: "(A - B) <*> C = (A <*> C) - (B <*> C)"
wenzelm@11838
   737
  by blast
wenzelm@11838
   738
wenzelm@11838
   739
oheimb@11493
   740
lemma pair_imageI [intro]: "(a, b) : A ==> f a b : (%(a, b). f a b) ` A"
wenzelm@11777
   741
  apply (rule_tac x = "(a, b)" in image_eqI)
wenzelm@11777
   742
   apply auto
wenzelm@11777
   743
  done
wenzelm@11777
   744
oheimb@11493
   745
wenzelm@11838
   746
text {*
wenzelm@11838
   747
  Setup of internal @{text split_rule}.
wenzelm@11838
   748
*}
wenzelm@11838
   749
wenzelm@11032
   750
constdefs
wenzelm@11425
   751
  internal_split :: "('a => 'b => 'c) => 'a * 'b => 'c"
wenzelm@11032
   752
  "internal_split == split"
wenzelm@11032
   753
wenzelm@11032
   754
lemma internal_split_conv: "internal_split c (a, b) = c a b"
wenzelm@11032
   755
  by (simp only: internal_split_def split_conv)
wenzelm@11032
   756
wenzelm@11032
   757
hide const internal_split
wenzelm@11032
   758
oheimb@11025
   759
use "Tools/split_rule.ML"
wenzelm@11032
   760
setup SplitRule.setup
nipkow@10213
   761
berghofe@15394
   762
berghofe@15394
   763
subsection {* Code generator setup *}
berghofe@15394
   764
berghofe@15394
   765
types_code
berghofe@15394
   766
  "*"     ("(_ */ _)")
berghofe@16770
   767
attach (term_of) {*
berghofe@16770
   768
fun term_of_id_42 f T g U (x, y) = HOLogic.pair_const T U $ f x $ g y;
berghofe@16770
   769
*}
berghofe@16770
   770
attach (test) {*
berghofe@16770
   771
fun gen_id_42 aG bG i = (aG i, bG i);
berghofe@16770
   772
*}
berghofe@15394
   773
berghofe@18706
   774
consts_code
berghofe@18706
   775
  "Pair"    ("(_,/ _)")
berghofe@18706
   776
haftmann@18702
   777
code_alias
haftmann@19008
   778
  "*" "Product_Type.pair"
haftmann@18702
   779
  "Pair" "Product_Type.Pair"
haftmann@18702
   780
  "fst" "Product_Type.fst"
haftmann@18702
   781
  "snd" "Product_Type.snd"
haftmann@18702
   782
berghofe@15394
   783
ML {*
haftmann@18013
   784
haftmann@19039
   785
fun strip_abs_split 0 t = ([], t)
haftmann@19039
   786
  | strip_abs_split i (Abs (s, T, t)) =
haftmann@18013
   787
      let
haftmann@18013
   788
        val s' = Codegen.new_name t s;
haftmann@18013
   789
        val v = Free (s', T)
haftmann@19039
   790
      in apfst (cons v) (strip_abs_split (i-1) (subst_bound (v, t))) end
haftmann@19039
   791
  | strip_abs_split i (u as Const ("split", _) $ t) = (case strip_abs_split (i+1) t of
berghofe@15394
   792
        (v :: v' :: vs, u) => (HOLogic.mk_prod (v, v') :: vs, u)
berghofe@15394
   793
      | _ => ([], u))
haftmann@19039
   794
  | strip_abs_split i t = ([], t);
haftmann@18013
   795
berghofe@16634
   796
fun let_codegen thy defs gr dep thyname brack t = (case strip_comb t of
berghofe@16634
   797
    (t1 as Const ("Let", _), t2 :: t3 :: ts) =>
berghofe@15394
   798
    let
berghofe@15394
   799
      fun dest_let (l as Const ("Let", _) $ t $ u) =
haftmann@19039
   800
          (case strip_abs_split 1 u of
berghofe@15394
   801
             ([p], u') => apfst (cons (p, t)) (dest_let u')
berghofe@15394
   802
           | _ => ([], l))
berghofe@15394
   803
        | dest_let t = ([], t);
berghofe@15394
   804
      fun mk_code (gr, (l, r)) =
berghofe@15394
   805
        let
berghofe@16634
   806
          val (gr1, pl) = Codegen.invoke_codegen thy defs dep thyname false (gr, l);
berghofe@16634
   807
          val (gr2, pr) = Codegen.invoke_codegen thy defs dep thyname false (gr1, r);
berghofe@15394
   808
        in (gr2, (pl, pr)) end
berghofe@16634
   809
    in case dest_let (t1 $ t2 $ t3) of
skalberg@15531
   810
        ([], _) => NONE
berghofe@15394
   811
      | (ps, u) =>
berghofe@15394
   812
          let
berghofe@15394
   813
            val (gr1, qs) = foldl_map mk_code (gr, ps);
berghofe@16634
   814
            val (gr2, pu) = Codegen.invoke_codegen thy defs dep thyname false (gr1, u);
berghofe@16634
   815
            val (gr3, pargs) = foldl_map
berghofe@17021
   816
              (Codegen.invoke_codegen thy defs dep thyname true) (gr2, ts)
berghofe@15394
   817
          in
berghofe@16634
   818
            SOME (gr3, Codegen.mk_app brack
berghofe@16634
   819
              (Pretty.blk (0, [Pretty.str "let ", Pretty.blk (0, List.concat
berghofe@16634
   820
                  (separate [Pretty.str ";", Pretty.brk 1] (map (fn (pl, pr) =>
berghofe@16634
   821
                    [Pretty.block [Pretty.str "val ", pl, Pretty.str " =",
berghofe@16634
   822
                       Pretty.brk 1, pr]]) qs))),
berghofe@16634
   823
                Pretty.brk 1, Pretty.str "in ", pu,
berghofe@16634
   824
                Pretty.brk 1, Pretty.str "end"])) pargs)
berghofe@15394
   825
          end
berghofe@15394
   826
    end
berghofe@16634
   827
  | _ => NONE);
berghofe@15394
   828
berghofe@16634
   829
fun split_codegen thy defs gr dep thyname brack t = (case strip_comb t of
berghofe@16634
   830
    (t1 as Const ("split", _), t2 :: ts) =>
haftmann@19039
   831
      (case strip_abs_split 1 (t1 $ t2) of
berghofe@16634
   832
         ([p], u) =>
berghofe@16634
   833
           let
berghofe@16634
   834
             val (gr1, q) = Codegen.invoke_codegen thy defs dep thyname false (gr, p);
berghofe@16634
   835
             val (gr2, pu) = Codegen.invoke_codegen thy defs dep thyname false (gr1, u);
berghofe@16634
   836
             val (gr3, pargs) = foldl_map
berghofe@17021
   837
               (Codegen.invoke_codegen thy defs dep thyname true) (gr2, ts)
berghofe@16634
   838
           in
berghofe@16634
   839
             SOME (gr2, Codegen.mk_app brack
berghofe@16634
   840
               (Pretty.block [Pretty.str "(fn ", q, Pretty.str " =>",
berghofe@16634
   841
                 Pretty.brk 1, pu, Pretty.str ")"]) pargs)
berghofe@16634
   842
           end
berghofe@16634
   843
       | _ => NONE)
berghofe@16634
   844
  | _ => NONE);
berghofe@15394
   845
wenzelm@18708
   846
val prod_codegen_setup =
wenzelm@18708
   847
  Codegen.add_codegen "let_codegen" let_codegen #>
wenzelm@18708
   848
  Codegen.add_codegen "split_codegen" split_codegen #>
haftmann@18518
   849
  CodegenPackage.add_appconst
haftmann@19039
   850
    ("Let", ((2, 2), CodegenPackage.appgen_let strip_abs_split)) #>
haftmann@18518
   851
  CodegenPackage.add_appconst
haftmann@19039
   852
    ("split", ((1, 1), CodegenPackage.appgen_split strip_abs_split));
berghofe@15394
   853
berghofe@15394
   854
*}
berghofe@15394
   855
berghofe@15394
   856
setup prod_codegen_setup
berghofe@15394
   857
paulson@15404
   858
ML
paulson@15404
   859
{*
paulson@15404
   860
val Collect_split = thm "Collect_split";
paulson@15404
   861
val Compl_Times_UNIV1 = thm "Compl_Times_UNIV1";
paulson@15404
   862
val Compl_Times_UNIV2 = thm "Compl_Times_UNIV2";
paulson@15404
   863
val PairE = thm "PairE";
paulson@15404
   864
val PairE_lemma = thm "PairE_lemma";
paulson@15404
   865
val Pair_Rep_inject = thm "Pair_Rep_inject";
paulson@15404
   866
val Pair_def = thm "Pair_def";
paulson@15404
   867
val Pair_eq = thm "Pair_eq";
paulson@15404
   868
val Pair_fst_snd_eq = thm "Pair_fst_snd_eq";
paulson@15404
   869
val Pair_inject = thm "Pair_inject";
paulson@15404
   870
val ProdI = thm "ProdI";
paulson@15404
   871
val SetCompr_Sigma_eq = thm "SetCompr_Sigma_eq";
paulson@15404
   872
val SigmaD1 = thm "SigmaD1";
paulson@15404
   873
val SigmaD2 = thm "SigmaD2";
paulson@15404
   874
val SigmaE = thm "SigmaE";
paulson@15404
   875
val SigmaE2 = thm "SigmaE2";
paulson@15404
   876
val SigmaI = thm "SigmaI";
paulson@15404
   877
val Sigma_Diff_distrib1 = thm "Sigma_Diff_distrib1";
paulson@15404
   878
val Sigma_Diff_distrib2 = thm "Sigma_Diff_distrib2";
paulson@15404
   879
val Sigma_Int_distrib1 = thm "Sigma_Int_distrib1";
paulson@15404
   880
val Sigma_Int_distrib2 = thm "Sigma_Int_distrib2";
paulson@15404
   881
val Sigma_Un_distrib1 = thm "Sigma_Un_distrib1";
paulson@15404
   882
val Sigma_Un_distrib2 = thm "Sigma_Un_distrib2";
paulson@15404
   883
val Sigma_Union = thm "Sigma_Union";
paulson@15404
   884
val Sigma_def = thm "Sigma_def";
paulson@15404
   885
val Sigma_empty1 = thm "Sigma_empty1";
paulson@15404
   886
val Sigma_empty2 = thm "Sigma_empty2";
paulson@15404
   887
val Sigma_mono = thm "Sigma_mono";
paulson@15404
   888
val The_split = thm "The_split";
paulson@15404
   889
val The_split_eq = thm "The_split_eq";
paulson@15404
   890
val The_split_eq = thm "The_split_eq";
paulson@15404
   891
val Times_Diff_distrib1 = thm "Times_Diff_distrib1";
paulson@15404
   892
val Times_Int_distrib1 = thm "Times_Int_distrib1";
paulson@15404
   893
val Times_Un_distrib1 = thm "Times_Un_distrib1";
paulson@15404
   894
val Times_eq_cancel2 = thm "Times_eq_cancel2";
paulson@15404
   895
val Times_subset_cancel2 = thm "Times_subset_cancel2";
paulson@15404
   896
val UNIV_Times_UNIV = thm "UNIV_Times_UNIV";
paulson@15404
   897
val UN_Times_distrib = thm "UN_Times_distrib";
paulson@15404
   898
val Unity_def = thm "Unity_def";
paulson@15404
   899
val cond_split_eta = thm "cond_split_eta";
paulson@15404
   900
val fst_conv = thm "fst_conv";
paulson@15404
   901
val fst_def = thm "fst_def";
paulson@15404
   902
val fst_eqD = thm "fst_eqD";
paulson@15404
   903
val inj_on_Abs_Prod = thm "inj_on_Abs_Prod";
paulson@15404
   904
val injective_fst_snd = thm "injective_fst_snd";
paulson@15404
   905
val mem_Sigma_iff = thm "mem_Sigma_iff";
paulson@15404
   906
val mem_splitE = thm "mem_splitE";
paulson@15404
   907
val mem_splitI = thm "mem_splitI";
paulson@15404
   908
val mem_splitI2 = thm "mem_splitI2";
paulson@15404
   909
val prod_eqI = thm "prod_eqI";
paulson@15404
   910
val prod_fun = thm "prod_fun";
paulson@15404
   911
val prod_fun_compose = thm "prod_fun_compose";
paulson@15404
   912
val prod_fun_def = thm "prod_fun_def";
paulson@15404
   913
val prod_fun_ident = thm "prod_fun_ident";
paulson@15404
   914
val prod_fun_imageE = thm "prod_fun_imageE";
paulson@15404
   915
val prod_fun_imageI = thm "prod_fun_imageI";
paulson@15404
   916
val prod_induct = thm "prod_induct";
paulson@15404
   917
val snd_conv = thm "snd_conv";
paulson@15404
   918
val snd_def = thm "snd_def";
paulson@15404
   919
val snd_eqD = thm "snd_eqD";
paulson@15404
   920
val split = thm "split";
paulson@15404
   921
val splitD = thm "splitD";
paulson@15404
   922
val splitD' = thm "splitD'";
paulson@15404
   923
val splitE = thm "splitE";
paulson@15404
   924
val splitE' = thm "splitE'";
paulson@15404
   925
val splitE2 = thm "splitE2";
paulson@15404
   926
val splitI = thm "splitI";
paulson@15404
   927
val splitI2 = thm "splitI2";
paulson@15404
   928
val splitI2' = thm "splitI2'";
paulson@15404
   929
val split_Pair_apply = thm "split_Pair_apply";
paulson@15404
   930
val split_beta = thm "split_beta";
paulson@15404
   931
val split_conv = thm "split_conv";
paulson@15404
   932
val split_def = thm "split_def";
paulson@15404
   933
val split_eta = thm "split_eta";
paulson@15404
   934
val split_eta_SetCompr = thm "split_eta_SetCompr";
paulson@15404
   935
val split_eta_SetCompr2 = thm "split_eta_SetCompr2";
paulson@15404
   936
val split_paired_All = thm "split_paired_All";
paulson@15404
   937
val split_paired_Ball_Sigma = thm "split_paired_Ball_Sigma";
paulson@15404
   938
val split_paired_Bex_Sigma = thm "split_paired_Bex_Sigma";
paulson@15404
   939
val split_paired_Ex = thm "split_paired_Ex";
paulson@15404
   940
val split_paired_The = thm "split_paired_The";
paulson@15404
   941
val split_paired_all = thm "split_paired_all";
paulson@15404
   942
val split_part = thm "split_part";
paulson@15404
   943
val split_split = thm "split_split";
paulson@15404
   944
val split_split_asm = thm "split_split_asm";
paulson@15404
   945
val split_tupled_all = thms "split_tupled_all";
paulson@15404
   946
val split_weak_cong = thm "split_weak_cong";
paulson@15404
   947
val surj_pair = thm "surj_pair";
paulson@15404
   948
val surjective_pairing = thm "surjective_pairing";
paulson@15404
   949
val unit_abs_eta_conv = thm "unit_abs_eta_conv";
paulson@15404
   950
val unit_all_eq1 = thm "unit_all_eq1";
paulson@15404
   951
val unit_all_eq2 = thm "unit_all_eq2";
paulson@15404
   952
val unit_eq = thm "unit_eq";
paulson@15404
   953
val unit_induct = thm "unit_induct";
paulson@15404
   954
*}
paulson@15404
   955
nipkow@10213
   956
end