clasohm@1465
|
1 |
(* Title: HOL/ex/cla
|
clasohm@969
|
2 |
ID: $Id$
|
clasohm@1465
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
clasohm@969
|
4 |
Copyright 1994 University of Cambridge
|
clasohm@969
|
5 |
|
clasohm@969
|
6 |
Higher-Order Logic: predicate calculus problems
|
clasohm@969
|
7 |
|
clasohm@969
|
8 |
Taken from FOL/cla.ML; beware of precedence of = vs <->
|
clasohm@969
|
9 |
*)
|
clasohm@969
|
10 |
|
clasohm@969
|
11 |
writeln"File HOL/ex/cla.";
|
clasohm@969
|
12 |
|
wenzelm@4089
|
13 |
context HOL.thy; (*Boosts efficiency by omitting redundant rules*)
|
paulson@1912
|
14 |
|
clasohm@969
|
15 |
goal HOL.thy "(P --> Q | R) --> (P-->Q) | (P-->R)";
|
paulson@2891
|
16 |
by (Blast_tac 1);
|
clasohm@969
|
17 |
result();
|
clasohm@969
|
18 |
|
clasohm@969
|
19 |
(*If and only if*)
|
clasohm@969
|
20 |
|
paulson@2997
|
21 |
goal HOL.thy "(P=Q) = (Q = (P::bool))";
|
paulson@2891
|
22 |
by (Blast_tac 1);
|
clasohm@969
|
23 |
result();
|
clasohm@969
|
24 |
|
clasohm@969
|
25 |
goal HOL.thy "~ (P = (~P))";
|
paulson@2891
|
26 |
by (Blast_tac 1);
|
clasohm@969
|
27 |
result();
|
clasohm@969
|
28 |
|
clasohm@969
|
29 |
|
clasohm@969
|
30 |
(*Sample problems from
|
clasohm@969
|
31 |
F. J. Pelletier,
|
clasohm@969
|
32 |
Seventy-Five Problems for Testing Automatic Theorem Provers,
|
clasohm@969
|
33 |
J. Automated Reasoning 2 (1986), 191-216.
|
clasohm@969
|
34 |
Errata, JAR 4 (1988), 236-236.
|
clasohm@969
|
35 |
|
clasohm@969
|
36 |
The hardest problems -- judging by experience with several theorem provers,
|
clasohm@969
|
37 |
including matrix ones -- are 34 and 43.
|
clasohm@969
|
38 |
*)
|
clasohm@969
|
39 |
|
clasohm@969
|
40 |
writeln"Pelletier's examples";
|
clasohm@969
|
41 |
(*1*)
|
clasohm@969
|
42 |
goal HOL.thy "(P-->Q) = (~Q --> ~P)";
|
paulson@2891
|
43 |
by (Blast_tac 1);
|
clasohm@969
|
44 |
result();
|
clasohm@969
|
45 |
|
clasohm@969
|
46 |
(*2*)
|
clasohm@969
|
47 |
goal HOL.thy "(~ ~ P) = P";
|
paulson@2891
|
48 |
by (Blast_tac 1);
|
clasohm@969
|
49 |
result();
|
clasohm@969
|
50 |
|
clasohm@969
|
51 |
(*3*)
|
clasohm@969
|
52 |
goal HOL.thy "~(P-->Q) --> (Q-->P)";
|
paulson@2891
|
53 |
by (Blast_tac 1);
|
clasohm@969
|
54 |
result();
|
clasohm@969
|
55 |
|
clasohm@969
|
56 |
(*4*)
|
clasohm@969
|
57 |
goal HOL.thy "(~P-->Q) = (~Q --> P)";
|
paulson@2891
|
58 |
by (Blast_tac 1);
|
clasohm@969
|
59 |
result();
|
clasohm@969
|
60 |
|
clasohm@969
|
61 |
(*5*)
|
clasohm@969
|
62 |
goal HOL.thy "((P|Q)-->(P|R)) --> (P|(Q-->R))";
|
paulson@2891
|
63 |
by (Blast_tac 1);
|
clasohm@969
|
64 |
result();
|
clasohm@969
|
65 |
|
clasohm@969
|
66 |
(*6*)
|
clasohm@969
|
67 |
goal HOL.thy "P | ~ P";
|
paulson@2891
|
68 |
by (Blast_tac 1);
|
clasohm@969
|
69 |
result();
|
clasohm@969
|
70 |
|
clasohm@969
|
71 |
(*7*)
|
clasohm@969
|
72 |
goal HOL.thy "P | ~ ~ ~ P";
|
paulson@2891
|
73 |
by (Blast_tac 1);
|
clasohm@969
|
74 |
result();
|
clasohm@969
|
75 |
|
clasohm@969
|
76 |
(*8. Peirce's law*)
|
clasohm@969
|
77 |
goal HOL.thy "((P-->Q) --> P) --> P";
|
paulson@2891
|
78 |
by (Blast_tac 1);
|
clasohm@969
|
79 |
result();
|
clasohm@969
|
80 |
|
clasohm@969
|
81 |
(*9*)
|
clasohm@969
|
82 |
goal HOL.thy "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)";
|
paulson@2891
|
83 |
by (Blast_tac 1);
|
clasohm@969
|
84 |
result();
|
clasohm@969
|
85 |
|
clasohm@969
|
86 |
(*10*)
|
clasohm@969
|
87 |
goal HOL.thy "(Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P=Q)";
|
paulson@2891
|
88 |
by (Blast_tac 1);
|
clasohm@969
|
89 |
result();
|
clasohm@969
|
90 |
|
clasohm@969
|
91 |
(*11. Proved in each direction (incorrectly, says Pelletier!!) *)
|
paulson@4061
|
92 |
goal HOL.thy "P=(P::bool)";
|
paulson@2891
|
93 |
by (Blast_tac 1);
|
clasohm@969
|
94 |
result();
|
clasohm@969
|
95 |
|
clasohm@969
|
96 |
(*12. "Dijkstra's law"*)
|
clasohm@969
|
97 |
goal HOL.thy "((P = Q) = R) = (P = (Q = R))";
|
paulson@2891
|
98 |
by (Blast_tac 1);
|
clasohm@969
|
99 |
result();
|
clasohm@969
|
100 |
|
clasohm@969
|
101 |
(*13. Distributive law*)
|
clasohm@969
|
102 |
goal HOL.thy "(P | (Q & R)) = ((P | Q) & (P | R))";
|
paulson@2891
|
103 |
by (Blast_tac 1);
|
clasohm@969
|
104 |
result();
|
clasohm@969
|
105 |
|
clasohm@969
|
106 |
(*14*)
|
clasohm@969
|
107 |
goal HOL.thy "(P = Q) = ((Q | ~P) & (~Q|P))";
|
paulson@2891
|
108 |
by (Blast_tac 1);
|
clasohm@969
|
109 |
result();
|
clasohm@969
|
110 |
|
clasohm@969
|
111 |
(*15*)
|
clasohm@969
|
112 |
goal HOL.thy "(P --> Q) = (~P | Q)";
|
paulson@2891
|
113 |
by (Blast_tac 1);
|
clasohm@969
|
114 |
result();
|
clasohm@969
|
115 |
|
clasohm@969
|
116 |
(*16*)
|
clasohm@969
|
117 |
goal HOL.thy "(P-->Q) | (Q-->P)";
|
paulson@2891
|
118 |
by (Blast_tac 1);
|
clasohm@969
|
119 |
result();
|
clasohm@969
|
120 |
|
clasohm@969
|
121 |
(*17*)
|
clasohm@969
|
122 |
goal HOL.thy "((P & (Q-->R))-->S) = ((~P | Q | S) & (~P | ~R | S))";
|
paulson@2891
|
123 |
by (Blast_tac 1);
|
clasohm@969
|
124 |
result();
|
clasohm@969
|
125 |
|
clasohm@969
|
126 |
writeln"Classical Logic: examples with quantifiers";
|
clasohm@969
|
127 |
|
clasohm@969
|
128 |
goal HOL.thy "(! x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))";
|
paulson@2891
|
129 |
by (Blast_tac 1);
|
clasohm@969
|
130 |
result();
|
clasohm@969
|
131 |
|
wenzelm@3842
|
132 |
goal HOL.thy "(? x. P-->Q(x)) = (P --> (? x. Q(x)))";
|
paulson@2891
|
133 |
by (Blast_tac 1);
|
clasohm@969
|
134 |
result();
|
clasohm@969
|
135 |
|
wenzelm@3842
|
136 |
goal HOL.thy "(? x. P(x)-->Q) = ((! x. P(x)) --> Q)";
|
paulson@2891
|
137 |
by (Blast_tac 1);
|
clasohm@969
|
138 |
result();
|
clasohm@969
|
139 |
|
wenzelm@3842
|
140 |
goal HOL.thy "((! x. P(x)) | Q) = (! x. P(x) | Q)";
|
paulson@2891
|
141 |
by (Blast_tac 1);
|
clasohm@969
|
142 |
result();
|
clasohm@969
|
143 |
|
clasohm@969
|
144 |
(*From Wishnu Prasetya*)
|
clasohm@969
|
145 |
goal HOL.thy
|
clasohm@969
|
146 |
"(!s. q(s) --> r(s)) & ~r(s) & (!s. ~r(s) & ~q(s) --> p(t) | q(t)) \
|
clasohm@969
|
147 |
\ --> p(t) | r(t)";
|
paulson@2891
|
148 |
by (Blast_tac 1);
|
clasohm@969
|
149 |
result();
|
clasohm@969
|
150 |
|
clasohm@969
|
151 |
|
clasohm@969
|
152 |
writeln"Problems requiring quantifier duplication";
|
clasohm@969
|
153 |
|
clasohm@969
|
154 |
(*Needs multiple instantiation of the quantifier.*)
|
clasohm@969
|
155 |
goal HOL.thy "(! x. P(x)-->P(f(x))) & P(d)-->P(f(f(f(d))))";
|
paulson@2891
|
156 |
by (Blast_tac 1);
|
clasohm@969
|
157 |
result();
|
clasohm@969
|
158 |
|
clasohm@969
|
159 |
(*Needs double instantiation of the quantifier*)
|
clasohm@969
|
160 |
goal HOL.thy "? x. P(x) --> P(a) & P(b)";
|
paulson@2891
|
161 |
by (Blast_tac 1);
|
clasohm@969
|
162 |
result();
|
clasohm@969
|
163 |
|
clasohm@969
|
164 |
goal HOL.thy "? z. P(z) --> (! x. P(x))";
|
paulson@2891
|
165 |
by (Blast_tac 1);
|
clasohm@969
|
166 |
result();
|
clasohm@969
|
167 |
|
clasohm@969
|
168 |
goal HOL.thy "? x. (? y. P(y)) --> P(x)";
|
paulson@2891
|
169 |
by (Blast_tac 1);
|
clasohm@969
|
170 |
result();
|
clasohm@969
|
171 |
|
clasohm@969
|
172 |
writeln"Hard examples with quantifiers";
|
clasohm@969
|
173 |
|
clasohm@969
|
174 |
writeln"Problem 18";
|
clasohm@969
|
175 |
goal HOL.thy "? y. ! x. P(y)-->P(x)";
|
paulson@2891
|
176 |
by (Blast_tac 1);
|
clasohm@969
|
177 |
result();
|
clasohm@969
|
178 |
|
clasohm@969
|
179 |
writeln"Problem 19";
|
clasohm@969
|
180 |
goal HOL.thy "? x. ! y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))";
|
paulson@2891
|
181 |
by (Blast_tac 1);
|
clasohm@969
|
182 |
result();
|
clasohm@969
|
183 |
|
clasohm@969
|
184 |
writeln"Problem 20";
|
clasohm@969
|
185 |
goal HOL.thy "(! x y. ? z. ! w. (P(x)&Q(y)-->R(z)&S(w))) \
|
clasohm@969
|
186 |
\ --> (? x y. P(x) & Q(y)) --> (? z. R(z))";
|
paulson@2891
|
187 |
by (Blast_tac 1);
|
clasohm@969
|
188 |
result();
|
clasohm@969
|
189 |
|
clasohm@969
|
190 |
writeln"Problem 21";
|
clasohm@969
|
191 |
goal HOL.thy "(? x. P-->Q(x)) & (? x. Q(x)-->P) --> (? x. P=Q(x))";
|
paulson@2891
|
192 |
by (Blast_tac 1);
|
clasohm@969
|
193 |
result();
|
clasohm@969
|
194 |
|
clasohm@969
|
195 |
writeln"Problem 22";
|
clasohm@969
|
196 |
goal HOL.thy "(! x. P = Q(x)) --> (P = (! x. Q(x)))";
|
paulson@2891
|
197 |
by (Blast_tac 1);
|
clasohm@969
|
198 |
result();
|
clasohm@969
|
199 |
|
clasohm@969
|
200 |
writeln"Problem 23";
|
clasohm@969
|
201 |
goal HOL.thy "(! x. P | Q(x)) = (P | (! x. Q(x)))";
|
paulson@2891
|
202 |
by (Blast_tac 1);
|
clasohm@969
|
203 |
result();
|
clasohm@969
|
204 |
|
clasohm@969
|
205 |
writeln"Problem 24";
|
clasohm@969
|
206 |
goal HOL.thy "~(? x. S(x)&Q(x)) & (! x. P(x) --> Q(x)|R(x)) & \
|
wenzelm@3842
|
207 |
\ (~(? x. P(x)) --> (? x. Q(x))) & (! x. Q(x)|R(x) --> S(x)) \
|
clasohm@969
|
208 |
\ --> (? x. P(x)&R(x))";
|
paulson@2891
|
209 |
by (Blast_tac 1);
|
clasohm@969
|
210 |
result();
|
clasohm@969
|
211 |
|
clasohm@969
|
212 |
writeln"Problem 25";
|
clasohm@969
|
213 |
goal HOL.thy "(? x. P(x)) & \
|
clasohm@969
|
214 |
\ (! x. L(x) --> ~ (M(x) & R(x))) & \
|
clasohm@969
|
215 |
\ (! x. P(x) --> (M(x) & L(x))) & \
|
clasohm@969
|
216 |
\ ((! x. P(x)-->Q(x)) | (? x. P(x)&R(x))) \
|
clasohm@969
|
217 |
\ --> (? x. Q(x)&P(x))";
|
paulson@2891
|
218 |
by (Blast_tac 1);
|
clasohm@969
|
219 |
result();
|
clasohm@969
|
220 |
|
clasohm@969
|
221 |
writeln"Problem 26";
|
clasohm@1465
|
222 |
goal HOL.thy "((? x. p(x)) = (? x. q(x))) & \
|
clasohm@1465
|
223 |
\ (! x. ! y. p(x) & q(y) --> (r(x) = s(y))) \
|
clasohm@969
|
224 |
\ --> ((! x. p(x)-->r(x)) = (! x. q(x)-->s(x)))";
|
paulson@2891
|
225 |
by (Blast_tac 1);
|
clasohm@969
|
226 |
result();
|
clasohm@969
|
227 |
|
clasohm@969
|
228 |
writeln"Problem 27";
|
clasohm@969
|
229 |
goal HOL.thy "(? x. P(x) & ~Q(x)) & \
|
clasohm@969
|
230 |
\ (! x. P(x) --> R(x)) & \
|
clasohm@969
|
231 |
\ (! x. M(x) & L(x) --> P(x)) & \
|
clasohm@969
|
232 |
\ ((? x. R(x) & ~ Q(x)) --> (! x. L(x) --> ~ R(x))) \
|
clasohm@969
|
233 |
\ --> (! x. M(x) --> ~L(x))";
|
paulson@2891
|
234 |
by (Blast_tac 1);
|
clasohm@969
|
235 |
result();
|
clasohm@969
|
236 |
|
clasohm@969
|
237 |
writeln"Problem 28. AMENDED";
|
clasohm@969
|
238 |
goal HOL.thy "(! x. P(x) --> (! x. Q(x))) & \
|
clasohm@969
|
239 |
\ ((! x. Q(x)|R(x)) --> (? x. Q(x)&S(x))) & \
|
wenzelm@3842
|
240 |
\ ((? x. S(x)) --> (! x. L(x) --> M(x))) \
|
clasohm@969
|
241 |
\ --> (! x. P(x) & L(x) --> M(x))";
|
paulson@2891
|
242 |
by (Blast_tac 1);
|
clasohm@969
|
243 |
result();
|
clasohm@969
|
244 |
|
clasohm@969
|
245 |
writeln"Problem 29. Essentially the same as Principia Mathematica *11.71";
|
clasohm@969
|
246 |
goal HOL.thy "(? x. F(x)) & (? y. G(y)) \
|
clasohm@969
|
247 |
\ --> ( ((! x. F(x)-->H(x)) & (! y. G(y)-->J(y))) = \
|
clasohm@969
|
248 |
\ (! x y. F(x) & G(y) --> H(x) & J(y)))";
|
paulson@2891
|
249 |
by (Blast_tac 1);
|
clasohm@969
|
250 |
result();
|
clasohm@969
|
251 |
|
clasohm@969
|
252 |
writeln"Problem 30";
|
clasohm@969
|
253 |
goal HOL.thy "(! x. P(x) | Q(x) --> ~ R(x)) & \
|
clasohm@969
|
254 |
\ (! x. (Q(x) --> ~ S(x)) --> P(x) & R(x)) \
|
clasohm@969
|
255 |
\ --> (! x. S(x))";
|
paulson@2891
|
256 |
by (Blast_tac 1);
|
clasohm@969
|
257 |
result();
|
clasohm@969
|
258 |
|
clasohm@969
|
259 |
writeln"Problem 31";
|
wenzelm@3842
|
260 |
goal HOL.thy "~(? x. P(x) & (Q(x) | R(x))) & \
|
clasohm@969
|
261 |
\ (? x. L(x) & P(x)) & \
|
clasohm@969
|
262 |
\ (! x. ~ R(x) --> M(x)) \
|
clasohm@969
|
263 |
\ --> (? x. L(x) & M(x))";
|
paulson@2891
|
264 |
by (Blast_tac 1);
|
clasohm@969
|
265 |
result();
|
clasohm@969
|
266 |
|
clasohm@969
|
267 |
writeln"Problem 32";
|
clasohm@969
|
268 |
goal HOL.thy "(! x. P(x) & (Q(x)|R(x))-->S(x)) & \
|
clasohm@969
|
269 |
\ (! x. S(x) & R(x) --> L(x)) & \
|
clasohm@969
|
270 |
\ (! x. M(x) --> R(x)) \
|
clasohm@969
|
271 |
\ --> (! x. P(x) & M(x) --> L(x))";
|
paulson@2891
|
272 |
by (Blast_tac 1);
|
clasohm@969
|
273 |
result();
|
clasohm@969
|
274 |
|
clasohm@969
|
275 |
writeln"Problem 33";
|
clasohm@969
|
276 |
goal HOL.thy "(! x. P(a) & (P(x)-->P(b))-->P(c)) = \
|
clasohm@969
|
277 |
\ (! x. (~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c)))";
|
paulson@2891
|
278 |
by (Blast_tac 1);
|
clasohm@969
|
279 |
result();
|
clasohm@969
|
280 |
|
paulson@1768
|
281 |
writeln"Problem 34 AMENDED (TWICE!!)";
|
clasohm@969
|
282 |
(*Andrews's challenge*)
|
clasohm@1465
|
283 |
goal HOL.thy "((? x. ! y. p(x) = p(y)) = \
|
paulson@3019
|
284 |
\ ((? x. q(x)) = (! y. p(y)))) = \
|
paulson@3019
|
285 |
\ ((? x. ! y. q(x) = q(y)) = \
|
paulson@3019
|
286 |
\ ((? x. p(x)) = (! y. q(y))))";
|
paulson@2891
|
287 |
by (Blast_tac 1);
|
clasohm@969
|
288 |
result();
|
clasohm@969
|
289 |
|
clasohm@969
|
290 |
writeln"Problem 35";
|
clasohm@969
|
291 |
goal HOL.thy "? x y. P x y --> (! u v. P u v)";
|
paulson@2891
|
292 |
by (Blast_tac 1);
|
clasohm@969
|
293 |
result();
|
clasohm@969
|
294 |
|
clasohm@969
|
295 |
writeln"Problem 36";
|
clasohm@969
|
296 |
goal HOL.thy "(! x. ? y. J x y) & \
|
clasohm@969
|
297 |
\ (! x. ? y. G x y) & \
|
clasohm@1465
|
298 |
\ (! x y. J x y | G x y --> \
|
clasohm@969
|
299 |
\ (! z. J y z | G y z --> H x z)) \
|
clasohm@969
|
300 |
\ --> (! x. ? y. H x y)";
|
paulson@2891
|
301 |
by (Blast_tac 1);
|
clasohm@969
|
302 |
result();
|
clasohm@969
|
303 |
|
clasohm@969
|
304 |
writeln"Problem 37";
|
clasohm@969
|
305 |
goal HOL.thy "(! z. ? w. ! x. ? y. \
|
wenzelm@3842
|
306 |
\ (P x z -->P y w) & P y z & (P y w --> (? u. Q u w))) & \
|
clasohm@969
|
307 |
\ (! x z. ~(P x z) --> (? y. Q y z)) & \
|
clasohm@969
|
308 |
\ ((? x y. Q x y) --> (! x. R x x)) \
|
clasohm@969
|
309 |
\ --> (! x. ? y. R x y)";
|
paulson@2891
|
310 |
by (Blast_tac 1);
|
clasohm@969
|
311 |
result();
|
clasohm@969
|
312 |
|
clasohm@969
|
313 |
writeln"Problem 38";
|
clasohm@969
|
314 |
goal HOL.thy
|
clasohm@1465
|
315 |
"(! x. p(a) & (p(x) --> (? y. p(y) & r x y)) --> \
|
clasohm@1465
|
316 |
\ (? z. ? w. p(z) & r x w & r w z)) = \
|
clasohm@1465
|
317 |
\ (! x. (~p(a) | p(x) | (? z. ? w. p(z) & r x w & r w z)) & \
|
paulson@1716
|
318 |
\ (~p(a) | ~(? y. p(y) & r x y) | \
|
clasohm@969
|
319 |
\ (? z. ? w. p(z) & r x w & r w z)))";
|
paulson@2891
|
320 |
by (Blast_tac 1); (*beats fast_tac!*)
|
paulson@1716
|
321 |
result();
|
clasohm@969
|
322 |
|
clasohm@969
|
323 |
writeln"Problem 39";
|
clasohm@969
|
324 |
goal HOL.thy "~ (? x. ! y. F y x = (~ F y y))";
|
paulson@2891
|
325 |
by (Blast_tac 1);
|
clasohm@969
|
326 |
result();
|
clasohm@969
|
327 |
|
clasohm@969
|
328 |
writeln"Problem 40. AMENDED";
|
clasohm@969
|
329 |
goal HOL.thy "(? y. ! x. F x y = F x x) \
|
clasohm@969
|
330 |
\ --> ~ (! x. ? y. ! z. F z y = (~ F z x))";
|
paulson@2891
|
331 |
by (Blast_tac 1);
|
clasohm@969
|
332 |
result();
|
clasohm@969
|
333 |
|
clasohm@969
|
334 |
writeln"Problem 41";
|
clasohm@1465
|
335 |
goal HOL.thy "(! z. ? y. ! x. f x y = (f x z & ~ f x x)) \
|
clasohm@969
|
336 |
\ --> ~ (? z. ! x. f x z)";
|
paulson@2891
|
337 |
by (Blast_tac 1);
|
clasohm@969
|
338 |
result();
|
clasohm@969
|
339 |
|
clasohm@969
|
340 |
writeln"Problem 42";
|
clasohm@969
|
341 |
goal HOL.thy "~ (? y. ! x. p x y = (~ (? z. p x z & p z x)))";
|
paulson@2891
|
342 |
by (Blast_tac 1);
|
clasohm@969
|
343 |
result();
|
clasohm@969
|
344 |
|
paulson@2891
|
345 |
writeln"Problem 43!!";
|
clasohm@969
|
346 |
goal HOL.thy
|
clasohm@1465
|
347 |
"(! x::'a. ! y::'a. q x y = (! z. p z x = (p z y::bool))) \
|
clasohm@969
|
348 |
\ --> (! x. (! y. q x y = (q y x::bool)))";
|
paulson@2891
|
349 |
by (Blast_tac 1);
|
paulson@3347
|
350 |
result();
|
clasohm@969
|
351 |
|
clasohm@969
|
352 |
writeln"Problem 44";
|
clasohm@1465
|
353 |
goal HOL.thy "(! x. f(x) --> \
|
clasohm@969
|
354 |
\ (? y. g(y) & h x y & (? y. g(y) & ~ h x y))) & \
|
clasohm@1465
|
355 |
\ (? x. j(x) & (! y. g(y) --> h x y)) \
|
clasohm@969
|
356 |
\ --> (? x. j(x) & ~f(x))";
|
paulson@2891
|
357 |
by (Blast_tac 1);
|
clasohm@969
|
358 |
result();
|
clasohm@969
|
359 |
|
clasohm@969
|
360 |
writeln"Problem 45";
|
clasohm@969
|
361 |
goal HOL.thy
|
clasohm@1465
|
362 |
"(! x. f(x) & (! y. g(y) & h x y --> j x y) \
|
clasohm@1465
|
363 |
\ --> (! y. g(y) & h x y --> k(y))) & \
|
clasohm@1465
|
364 |
\ ~ (? y. l(y) & k(y)) & \
|
clasohm@1465
|
365 |
\ (? x. f(x) & (! y. h x y --> l(y)) \
|
clasohm@1465
|
366 |
\ & (! y. g(y) & h x y --> j x y)) \
|
clasohm@969
|
367 |
\ --> (? x. f(x) & ~ (? y. g(y) & h x y))";
|
paulson@2891
|
368 |
by (Blast_tac 1);
|
clasohm@969
|
369 |
result();
|
clasohm@969
|
370 |
|
clasohm@969
|
371 |
|
clasohm@969
|
372 |
writeln"Problems (mainly) involving equality or functions";
|
clasohm@969
|
373 |
|
clasohm@969
|
374 |
writeln"Problem 48";
|
clasohm@969
|
375 |
goal HOL.thy "(a=b | c=d) & (a=c | b=d) --> a=d | b=c";
|
paulson@2891
|
376 |
by (Blast_tac 1);
|
clasohm@969
|
377 |
result();
|
clasohm@969
|
378 |
|
clasohm@969
|
379 |
writeln"Problem 49 NOT PROVED AUTOMATICALLY";
|
clasohm@969
|
380 |
(*Hard because it involves substitution for Vars;
|
clasohm@969
|
381 |
the type constraint ensures that x,y,z have the same type as a,b,u. *)
|
clasohm@969
|
382 |
goal HOL.thy "(? x y::'a. ! z. z=x | z=y) & P(a) & P(b) & (~a=b) \
|
wenzelm@3842
|
383 |
\ --> (! u::'a. P(u))";
|
paulson@4153
|
384 |
by (Classical.Safe_tac);
|
clasohm@969
|
385 |
by (res_inst_tac [("x","a")] allE 1);
|
clasohm@969
|
386 |
by (assume_tac 1);
|
clasohm@969
|
387 |
by (res_inst_tac [("x","b")] allE 1);
|
clasohm@969
|
388 |
by (assume_tac 1);
|
paulson@2891
|
389 |
by (Blast_tac 1);
|
clasohm@969
|
390 |
result();
|
clasohm@969
|
391 |
|
clasohm@969
|
392 |
writeln"Problem 50";
|
clasohm@969
|
393 |
(*What has this to do with equality?*)
|
wenzelm@3842
|
394 |
goal HOL.thy "(! x. P a x | (! y. P x y)) --> (? x. ! y. P x y)";
|
paulson@2891
|
395 |
by (Blast_tac 1);
|
clasohm@969
|
396 |
result();
|
clasohm@969
|
397 |
|
clasohm@969
|
398 |
writeln"Problem 51";
|
clasohm@969
|
399 |
goal HOL.thy
|
clasohm@969
|
400 |
"(? z w. ! x y. P x y = (x=z & y=w)) --> \
|
clasohm@969
|
401 |
\ (? z. ! x. ? w. (! y. P x y = (y=w)) = (x=z))";
|
paulson@2891
|
402 |
by (Blast_tac 1);
|
clasohm@969
|
403 |
result();
|
clasohm@969
|
404 |
|
clasohm@969
|
405 |
writeln"Problem 52";
|
clasohm@969
|
406 |
(*Almost the same as 51. *)
|
clasohm@969
|
407 |
goal HOL.thy
|
clasohm@969
|
408 |
"(? z w. ! x y. P x y = (x=z & y=w)) --> \
|
clasohm@969
|
409 |
\ (? w. ! y. ? z. (! x. P x y = (x=z)) = (y=w))";
|
paulson@2891
|
410 |
by (Blast_tac 1);
|
clasohm@969
|
411 |
result();
|
clasohm@969
|
412 |
|
clasohm@969
|
413 |
writeln"Problem 55";
|
clasohm@969
|
414 |
|
clasohm@969
|
415 |
(*Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988).
|
clasohm@969
|
416 |
fast_tac DISCOVERS who killed Agatha. *)
|
clasohm@969
|
417 |
goal HOL.thy "lives(agatha) & lives(butler) & lives(charles) & \
|
clasohm@969
|
418 |
\ (killed agatha agatha | killed butler agatha | killed charles agatha) & \
|
clasohm@969
|
419 |
\ (!x y. killed x y --> hates x y & ~richer x y) & \
|
clasohm@969
|
420 |
\ (!x. hates agatha x --> ~hates charles x) & \
|
clasohm@969
|
421 |
\ (hates agatha agatha & hates agatha charles) & \
|
clasohm@969
|
422 |
\ (!x. lives(x) & ~richer x agatha --> hates butler x) & \
|
clasohm@969
|
423 |
\ (!x. hates agatha x --> hates butler x) & \
|
clasohm@969
|
424 |
\ (!x. ~hates x agatha | ~hates x butler | ~hates x charles) --> \
|
clasohm@969
|
425 |
\ killed ?who agatha";
|
paulson@2922
|
426 |
by (Fast_tac 1);
|
clasohm@969
|
427 |
result();
|
clasohm@969
|
428 |
|
clasohm@969
|
429 |
writeln"Problem 56";
|
clasohm@969
|
430 |
goal HOL.thy
|
clasohm@969
|
431 |
"(! x. (? y. P(y) & x=f(y)) --> P(x)) = (! x. P(x) --> P(f(x)))";
|
paulson@2891
|
432 |
by (Blast_tac 1);
|
clasohm@969
|
433 |
result();
|
clasohm@969
|
434 |
|
clasohm@969
|
435 |
writeln"Problem 57";
|
clasohm@969
|
436 |
goal HOL.thy
|
clasohm@969
|
437 |
"P (f a b) (f b c) & P (f b c) (f a c) & \
|
clasohm@969
|
438 |
\ (! x y z. P x y & P y z --> P x z) --> P (f a b) (f a c)";
|
paulson@2891
|
439 |
by (Blast_tac 1);
|
clasohm@969
|
440 |
result();
|
clasohm@969
|
441 |
|
clasohm@969
|
442 |
writeln"Problem 58 NOT PROVED AUTOMATICALLY";
|
clasohm@969
|
443 |
goal HOL.thy "(! x y. f(x)=g(y)) --> (! x y. f(f(x))=f(g(y)))";
|
clasohm@969
|
444 |
val f_cong = read_instantiate [("f","f")] arg_cong;
|
wenzelm@4089
|
445 |
by (fast_tac (claset() addIs [f_cong]) 1);
|
clasohm@969
|
446 |
result();
|
clasohm@969
|
447 |
|
clasohm@969
|
448 |
writeln"Problem 59";
|
clasohm@969
|
449 |
goal HOL.thy "(! x. P(x) = (~P(f(x)))) --> (? x. P(x) & ~P(f(x)))";
|
paulson@2891
|
450 |
by (Blast_tac 1);
|
clasohm@969
|
451 |
result();
|
clasohm@969
|
452 |
|
clasohm@969
|
453 |
writeln"Problem 60";
|
clasohm@969
|
454 |
goal HOL.thy
|
clasohm@969
|
455 |
"! x. P x (f x) = (? y. (! z. P z y --> P z (f x)) & P x y)";
|
paulson@2891
|
456 |
by (Blast_tac 1);
|
clasohm@969
|
457 |
result();
|
clasohm@969
|
458 |
|
paulson@2715
|
459 |
writeln"Problem 62 as corrected in JAR 18 (1997), page 135";
|
paulson@1404
|
460 |
goal HOL.thy
|
clasohm@1465
|
461 |
"(ALL x. p a & (p x --> p(f x)) --> p(f(f x))) = \
|
clasohm@1465
|
462 |
\ (ALL x. (~ p a | p x | p(f(f x))) & \
|
paulson@1404
|
463 |
\ (~ p a | ~ p(f x) | p(f(f x))))";
|
paulson@2891
|
464 |
by (Blast_tac 1);
|
paulson@1404
|
465 |
result();
|
paulson@1404
|
466 |
|
paulson@1712
|
467 |
(*From Rudnicki, Obvious Inferences, JAR 3 (1987), 383-393.
|
paulson@1712
|
468 |
It does seem obvious!*)
|
paulson@1712
|
469 |
goal Prod.thy
|
paulson@1712
|
470 |
"(ALL x. F(x) & ~G(x) --> (EX y. H(x,y) & J(y))) & \
|
paulson@1712
|
471 |
\ (EX x. K(x) & F(x) & (ALL y. H(x,y) --> K(y))) & \
|
paulson@1712
|
472 |
\ (ALL x. K(x) --> ~G(x)) --> (EX x. K(x) --> ~G(x))";
|
paulson@2891
|
473 |
by (Blast_tac 1);
|
paulson@1712
|
474 |
result();
|
paulson@1712
|
475 |
|
paulson@1712
|
476 |
goal Prod.thy
|
paulson@1712
|
477 |
"(ALL x y. R(x,y) | R(y,x)) & \
|
paulson@1712
|
478 |
\ (ALL x y. S(x,y) & S(y,x) --> x=y) & \
|
paulson@1712
|
479 |
\ (ALL x y. R(x,y) --> S(x,y)) --> (ALL x y. S(x,y) --> R(x,y))";
|
paulson@2891
|
480 |
by (Blast_tac 1);
|
paulson@1712
|
481 |
result();
|
paulson@1712
|
482 |
|
paulson@1712
|
483 |
|
paulson@1712
|
484 |
|
clasohm@969
|
485 |
writeln"Reached end of file.";
|