src/HOL/Set.thy
author nipkow
Mon Mar 04 14:37:33 1996 +0100 (1996-03-04)
changeset 1531 e5eb247ad13c
parent 1370 7361ac9b024d
child 1672 2c109cd2fdd0
permissions -rw-r--r--
Added a constant UNIV == {x.True}
Added many new rewrite rules for sets.
Moved LEAST into Nat.
Added cardinality to Finite.
clasohm@923
     1
(*  Title:      HOL/Set.thy
clasohm@923
     2
    ID:         $Id$
clasohm@923
     3
    Author:     Tobias Nipkow
clasohm@923
     4
    Copyright   1993  University of Cambridge
clasohm@923
     5
*)
clasohm@923
     6
clasohm@923
     7
Set = Ord +
clasohm@923
     8
clasohm@923
     9
types
clasohm@923
    10
  'a set
clasohm@923
    11
clasohm@923
    12
arities
clasohm@923
    13
  set :: (term) term
clasohm@923
    14
clasohm@923
    15
instance
clasohm@923
    16
  set :: (term) {ord, minus}
clasohm@923
    17
clasohm@923
    18
consts
clasohm@1370
    19
  "{}"          :: 'a set                           ("{}")
clasohm@1370
    20
  insert        :: ['a, 'a set] => 'a set
clasohm@1370
    21
  Collect       :: ('a => bool) => 'a set               (*comprehension*)
clasohm@1370
    22
  Compl         :: ('a set) => 'a set                   (*complement*)
clasohm@1370
    23
  Int           :: ['a set, 'a set] => 'a set       (infixl 70)
clasohm@1370
    24
  Un            :: ['a set, 'a set] => 'a set       (infixl 65)
clasohm@1370
    25
  UNION, INTER  :: ['a set, 'a => 'b set] => 'b set     (*general*)
clasohm@1370
    26
  UNION1        :: ['a => 'b set] => 'b set         (binder "UN " 10)
clasohm@1370
    27
  INTER1        :: ['a => 'b set] => 'b set         (binder "INT " 10)
clasohm@1370
    28
  Union, Inter  :: (('a set)set) => 'a set              (*of a set*)
clasohm@1370
    29
  Pow           :: 'a set => 'a set set                 (*powerset*)
clasohm@1370
    30
  range         :: ('a => 'b) => 'b set                 (*of function*)
clasohm@1370
    31
  Ball, Bex     :: ['a set, 'a => bool] => bool         (*bounded quantifiers*)
clasohm@1370
    32
  inj, surj     :: ('a => 'b) => bool                   (*inj/surjective*)
clasohm@1370
    33
  inj_onto      :: ['a => 'b, 'a set] => bool
clasohm@1370
    34
  "``"          :: ['a => 'b, 'a set] => ('b set)   (infixl 90)
clasohm@1370
    35
  ":"           :: ['a, 'a set] => bool             (infixl 50) (*membership*)
clasohm@923
    36
clasohm@923
    37
clasohm@923
    38
syntax
clasohm@923
    39
nipkow@1531
    40
  UNIV         :: 'a set
nipkow@1531
    41
clasohm@1370
    42
  "~:"          :: ['a, 'a set] => bool             (infixl 50)
clasohm@923
    43
clasohm@1370
    44
  "@Finset"     :: args => 'a set                   ("{(_)}")
clasohm@923
    45
clasohm@1370
    46
  "@Coll"       :: [pttrn, bool] => 'a set          ("(1{_./ _})")
clasohm@1370
    47
  "@SetCompr"   :: ['a, idts, bool] => 'a set       ("(1{_ |/_./ _})")
clasohm@923
    48
clasohm@923
    49
  (* Big Intersection / Union *)
clasohm@923
    50
clasohm@1370
    51
  "@INTER"      :: [pttrn, 'a set, 'b set] => 'b set  ("(3INT _:_./ _)" 10)
clasohm@1370
    52
  "@UNION"      :: [pttrn, 'a set, 'b set] => 'b set  ("(3UN _:_./ _)" 10)
clasohm@923
    53
clasohm@923
    54
  (* Bounded Quantifiers *)
clasohm@923
    55
clasohm@1370
    56
  "@Ball"       :: [pttrn, 'a set, bool] => bool      ("(3! _:_./ _)" 10)
clasohm@1370
    57
  "@Bex"        :: [pttrn, 'a set, bool] => bool      ("(3? _:_./ _)" 10)
clasohm@1370
    58
  "*Ball"       :: [pttrn, 'a set, bool] => bool      ("(3ALL _:_./ _)" 10)
clasohm@1370
    59
  "*Bex"        :: [pttrn, 'a set, bool] => bool      ("(3EX _:_./ _)" 10)
clasohm@923
    60
clasohm@923
    61
translations
nipkow@1531
    62
  "UNIV"        == "Compl {}"
clasohm@923
    63
  "x ~: y"      == "~ (x : y)"
clasohm@923
    64
  "{x, xs}"     == "insert x {xs}"
clasohm@923
    65
  "{x}"         == "insert x {}"
clasohm@923
    66
  "{x. P}"      == "Collect (%x. P)"
clasohm@923
    67
  "INT x:A. B"  == "INTER A (%x. B)"
clasohm@923
    68
  "UN x:A. B"   == "UNION A (%x. B)"
clasohm@923
    69
  "! x:A. P"    == "Ball A (%x. P)"
clasohm@923
    70
  "? x:A. P"    == "Bex A (%x. P)"
clasohm@923
    71
  "ALL x:A. P"  => "Ball A (%x. P)"
clasohm@923
    72
  "EX x:A. P"   => "Bex A (%x. P)"
clasohm@923
    73
clasohm@923
    74
clasohm@923
    75
rules
clasohm@923
    76
clasohm@923
    77
  (* Isomorphisms between Predicates and Sets *)
clasohm@923
    78
clasohm@923
    79
  mem_Collect_eq    "(a : {x.P(x)}) = P(a)"
clasohm@923
    80
  Collect_mem_eq    "{x.x:A} = A"
clasohm@923
    81
clasohm@923
    82
clasohm@923
    83
defs
clasohm@923
    84
  Ball_def      "Ball A P       == ! x. x:A --> P(x)"
clasohm@923
    85
  Bex_def       "Bex A P        == ? x. x:A & P(x)"
clasohm@923
    86
  subset_def    "A <= B         == ! x:A. x:B"
clasohm@923
    87
  Compl_def     "Compl(A)       == {x. ~x:A}"
clasohm@923
    88
  Un_def        "A Un B         == {x.x:A | x:B}"
clasohm@923
    89
  Int_def       "A Int B        == {x.x:A & x:B}"
clasohm@923
    90
  set_diff_def  "A - B          == {x. x:A & ~x:B}"
clasohm@923
    91
  INTER_def     "INTER A B      == {y. ! x:A. y: B(x)}"
clasohm@923
    92
  UNION_def     "UNION A B      == {y. ? x:A. y: B(x)}"
clasohm@923
    93
  INTER1_def    "INTER1(B)      == INTER {x.True} B"
clasohm@923
    94
  UNION1_def    "UNION1(B)      == UNION {x.True} B"
clasohm@923
    95
  Inter_def     "Inter(S)       == (INT x:S. x)"
clasohm@923
    96
  Union_def     "Union(S)       == (UN x:S. x)"
clasohm@923
    97
  Pow_def       "Pow(A)         == {B. B <= A}"
clasohm@923
    98
  empty_def     "{}             == {x. False}"
clasohm@923
    99
  insert_def    "insert a B     == {x.x=a} Un B"
clasohm@923
   100
  range_def     "range(f)       == {y. ? x. y=f(x)}"
clasohm@923
   101
  image_def     "f``A           == {y. ? x:A. y=f(x)}"
clasohm@923
   102
  inj_def       "inj(f)         == ! x y. f(x)=f(y) --> x=y"
clasohm@923
   103
  inj_onto_def  "inj_onto f A   == ! x:A. ! y:A. f(x)=f(y) --> x=y"
clasohm@923
   104
  surj_def      "surj(f)        == ! y. ? x. y=f(x)"
clasohm@923
   105
regensbu@1273
   106
(* start 8bit 1 *)
regensbu@1273
   107
(* end 8bit 1 *)
regensbu@1273
   108
clasohm@923
   109
end
clasohm@923
   110
clasohm@923
   111
ML
clasohm@923
   112
clasohm@923
   113
local
clasohm@923
   114
clasohm@923
   115
(* Translates between { e | x1..xn. P} and {u. ? x1..xn. u=e & P}      *)
clasohm@923
   116
(* {y. ? x1..xn. y = e & P} is only translated if [0..n] subset bvs(e) *)
clasohm@923
   117
clasohm@923
   118
val ex_tr = snd(mk_binder_tr("? ","Ex"));
clasohm@923
   119
clasohm@923
   120
fun nvars(Const("_idts",_) $ _ $ idts) = nvars(idts)+1
clasohm@923
   121
  | nvars(_) = 1;
clasohm@923
   122
clasohm@923
   123
fun setcompr_tr[e,idts,b] =
clasohm@923
   124
  let val eq = Syntax.const("op =") $ Bound(nvars(idts)) $ e
clasohm@923
   125
      val P = Syntax.const("op &") $ eq $ b
clasohm@923
   126
      val exP = ex_tr [idts,P]
clasohm@923
   127
  in Syntax.const("Collect") $ Abs("",dummyT,exP) end;
clasohm@923
   128
clasohm@923
   129
val ex_tr' = snd(mk_binder_tr' ("Ex","DUMMY"));
clasohm@923
   130
clasohm@923
   131
fun setcompr_tr'[Abs(_,_,P)] =
clasohm@923
   132
  let fun ok(Const("Ex",_)$Abs(_,_,P),n) = ok(P,n+1)
clasohm@923
   133
        | ok(Const("op &",_) $ (Const("op =",_) $ Bound(m) $ e) $ _, n) =
clasohm@923
   134
            if n>0 andalso m=n andalso
clasohm@923
   135
              ((0 upto (n-1)) subset add_loose_bnos(e,0,[]))
clasohm@923
   136
            then () else raise Match
clasohm@923
   137
clasohm@923
   138
      fun tr'(_ $ abs) =
clasohm@923
   139
        let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr'[abs]
clasohm@923
   140
        in Syntax.const("@SetCompr") $ e $ idts $ Q end
clasohm@923
   141
  in ok(P,0); tr'(P) end;
clasohm@923
   142
clasohm@923
   143
in
clasohm@923
   144
clasohm@923
   145
val parse_translation = [("@SetCompr", setcompr_tr)];
clasohm@923
   146
val print_translation = [("Collect", setcompr_tr')];
clasohm@923
   147
val print_ast_translation =
clasohm@923
   148
  map HOL.alt_ast_tr' [("@Ball", "*Ball"), ("@Bex", "*Bex")];
clasohm@923
   149
clasohm@923
   150
end;
clasohm@923
   151