src/HOL/Real/RealDef.thy
author paulson
Thu Jul 29 16:57:41 2004 +0200 (2004-07-29)
changeset 15086 e6a2a98d5ef5
parent 15085 5693a977a767
child 15131 c69542757a4d
permissions -rw-r--r--
removal of more iff-rules from RealDef.thy
paulson@5588
     1
(*  Title       : Real/RealDef.thy
paulson@7219
     2
    ID          : $Id$
paulson@5588
     3
    Author      : Jacques D. Fleuriot
paulson@5588
     4
    Copyright   : 1998  University of Cambridge
paulson@14387
     5
    Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4
paulson@14269
     6
*)
paulson@14269
     7
paulson@14387
     8
header{*Defining the Reals from the Positive Reals*}
paulson@14387
     9
paulson@14387
    10
theory RealDef = PReal
paulson@14387
    11
files ("real_arith.ML"):
paulson@5588
    12
paulson@5588
    13
constdefs
paulson@5588
    14
  realrel   ::  "((preal * preal) * (preal * preal)) set"
paulson@14269
    15
  "realrel == {p. \<exists>x1 y1 x2 y2. p = ((x1,y1),(x2,y2)) & x1+y2 = x2+y1}"
paulson@14269
    16
paulson@14484
    17
typedef (Real)  real = "UNIV//realrel"
paulson@14269
    18
  by (auto simp add: quotient_def)
paulson@5588
    19
wenzelm@14691
    20
instance real :: "{ord, zero, one, plus, times, minus, inverse}" ..
paulson@14269
    21
paulson@14484
    22
constdefs
paulson@14484
    23
paulson@14484
    24
  (** these don't use the overloaded "real" function: users don't see them **)
paulson@14484
    25
paulson@14484
    26
  real_of_preal :: "preal => real"
paulson@14484
    27
  "real_of_preal m     ==
paulson@14484
    28
           Abs_Real(realrel``{(m + preal_of_rat 1, preal_of_rat 1)})"
paulson@14484
    29
paulson@14269
    30
consts
paulson@14378
    31
   (*Overloaded constant denoting the Real subset of enclosing
paulson@14269
    32
     types such as hypreal and complex*)
paulson@14269
    33
   Reals :: "'a set"
paulson@14269
    34
paulson@14269
    35
   (*overloaded constant for injecting other types into "real"*)
paulson@14269
    36
   real :: "'a => real"
paulson@5588
    37
wenzelm@14691
    38
syntax (xsymbols)
wenzelm@14691
    39
  Reals     :: "'a set"                   ("\<real>")
wenzelm@14691
    40
paulson@5588
    41
paulson@14269
    42
defs (overloaded)
paulson@5588
    43
paulson@14269
    44
  real_zero_def:
paulson@14484
    45
  "0 == Abs_Real(realrel``{(preal_of_rat 1, preal_of_rat 1)})"
paulson@12018
    46
paulson@14269
    47
  real_one_def:
paulson@14484
    48
  "1 == Abs_Real(realrel``
paulson@14365
    49
               {(preal_of_rat 1 + preal_of_rat 1,
paulson@14365
    50
		 preal_of_rat 1)})"
paulson@5588
    51
paulson@14269
    52
  real_minus_def:
paulson@14484
    53
  "- r ==  contents (\<Union>(x,y) \<in> Rep_Real(r). { Abs_Real(realrel``{(y,x)}) })"
paulson@14484
    54
paulson@14484
    55
  real_add_def:
paulson@14484
    56
   "z + w ==
paulson@14484
    57
       contents (\<Union>(x,y) \<in> Rep_Real(z). \<Union>(u,v) \<in> Rep_Real(w).
paulson@14484
    58
		 { Abs_Real(realrel``{(x+u, y+v)}) })"
bauerg@10606
    59
paulson@14269
    60
  real_diff_def:
paulson@14484
    61
   "r - (s::real) == r + - s"
paulson@14484
    62
paulson@14484
    63
  real_mult_def:
paulson@14484
    64
    "z * w ==
paulson@14484
    65
       contents (\<Union>(x,y) \<in> Rep_Real(z). \<Union>(u,v) \<in> Rep_Real(w).
paulson@14484
    66
		 { Abs_Real(realrel``{(x*u + y*v, x*v + y*u)}) })"
paulson@5588
    67
paulson@14269
    68
  real_inverse_def:
wenzelm@11713
    69
  "inverse (R::real) == (SOME S. (R = 0 & S = 0) | S * R = 1)"
paulson@5588
    70
paulson@14269
    71
  real_divide_def:
bauerg@10606
    72
  "R / (S::real) == R * inverse S"
paulson@14269
    73
paulson@14484
    74
  real_le_def:
paulson@14484
    75
   "z \<le> (w::real) == 
paulson@14484
    76
    \<exists>x y u v. x+v \<le> u+y & (x,y) \<in> Rep_Real z & (u,v) \<in> Rep_Real w"
paulson@5588
    77
paulson@14365
    78
  real_less_def: "(x < (y::real)) == (x \<le> y & x \<noteq> y)"
paulson@14365
    79
paulson@14334
    80
  real_abs_def:  "abs (r::real) == (if 0 \<le> r then r else -r)"
paulson@14334
    81
paulson@14334
    82
paulson@14365
    83
paulson@14329
    84
subsection{*Proving that realrel is an equivalence relation*}
paulson@14269
    85
paulson@14270
    86
lemma preal_trans_lemma:
paulson@14365
    87
  assumes "x + y1 = x1 + y"
paulson@14365
    88
      and "x + y2 = x2 + y"
paulson@14365
    89
  shows "x1 + y2 = x2 + (y1::preal)"
paulson@14365
    90
proof -
paulson@14365
    91
  have "(x1 + y2) + x = (x + y2) + x1" by (simp add: preal_add_ac) 
paulson@14365
    92
  also have "... = (x2 + y) + x1"  by (simp add: prems)
paulson@14365
    93
  also have "... = x2 + (x1 + y)"  by (simp add: preal_add_ac)
paulson@14365
    94
  also have "... = x2 + (x + y1)"  by (simp add: prems)
paulson@14365
    95
  also have "... = (x2 + y1) + x"  by (simp add: preal_add_ac)
paulson@14365
    96
  finally have "(x1 + y2) + x = (x2 + y1) + x" .
paulson@14365
    97
  thus ?thesis by (simp add: preal_add_right_cancel_iff) 
paulson@14365
    98
qed
paulson@14365
    99
paulson@14269
   100
paulson@14484
   101
lemma realrel_iff [simp]: "(((x1,y1),(x2,y2)) \<in> realrel) = (x1 + y2 = x2 + y1)"
paulson@14484
   102
by (simp add: realrel_def)
paulson@14269
   103
paulson@14269
   104
lemma equiv_realrel: "equiv UNIV realrel"
paulson@14365
   105
apply (auto simp add: equiv_def refl_def sym_def trans_def realrel_def)
paulson@14365
   106
apply (blast dest: preal_trans_lemma) 
paulson@14269
   107
done
paulson@14269
   108
paulson@14497
   109
text{*Reduces equality of equivalence classes to the @{term realrel} relation:
paulson@14497
   110
  @{term "(realrel `` {x} = realrel `` {y}) = ((x,y) \<in> realrel)"} *}
paulson@14269
   111
lemmas equiv_realrel_iff = 
paulson@14269
   112
       eq_equiv_class_iff [OF equiv_realrel UNIV_I UNIV_I]
paulson@14269
   113
paulson@14269
   114
declare equiv_realrel_iff [simp]
paulson@14269
   115
paulson@14497
   116
paulson@14484
   117
lemma realrel_in_real [simp]: "realrel``{(x,y)}: Real"
paulson@14484
   118
by (simp add: Real_def realrel_def quotient_def, blast)
paulson@14269
   119
paulson@14365
   120
paulson@14484
   121
lemma inj_on_Abs_Real: "inj_on Abs_Real Real"
paulson@14269
   122
apply (rule inj_on_inverseI)
paulson@14484
   123
apply (erule Abs_Real_inverse)
paulson@14269
   124
done
paulson@14269
   125
paulson@14484
   126
declare inj_on_Abs_Real [THEN inj_on_iff, simp]
paulson@14484
   127
declare Abs_Real_inverse [simp]
paulson@14269
   128
paulson@14269
   129
paulson@14484
   130
text{*Case analysis on the representation of a real number as an equivalence
paulson@14484
   131
      class of pairs of positive reals.*}
paulson@14484
   132
lemma eq_Abs_Real [case_names Abs_Real, cases type: real]: 
paulson@14484
   133
     "(!!x y. z = Abs_Real(realrel``{(x,y)}) ==> P) ==> P"
paulson@14484
   134
apply (rule Rep_Real [of z, unfolded Real_def, THEN quotientE])
paulson@14484
   135
apply (drule arg_cong [where f=Abs_Real])
paulson@14484
   136
apply (auto simp add: Rep_Real_inverse)
paulson@14269
   137
done
paulson@14269
   138
paulson@14269
   139
paulson@14329
   140
subsection{*Congruence property for addition*}
paulson@14269
   141
paulson@14269
   142
lemma real_add_congruent2_lemma:
paulson@14269
   143
     "[|a + ba = aa + b; ab + bc = ac + bb|]
paulson@14269
   144
      ==> a + ab + (ba + bc) = aa + ac + (b + (bb::preal))"
paulson@14269
   145
apply (simp add: preal_add_assoc) 
paulson@14269
   146
apply (rule preal_add_left_commute [of ab, THEN ssubst])
paulson@14269
   147
apply (simp add: preal_add_assoc [symmetric])
paulson@14269
   148
apply (simp add: preal_add_ac)
paulson@14269
   149
done
paulson@14269
   150
paulson@14269
   151
lemma real_add:
paulson@14497
   152
     "Abs_Real (realrel``{(x,y)}) + Abs_Real (realrel``{(u,v)}) =
paulson@14497
   153
      Abs_Real (realrel``{(x+u, y+v)})"
paulson@14497
   154
proof -
paulson@14658
   155
  have "congruent2 realrel realrel
paulson@14497
   156
        (\<lambda>z w. (\<lambda>(x,y). (\<lambda>(u,v). {Abs_Real (realrel `` {(x+u, y+v)})}) w) z)"
paulson@14497
   157
    by (simp add: congruent2_def, blast intro: real_add_congruent2_lemma) 
paulson@14497
   158
  thus ?thesis
paulson@14497
   159
    by (simp add: real_add_def UN_UN_split_split_eq
paulson@14658
   160
                  UN_equiv_class2 [OF equiv_realrel equiv_realrel])
paulson@14497
   161
qed
paulson@14269
   162
paulson@14269
   163
lemma real_add_commute: "(z::real) + w = w + z"
paulson@14497
   164
by (cases z, cases w, simp add: real_add preal_add_ac)
paulson@14269
   165
paulson@14269
   166
lemma real_add_assoc: "((z1::real) + z2) + z3 = z1 + (z2 + z3)"
paulson@14497
   167
by (cases z1, cases z2, cases z3, simp add: real_add preal_add_assoc)
paulson@14269
   168
paulson@14269
   169
lemma real_add_zero_left: "(0::real) + z = z"
paulson@14497
   170
by (cases z, simp add: real_add real_zero_def preal_add_ac)
paulson@14269
   171
obua@14738
   172
instance real :: comm_monoid_add
paulson@14269
   173
  by (intro_classes,
paulson@14269
   174
      (assumption | 
paulson@14269
   175
       rule real_add_commute real_add_assoc real_add_zero_left)+)
paulson@14269
   176
paulson@14269
   177
paulson@14334
   178
subsection{*Additive Inverse on real*}
paulson@14334
   179
paulson@14484
   180
lemma real_minus: "- Abs_Real(realrel``{(x,y)}) = Abs_Real(realrel `` {(y,x)})"
paulson@14484
   181
proof -
paulson@14484
   182
  have "congruent realrel (\<lambda>(x,y). {Abs_Real (realrel``{(y,x)})})"
paulson@14484
   183
    by (simp add: congruent_def preal_add_commute) 
paulson@14484
   184
  thus ?thesis
paulson@14484
   185
    by (simp add: real_minus_def UN_equiv_class [OF equiv_realrel])
paulson@14484
   186
qed
paulson@14334
   187
paulson@14334
   188
lemma real_add_minus_left: "(-z) + z = (0::real)"
paulson@14497
   189
by (cases z, simp add: real_minus real_add real_zero_def preal_add_commute)
paulson@14269
   190
paulson@14269
   191
paulson@14329
   192
subsection{*Congruence property for multiplication*}
paulson@14269
   193
paulson@14329
   194
lemma real_mult_congruent2_lemma:
paulson@14329
   195
     "!!(x1::preal). [| x1 + y2 = x2 + y1 |] ==>
paulson@14484
   196
          x * x1 + y * y1 + (x * y2 + y * x2) =
paulson@14484
   197
          x * x2 + y * y2 + (x * y1 + y * x1)"
paulson@14484
   198
apply (simp add: preal_add_left_commute preal_add_assoc [symmetric])
paulson@14269
   199
apply (simp add: preal_add_assoc preal_add_mult_distrib2 [symmetric])
paulson@14269
   200
apply (simp add: preal_add_commute)
paulson@14269
   201
done
paulson@14269
   202
paulson@14269
   203
lemma real_mult_congruent2:
paulson@14658
   204
    "congruent2 realrel realrel (%p1 p2.
paulson@14484
   205
        (%(x1,y1). (%(x2,y2). 
paulson@14484
   206
          { Abs_Real (realrel``{(x1*x2 + y1*y2, x1*y2+y1*x2)}) }) p2) p1)"
paulson@14658
   207
apply (rule congruent2_commuteI [OF equiv_realrel], clarify)
paulson@14269
   208
apply (simp add: preal_mult_commute preal_add_commute)
paulson@14269
   209
apply (auto simp add: real_mult_congruent2_lemma)
paulson@14269
   210
done
paulson@14269
   211
paulson@14269
   212
lemma real_mult:
paulson@14484
   213
      "Abs_Real((realrel``{(x1,y1)})) * Abs_Real((realrel``{(x2,y2)})) =
paulson@14484
   214
       Abs_Real(realrel `` {(x1*x2+y1*y2,x1*y2+y1*x2)})"
paulson@14484
   215
by (simp add: real_mult_def UN_UN_split_split_eq
paulson@14658
   216
         UN_equiv_class2 [OF equiv_realrel equiv_realrel real_mult_congruent2])
paulson@14269
   217
paulson@14269
   218
lemma real_mult_commute: "(z::real) * w = w * z"
paulson@14497
   219
by (cases z, cases w, simp add: real_mult preal_add_ac preal_mult_ac)
paulson@14269
   220
paulson@14269
   221
lemma real_mult_assoc: "((z1::real) * z2) * z3 = z1 * (z2 * z3)"
paulson@14484
   222
apply (cases z1, cases z2, cases z3)
paulson@14484
   223
apply (simp add: real_mult preal_add_mult_distrib2 preal_add_ac preal_mult_ac)
paulson@14269
   224
done
paulson@14269
   225
paulson@14269
   226
lemma real_mult_1: "(1::real) * z = z"
paulson@14484
   227
apply (cases z)
paulson@14484
   228
apply (simp add: real_mult real_one_def preal_add_mult_distrib2
paulson@14484
   229
                 preal_mult_1_right preal_mult_ac preal_add_ac)
paulson@14269
   230
done
paulson@14269
   231
paulson@14269
   232
lemma real_add_mult_distrib: "((z1::real) + z2) * w = (z1 * w) + (z2 * w)"
paulson@14484
   233
apply (cases z1, cases z2, cases w)
paulson@14484
   234
apply (simp add: real_add real_mult preal_add_mult_distrib2 
paulson@14484
   235
                 preal_add_ac preal_mult_ac)
paulson@14269
   236
done
paulson@14269
   237
paulson@14329
   238
text{*one and zero are distinct*}
paulson@14365
   239
lemma real_zero_not_eq_one: "0 \<noteq> (1::real)"
paulson@14484
   240
proof -
paulson@14484
   241
  have "preal_of_rat 1 < preal_of_rat 1 + preal_of_rat 1"
paulson@14484
   242
    by (simp add: preal_self_less_add_left) 
paulson@14484
   243
  thus ?thesis
paulson@14484
   244
    by (simp add: real_zero_def real_one_def preal_add_right_cancel_iff)
paulson@14484
   245
qed
paulson@14269
   246
paulson@14329
   247
subsection{*existence of inverse*}
paulson@14365
   248
paulson@14484
   249
lemma real_zero_iff: "Abs_Real (realrel `` {(x, x)}) = 0"
paulson@14497
   250
by (simp add: real_zero_def preal_add_commute)
paulson@14269
   251
paulson@14365
   252
text{*Instead of using an existential quantifier and constructing the inverse
paulson@14365
   253
within the proof, we could define the inverse explicitly.*}
paulson@14365
   254
paulson@14365
   255
lemma real_mult_inverse_left_ex: "x \<noteq> 0 ==> \<exists>y. y*x = (1::real)"
paulson@14484
   256
apply (simp add: real_zero_def real_one_def, cases x)
paulson@14269
   257
apply (cut_tac x = xa and y = y in linorder_less_linear)
paulson@14365
   258
apply (auto dest!: less_add_left_Ex simp add: real_zero_iff)
paulson@14334
   259
apply (rule_tac
paulson@14484
   260
        x = "Abs_Real (realrel `` { (preal_of_rat 1, 
paulson@14365
   261
                            inverse (D) + preal_of_rat 1)}) " 
paulson@14334
   262
       in exI)
paulson@14334
   263
apply (rule_tac [2]
paulson@14484
   264
        x = "Abs_Real (realrel `` { (inverse (D) + preal_of_rat 1,
paulson@14365
   265
                   preal_of_rat 1)})" 
paulson@14334
   266
       in exI)
paulson@14365
   267
apply (auto simp add: real_mult preal_mult_1_right
paulson@14329
   268
              preal_add_mult_distrib2 preal_add_mult_distrib preal_mult_1
paulson@14365
   269
              preal_mult_inverse_right preal_add_ac preal_mult_ac)
paulson@14269
   270
done
paulson@14269
   271
paulson@14365
   272
lemma real_mult_inverse_left: "x \<noteq> 0 ==> inverse(x)*x = (1::real)"
paulson@14484
   273
apply (simp add: real_inverse_def)
paulson@14365
   274
apply (frule real_mult_inverse_left_ex, safe)
paulson@14269
   275
apply (rule someI2, auto)
paulson@14269
   276
done
paulson@14334
   277
paulson@14341
   278
paulson@14341
   279
subsection{*The Real Numbers form a Field*}
paulson@14341
   280
paulson@14334
   281
instance real :: field
paulson@14334
   282
proof
paulson@14334
   283
  fix x y z :: real
paulson@14334
   284
  show "- x + x = 0" by (rule real_add_minus_left)
paulson@14334
   285
  show "x - y = x + (-y)" by (simp add: real_diff_def)
paulson@14334
   286
  show "(x * y) * z = x * (y * z)" by (rule real_mult_assoc)
paulson@14334
   287
  show "x * y = y * x" by (rule real_mult_commute)
paulson@14334
   288
  show "1 * x = x" by (rule real_mult_1)
paulson@14334
   289
  show "(x + y) * z = x * z + y * z" by (simp add: real_add_mult_distrib)
paulson@14334
   290
  show "0 \<noteq> (1::real)" by (rule real_zero_not_eq_one)
paulson@14365
   291
  show "x \<noteq> 0 ==> inverse x * x = 1" by (rule real_mult_inverse_left)
paulson@14430
   292
  show "x / y = x * inverse y" by (simp add: real_divide_def)
paulson@14334
   293
qed
paulson@14334
   294
paulson@14334
   295
paulson@14341
   296
text{*Inverse of zero!  Useful to simplify certain equations*}
paulson@14269
   297
paulson@14334
   298
lemma INVERSE_ZERO: "inverse 0 = (0::real)"
paulson@14484
   299
by (simp add: real_inverse_def)
paulson@14334
   300
paulson@14334
   301
instance real :: division_by_zero
paulson@14334
   302
proof
paulson@14334
   303
  show "inverse 0 = (0::real)" by (rule INVERSE_ZERO)
paulson@14334
   304
qed
paulson@14334
   305
paulson@14334
   306
paulson@14334
   307
(*Pull negations out*)
paulson@14334
   308
declare minus_mult_right [symmetric, simp] 
paulson@14334
   309
        minus_mult_left [symmetric, simp]
paulson@14334
   310
paulson@14334
   311
lemma real_mult_1_right: "z * (1::real) = z"
obua@14738
   312
  by (rule OrderedGroup.mult_1_right)
paulson@14269
   313
paulson@14269
   314
paulson@14365
   315
subsection{*The @{text "\<le>"} Ordering*}
paulson@14269
   316
paulson@14365
   317
lemma real_le_refl: "w \<le> (w::real)"
paulson@14484
   318
by (cases w, force simp add: real_le_def)
paulson@14269
   319
paulson@14378
   320
text{*The arithmetic decision procedure is not set up for type preal.
paulson@14378
   321
  This lemma is currently unused, but it could simplify the proofs of the
paulson@14378
   322
  following two lemmas.*}
paulson@14378
   323
lemma preal_eq_le_imp_le:
paulson@14378
   324
  assumes eq: "a+b = c+d" and le: "c \<le> a"
paulson@14378
   325
  shows "b \<le> (d::preal)"
paulson@14378
   326
proof -
paulson@14378
   327
  have "c+d \<le> a+d" by (simp add: prems preal_cancels)
paulson@14378
   328
  hence "a+b \<le> a+d" by (simp add: prems)
paulson@14378
   329
  thus "b \<le> d" by (simp add: preal_cancels)
paulson@14378
   330
qed
paulson@14378
   331
paulson@14378
   332
lemma real_le_lemma:
paulson@14378
   333
  assumes l: "u1 + v2 \<le> u2 + v1"
paulson@14378
   334
      and "x1 + v1 = u1 + y1"
paulson@14378
   335
      and "x2 + v2 = u2 + y2"
paulson@14378
   336
  shows "x1 + y2 \<le> x2 + (y1::preal)"
paulson@14365
   337
proof -
paulson@14378
   338
  have "(x1+v1) + (u2+y2) = (u1+y1) + (x2+v2)" by (simp add: prems)
paulson@14378
   339
  hence "(x1+y2) + (u2+v1) = (x2+y1) + (u1+v2)" by (simp add: preal_add_ac)
paulson@14378
   340
  also have "... \<le> (x2+y1) + (u2+v1)"
paulson@14365
   341
         by (simp add: prems preal_add_le_cancel_left)
paulson@14378
   342
  finally show ?thesis by (simp add: preal_add_le_cancel_right)
paulson@14378
   343
qed						 
paulson@14378
   344
paulson@14378
   345
lemma real_le: 
paulson@14484
   346
     "(Abs_Real(realrel``{(x1,y1)}) \<le> Abs_Real(realrel``{(x2,y2)})) =  
paulson@14484
   347
      (x1 + y2 \<le> x2 + y1)"
paulson@14378
   348
apply (simp add: real_le_def) 
paulson@14387
   349
apply (auto intro: real_le_lemma)
paulson@14378
   350
done
paulson@14378
   351
paulson@14378
   352
lemma real_le_anti_sym: "[| z \<le> w; w \<le> z |] ==> z = (w::real)"
paulson@14497
   353
by (cases z, cases w, simp add: real_le order_antisym)
paulson@14378
   354
paulson@14378
   355
lemma real_trans_lemma:
paulson@14378
   356
  assumes "x + v \<le> u + y"
paulson@14378
   357
      and "u + v' \<le> u' + v"
paulson@14378
   358
      and "x2 + v2 = u2 + y2"
paulson@14378
   359
  shows "x + v' \<le> u' + (y::preal)"
paulson@14378
   360
proof -
paulson@14378
   361
  have "(x+v') + (u+v) = (x+v) + (u+v')" by (simp add: preal_add_ac)
paulson@14378
   362
  also have "... \<le> (u+y) + (u+v')" 
paulson@14378
   363
    by (simp add: preal_add_le_cancel_right prems) 
paulson@14378
   364
  also have "... \<le> (u+y) + (u'+v)" 
paulson@14378
   365
    by (simp add: preal_add_le_cancel_left prems) 
paulson@14378
   366
  also have "... = (u'+y) + (u+v)"  by (simp add: preal_add_ac)
paulson@14378
   367
  finally show ?thesis by (simp add: preal_add_le_cancel_right)
paulson@14365
   368
qed						 
paulson@14269
   369
paulson@14365
   370
lemma real_le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::real)"
paulson@14484
   371
apply (cases i, cases j, cases k)
paulson@14484
   372
apply (simp add: real_le)
paulson@14378
   373
apply (blast intro: real_trans_lemma) 
paulson@14334
   374
done
paulson@14334
   375
paulson@14334
   376
(* Axiom 'order_less_le' of class 'order': *)
paulson@14334
   377
lemma real_less_le: "((w::real) < z) = (w \<le> z & w \<noteq> z)"
paulson@14365
   378
by (simp add: real_less_def)
paulson@14365
   379
paulson@14365
   380
instance real :: order
paulson@14365
   381
proof qed
paulson@14365
   382
 (assumption |
paulson@14365
   383
  rule real_le_refl real_le_trans real_le_anti_sym real_less_le)+
paulson@14365
   384
paulson@14378
   385
(* Axiom 'linorder_linear' of class 'linorder': *)
paulson@14378
   386
lemma real_le_linear: "(z::real) \<le> w | w \<le> z"
paulson@14484
   387
apply (cases z, cases w) 
paulson@14378
   388
apply (auto simp add: real_le real_zero_def preal_add_ac preal_cancels)
paulson@14334
   389
done
paulson@14334
   390
paulson@14334
   391
paulson@14334
   392
instance real :: linorder
paulson@14334
   393
  by (intro_classes, rule real_le_linear)
paulson@14334
   394
paulson@14334
   395
paulson@14378
   396
lemma real_le_eq_diff: "(x \<le> y) = (x-y \<le> (0::real))"
paulson@14484
   397
apply (cases x, cases y) 
paulson@14378
   398
apply (auto simp add: real_le real_zero_def real_diff_def real_add real_minus
paulson@14378
   399
                      preal_add_ac)
paulson@14378
   400
apply (simp_all add: preal_add_assoc [symmetric] preal_cancels)
paulson@14378
   401
done 
paulson@14378
   402
paulson@14484
   403
lemma real_add_left_mono: 
paulson@14484
   404
  assumes le: "x \<le> y" shows "z + x \<le> z + (y::real)"
paulson@14484
   405
proof -
paulson@14484
   406
  have "z + x - (z + y) = (z + -z) + (x - y)"
paulson@14484
   407
    by (simp add: diff_minus add_ac) 
paulson@14484
   408
  with le show ?thesis 
obua@14754
   409
    by (simp add: real_le_eq_diff[of x] real_le_eq_diff[of "z+x"] diff_minus)
paulson@14484
   410
qed
paulson@14334
   411
paulson@14365
   412
lemma real_sum_gt_zero_less: "(0 < S + (-W::real)) ==> (W < S)"
paulson@14365
   413
by (simp add: linorder_not_le [symmetric] real_le_eq_diff [of S] diff_minus)
paulson@14365
   414
paulson@14365
   415
lemma real_less_sum_gt_zero: "(W < S) ==> (0 < S + (-W::real))"
paulson@14365
   416
by (simp add: linorder_not_le [symmetric] real_le_eq_diff [of S] diff_minus)
paulson@14334
   417
paulson@14334
   418
lemma real_mult_order: "[| 0 < x; 0 < y |] ==> (0::real) < x * y"
paulson@14484
   419
apply (cases x, cases y)
paulson@14378
   420
apply (simp add: linorder_not_le [where 'a = real, symmetric] 
paulson@14378
   421
                 linorder_not_le [where 'a = preal] 
paulson@14378
   422
                  real_zero_def real_le real_mult)
paulson@14365
   423
  --{*Reduce to the (simpler) @{text "\<le>"} relation *}
paulson@14378
   424
apply (auto  dest!: less_add_left_Ex 
paulson@14365
   425
     simp add: preal_add_ac preal_mult_ac 
paulson@14378
   426
          preal_add_mult_distrib2 preal_cancels preal_self_less_add_right)
paulson@14334
   427
done
paulson@14334
   428
paulson@14334
   429
lemma real_mult_less_mono2: "[| (0::real) < z; x < y |] ==> z * x < z * y"
paulson@14334
   430
apply (rule real_sum_gt_zero_less)
paulson@14334
   431
apply (drule real_less_sum_gt_zero [of x y])
paulson@14334
   432
apply (drule real_mult_order, assumption)
paulson@14334
   433
apply (simp add: right_distrib)
paulson@14334
   434
done
paulson@14334
   435
paulson@14365
   436
text{*lemma for proving @{term "0<(1::real)"}*}
paulson@14365
   437
lemma real_zero_le_one: "0 \<le> (1::real)"
paulson@14387
   438
by (simp add: real_zero_def real_one_def real_le 
paulson@14378
   439
                 preal_self_less_add_left order_less_imp_le)
paulson@14334
   440
paulson@14378
   441
paulson@14334
   442
subsection{*The Reals Form an Ordered Field*}
paulson@14334
   443
paulson@14334
   444
instance real :: ordered_field
paulson@14334
   445
proof
paulson@14334
   446
  fix x y z :: real
paulson@14334
   447
  show "x \<le> y ==> z + x \<le> z + y" by (rule real_add_left_mono)
paulson@14334
   448
  show "x < y ==> 0 < z ==> z * x < z * y" by (simp add: real_mult_less_mono2)
paulson@14334
   449
  show "\<bar>x\<bar> = (if x < 0 then -x else x)"
paulson@14334
   450
    by (auto dest: order_le_less_trans simp add: real_abs_def linorder_not_le)
paulson@14334
   451
qed
paulson@14334
   452
paulson@14365
   453
paulson@14365
   454
paulson@14365
   455
text{*The function @{term real_of_preal} requires many proofs, but it seems
paulson@14365
   456
to be essential for proving completeness of the reals from that of the
paulson@14365
   457
positive reals.*}
paulson@14365
   458
paulson@14365
   459
lemma real_of_preal_add:
paulson@14365
   460
     "real_of_preal ((x::preal) + y) = real_of_preal x + real_of_preal y"
paulson@14365
   461
by (simp add: real_of_preal_def real_add preal_add_mult_distrib preal_mult_1 
paulson@14365
   462
              preal_add_ac)
paulson@14365
   463
paulson@14365
   464
lemma real_of_preal_mult:
paulson@14365
   465
     "real_of_preal ((x::preal) * y) = real_of_preal x* real_of_preal y"
paulson@14365
   466
by (simp add: real_of_preal_def real_mult preal_add_mult_distrib2
paulson@14365
   467
              preal_mult_1 preal_mult_1_right preal_add_ac preal_mult_ac)
paulson@14365
   468
paulson@14365
   469
paulson@14365
   470
text{*Gleason prop 9-4.4 p 127*}
paulson@14365
   471
lemma real_of_preal_trichotomy:
paulson@14365
   472
      "\<exists>m. (x::real) = real_of_preal m | x = 0 | x = -(real_of_preal m)"
paulson@14484
   473
apply (simp add: real_of_preal_def real_zero_def, cases x)
paulson@14365
   474
apply (auto simp add: real_minus preal_add_ac)
paulson@14365
   475
apply (cut_tac x = x and y = y in linorder_less_linear)
paulson@14365
   476
apply (auto dest!: less_add_left_Ex simp add: preal_add_assoc [symmetric])
paulson@14365
   477
apply (auto simp add: preal_add_commute)
paulson@14365
   478
done
paulson@14365
   479
paulson@14365
   480
lemma real_of_preal_leD:
paulson@14365
   481
      "real_of_preal m1 \<le> real_of_preal m2 ==> m1 \<le> m2"
paulson@14484
   482
by (simp add: real_of_preal_def real_le preal_cancels)
paulson@14365
   483
paulson@14365
   484
lemma real_of_preal_lessI: "m1 < m2 ==> real_of_preal m1 < real_of_preal m2"
paulson@14365
   485
by (auto simp add: real_of_preal_leD linorder_not_le [symmetric])
paulson@14365
   486
paulson@14365
   487
lemma real_of_preal_lessD:
paulson@14365
   488
      "real_of_preal m1 < real_of_preal m2 ==> m1 < m2"
paulson@14484
   489
by (simp add: real_of_preal_def real_le linorder_not_le [symmetric] 
paulson@14484
   490
              preal_cancels) 
paulson@14484
   491
paulson@14365
   492
paulson@14365
   493
lemma real_of_preal_less_iff [simp]:
paulson@14365
   494
     "(real_of_preal m1 < real_of_preal m2) = (m1 < m2)"
paulson@14365
   495
by (blast intro: real_of_preal_lessI real_of_preal_lessD)
paulson@14365
   496
paulson@14365
   497
lemma real_of_preal_le_iff:
paulson@14365
   498
     "(real_of_preal m1 \<le> real_of_preal m2) = (m1 \<le> m2)"
paulson@14365
   499
by (simp add: linorder_not_less [symmetric]) 
paulson@14365
   500
paulson@14365
   501
lemma real_of_preal_zero_less: "0 < real_of_preal m"
paulson@14365
   502
apply (auto simp add: real_zero_def real_of_preal_def real_less_def real_le_def
paulson@14365
   503
            preal_add_ac preal_cancels)
paulson@14365
   504
apply (simp_all add: preal_add_assoc [symmetric] preal_cancels)
paulson@14365
   505
apply (blast intro: preal_self_less_add_left order_less_imp_le)
paulson@14365
   506
apply (insert preal_not_eq_self [of "preal_of_rat 1" m]) 
paulson@14365
   507
apply (simp add: preal_add_ac) 
paulson@14365
   508
done
paulson@14365
   509
paulson@14365
   510
lemma real_of_preal_minus_less_zero: "- real_of_preal m < 0"
paulson@14365
   511
by (simp add: real_of_preal_zero_less)
paulson@14365
   512
paulson@14365
   513
lemma real_of_preal_not_minus_gt_zero: "~ 0 < - real_of_preal m"
paulson@14484
   514
proof -
paulson@14484
   515
  from real_of_preal_minus_less_zero
paulson@14484
   516
  show ?thesis by (blast dest: order_less_trans)
paulson@14484
   517
qed
paulson@14365
   518
paulson@14365
   519
paulson@14365
   520
subsection{*Theorems About the Ordering*}
paulson@14365
   521
paulson@14365
   522
text{*obsolete but used a lot*}
paulson@14365
   523
paulson@14365
   524
lemma real_not_refl2: "x < y ==> x \<noteq> (y::real)"
paulson@14365
   525
by blast 
paulson@14365
   526
paulson@14365
   527
lemma real_le_imp_less_or_eq: "!!(x::real). x \<le> y ==> x < y | x = y"
paulson@14365
   528
by (simp add: order_le_less)
paulson@14365
   529
paulson@14365
   530
lemma real_gt_zero_preal_Ex: "(0 < x) = (\<exists>y. x = real_of_preal y)"
paulson@14365
   531
apply (auto simp add: real_of_preal_zero_less)
paulson@14365
   532
apply (cut_tac x = x in real_of_preal_trichotomy)
paulson@14365
   533
apply (blast elim!: real_of_preal_not_minus_gt_zero [THEN notE])
paulson@14365
   534
done
paulson@14365
   535
paulson@14365
   536
lemma real_gt_preal_preal_Ex:
paulson@14365
   537
     "real_of_preal z < x ==> \<exists>y. x = real_of_preal y"
paulson@14365
   538
by (blast dest!: real_of_preal_zero_less [THEN order_less_trans]
paulson@14365
   539
             intro: real_gt_zero_preal_Ex [THEN iffD1])
paulson@14365
   540
paulson@14365
   541
lemma real_ge_preal_preal_Ex:
paulson@14365
   542
     "real_of_preal z \<le> x ==> \<exists>y. x = real_of_preal y"
paulson@14365
   543
by (blast dest: order_le_imp_less_or_eq real_gt_preal_preal_Ex)
paulson@14365
   544
paulson@14365
   545
lemma real_less_all_preal: "y \<le> 0 ==> \<forall>x. y < real_of_preal x"
paulson@14365
   546
by (auto elim: order_le_imp_less_or_eq [THEN disjE] 
paulson@14365
   547
            intro: real_of_preal_zero_less [THEN [2] order_less_trans] 
paulson@14365
   548
            simp add: real_of_preal_zero_less)
paulson@14365
   549
paulson@14365
   550
lemma real_less_all_real2: "~ 0 < y ==> \<forall>x. y < real_of_preal x"
paulson@14365
   551
by (blast intro!: real_less_all_preal linorder_not_less [THEN iffD1])
paulson@14365
   552
paulson@14334
   553
lemma real_add_less_le_mono: "[| w'<w; z'\<le>z |] ==> w' + z' < w + (z::real)"
obua@14738
   554
  by (rule OrderedGroup.add_less_le_mono)
paulson@14334
   555
paulson@14334
   556
lemma real_add_le_less_mono:
paulson@14334
   557
     "!!z z'::real. [| w'\<le>w; z'<z |] ==> w' + z' < w + z"
obua@14738
   558
  by (rule OrderedGroup.add_le_less_mono)
paulson@14334
   559
paulson@14334
   560
lemma real_le_square [simp]: "(0::real) \<le> x*x"
paulson@14334
   561
 by (rule Ring_and_Field.zero_le_square)
paulson@14334
   562
paulson@14334
   563
paulson@14334
   564
subsection{*More Lemmas*}
paulson@14334
   565
paulson@14334
   566
lemma real_mult_left_cancel: "(c::real) \<noteq> 0 ==> (c*a=c*b) = (a=b)"
paulson@14334
   567
by auto
paulson@14334
   568
paulson@14334
   569
lemma real_mult_right_cancel: "(c::real) \<noteq> 0 ==> (a*c=b*c) = (a=b)"
paulson@14334
   570
by auto
paulson@14334
   571
paulson@14334
   572
text{*The precondition could be weakened to @{term "0\<le>x"}*}
paulson@14334
   573
lemma real_mult_less_mono:
paulson@14334
   574
     "[| u<v;  x<y;  (0::real) < v;  0 < x |] ==> u*x < v* y"
paulson@14334
   575
 by (simp add: Ring_and_Field.mult_strict_mono order_less_imp_le)
paulson@14334
   576
paulson@14334
   577
lemma real_mult_less_iff1 [simp]: "(0::real) < z ==> (x*z < y*z) = (x < y)"
paulson@14334
   578
  by (force elim: order_less_asym
paulson@14334
   579
            simp add: Ring_and_Field.mult_less_cancel_right)
paulson@14334
   580
paulson@14334
   581
lemma real_mult_le_cancel_iff1 [simp]: "(0::real) < z ==> (x*z \<le> y*z) = (x\<le>y)"
paulson@14365
   582
apply (simp add: mult_le_cancel_right)
paulson@14365
   583
apply (blast intro: elim: order_less_asym) 
paulson@14365
   584
done
paulson@14334
   585
paulson@14334
   586
lemma real_mult_le_cancel_iff2 [simp]: "(0::real) < z ==> (z*x \<le> z*y) = (x\<le>y)"
paulson@14334
   587
  by (force elim: order_less_asym
paulson@14334
   588
            simp add: Ring_and_Field.mult_le_cancel_left)
paulson@14334
   589
paulson@14334
   590
text{*Only two uses?*}
paulson@14334
   591
lemma real_mult_less_mono':
paulson@14334
   592
     "[| x < y;  r1 < r2;  (0::real) \<le> r1;  0 \<le> x|] ==> r1 * x < r2 * y"
paulson@14334
   593
 by (rule Ring_and_Field.mult_strict_mono')
paulson@14334
   594
paulson@14334
   595
text{*FIXME: delete or at least combine the next two lemmas*}
paulson@14334
   596
lemma real_sum_squares_cancel: "x * x + y * y = 0 ==> x = (0::real)"
obua@14738
   597
apply (drule OrderedGroup.equals_zero_I [THEN sym])
paulson@14334
   598
apply (cut_tac x = y in real_le_square) 
paulson@14476
   599
apply (auto, drule order_antisym, auto)
paulson@14334
   600
done
paulson@14334
   601
paulson@14334
   602
lemma real_sum_squares_cancel2: "x * x + y * y = 0 ==> y = (0::real)"
paulson@14334
   603
apply (rule_tac y = x in real_sum_squares_cancel)
paulson@14476
   604
apply (simp add: add_commute)
paulson@14334
   605
done
paulson@14334
   606
paulson@14334
   607
lemma real_add_order: "[| 0 < x; 0 < y |] ==> (0::real) < x + y"
paulson@14365
   608
by (drule add_strict_mono [of concl: 0 0], assumption, simp)
paulson@14334
   609
paulson@14334
   610
lemma real_le_add_order: "[| 0 \<le> x; 0 \<le> y |] ==> (0::real) \<le> x + y"
paulson@14334
   611
apply (drule order_le_imp_less_or_eq)+
paulson@14334
   612
apply (auto intro: real_add_order order_less_imp_le)
paulson@14334
   613
done
paulson@14334
   614
paulson@14365
   615
lemma real_inverse_unique: "x*y = (1::real) ==> y = inverse x"
paulson@14365
   616
apply (case_tac "x \<noteq> 0")
paulson@14365
   617
apply (rule_tac c1 = x in real_mult_left_cancel [THEN iffD1], auto)
paulson@14365
   618
done
paulson@14334
   619
paulson@14365
   620
lemma real_inverse_gt_one: "[| (0::real) < x; x < 1 |] ==> 1 < inverse x"
paulson@14365
   621
by (auto dest: less_imp_inverse_less)
paulson@14334
   622
paulson@14365
   623
lemma real_mult_self_sum_ge_zero: "(0::real) \<le> x*x + y*y"
paulson@14365
   624
proof -
paulson@14365
   625
  have "0 + 0 \<le> x*x + y*y" by (blast intro: add_mono zero_le_square)
paulson@14365
   626
  thus ?thesis by simp
paulson@14365
   627
qed
paulson@14365
   628
paulson@14334
   629
paulson@14365
   630
subsection{*Embedding the Integers into the Reals*}
paulson@14365
   631
paulson@14378
   632
defs (overloaded)
paulson@14378
   633
  real_of_nat_def: "real z == of_nat z"
paulson@14378
   634
  real_of_int_def: "real z == of_int z"
paulson@14365
   635
paulson@14365
   636
lemma real_of_int_zero [simp]: "real (0::int) = 0"  
paulson@14378
   637
by (simp add: real_of_int_def) 
paulson@14365
   638
paulson@14365
   639
lemma real_of_one [simp]: "real (1::int) = (1::real)"
paulson@14378
   640
by (simp add: real_of_int_def) 
paulson@14334
   641
paulson@14365
   642
lemma real_of_int_add: "real (x::int) + real y = real (x + y)"
paulson@14378
   643
by (simp add: real_of_int_def) 
paulson@14365
   644
declare real_of_int_add [symmetric, simp]
paulson@14365
   645
paulson@14365
   646
lemma real_of_int_minus: "-real (x::int) = real (-x)"
paulson@14378
   647
by (simp add: real_of_int_def) 
paulson@14365
   648
declare real_of_int_minus [symmetric, simp]
paulson@14365
   649
paulson@14365
   650
lemma real_of_int_diff: "real (x::int) - real y = real (x - y)"
paulson@14378
   651
by (simp add: real_of_int_def) 
paulson@14365
   652
declare real_of_int_diff [symmetric, simp]
paulson@14334
   653
paulson@14365
   654
lemma real_of_int_mult: "real (x::int) * real y = real (x * y)"
paulson@14378
   655
by (simp add: real_of_int_def) 
paulson@14365
   656
declare real_of_int_mult [symmetric, simp]
paulson@14365
   657
paulson@14365
   658
lemma real_of_int_zero_cancel [simp]: "(real x = 0) = (x = (0::int))"
paulson@14378
   659
by (simp add: real_of_int_def) 
paulson@14365
   660
paulson@14365
   661
lemma real_of_int_inject [iff]: "(real (x::int) = real y) = (x = y)"
paulson@14378
   662
by (simp add: real_of_int_def) 
paulson@14365
   663
paulson@14365
   664
lemma real_of_int_less_iff [iff]: "(real (x::int) < real y) = (x < y)"
paulson@14378
   665
by (simp add: real_of_int_def) 
paulson@14365
   666
paulson@14365
   667
lemma real_of_int_le_iff [simp]: "(real (x::int) \<le> real y) = (x \<le> y)"
paulson@14378
   668
by (simp add: real_of_int_def) 
paulson@14365
   669
paulson@14365
   670
paulson@14365
   671
subsection{*Embedding the Naturals into the Reals*}
paulson@14365
   672
paulson@14334
   673
lemma real_of_nat_zero [simp]: "real (0::nat) = 0"
paulson@14365
   674
by (simp add: real_of_nat_def)
paulson@14334
   675
paulson@14334
   676
lemma real_of_nat_one [simp]: "real (Suc 0) = (1::real)"
paulson@14365
   677
by (simp add: real_of_nat_def)
paulson@14334
   678
paulson@14365
   679
lemma real_of_nat_add [simp]: "real (m + n) = real (m::nat) + real n"
paulson@14378
   680
by (simp add: real_of_nat_def)
paulson@14334
   681
paulson@14334
   682
(*Not for addsimps: often the LHS is used to represent a positive natural*)
paulson@14334
   683
lemma real_of_nat_Suc: "real (Suc n) = real n + (1::real)"
paulson@14378
   684
by (simp add: real_of_nat_def)
paulson@14334
   685
paulson@14334
   686
lemma real_of_nat_less_iff [iff]: 
paulson@14334
   687
     "(real (n::nat) < real m) = (n < m)"
paulson@14365
   688
by (simp add: real_of_nat_def)
paulson@14334
   689
paulson@14334
   690
lemma real_of_nat_le_iff [iff]: "(real (n::nat) \<le> real m) = (n \<le> m)"
paulson@14378
   691
by (simp add: real_of_nat_def)
paulson@14334
   692
paulson@14334
   693
lemma real_of_nat_ge_zero [iff]: "0 \<le> real (n::nat)"
paulson@14378
   694
by (simp add: real_of_nat_def zero_le_imp_of_nat)
paulson@14334
   695
paulson@14365
   696
lemma real_of_nat_Suc_gt_zero: "0 < real (Suc n)"
paulson@14378
   697
by (simp add: real_of_nat_def del: of_nat_Suc)
paulson@14365
   698
paulson@14334
   699
lemma real_of_nat_mult [simp]: "real (m * n) = real (m::nat) * real n"
paulson@14378
   700
by (simp add: real_of_nat_def)
paulson@14334
   701
paulson@14334
   702
lemma real_of_nat_inject [iff]: "(real (n::nat) = real m) = (n = m)"
paulson@14378
   703
by (simp add: real_of_nat_def)
paulson@14334
   704
paulson@14387
   705
lemma real_of_nat_zero_iff [iff]: "(real (n::nat) = 0) = (n = 0)"
paulson@14378
   706
by (simp add: real_of_nat_def)
paulson@14334
   707
paulson@14365
   708
lemma real_of_nat_diff: "n \<le> m ==> real (m - n) = real (m::nat) - real n"
paulson@14378
   709
by (simp add: add: real_of_nat_def) 
paulson@14334
   710
paulson@14365
   711
lemma real_of_nat_gt_zero_cancel_iff [simp]: "(0 < real (n::nat)) = (0 < n)"
paulson@14378
   712
by (simp add: add: real_of_nat_def) 
paulson@14365
   713
paulson@14365
   714
lemma real_of_nat_le_zero_cancel_iff [simp]: "(real (n::nat) \<le> 0) = (n = 0)"
paulson@14378
   715
by (simp add: add: real_of_nat_def)
paulson@14334
   716
paulson@14365
   717
lemma not_real_of_nat_less_zero [simp]: "~ real (n::nat) < 0"
paulson@14378
   718
by (simp add: add: real_of_nat_def)
paulson@14334
   719
paulson@14365
   720
lemma real_of_nat_ge_zero_cancel_iff [simp]: "(0 \<le> real (n::nat)) = (0 \<le> n)"
paulson@14378
   721
by (simp add: add: real_of_nat_def)
paulson@14334
   722
paulson@14365
   723
lemma real_of_int_real_of_nat: "real (int n) = real n"
paulson@14378
   724
by (simp add: real_of_nat_def real_of_int_def int_eq_of_nat)
paulson@14378
   725
paulson@14426
   726
lemma real_of_int_of_nat_eq [simp]: "real (of_nat n :: int) = real n"
paulson@14426
   727
by (simp add: real_of_int_def real_of_nat_def)
paulson@14334
   728
paulson@14387
   729
paulson@14387
   730
paulson@14387
   731
subsection{*Numerals and Arithmetic*}
paulson@14387
   732
paulson@14387
   733
instance real :: number ..
paulson@14387
   734
paulson@15013
   735
defs (overloaded)
paulson@15013
   736
  real_number_of_def: "(number_of w :: real) == of_int (Rep_Bin w)"
paulson@15013
   737
    --{*the type constraint is essential!*}
paulson@14387
   738
paulson@14387
   739
instance real :: number_ring
paulson@15013
   740
by (intro_classes, simp add: real_number_of_def) 
paulson@14387
   741
paulson@14387
   742
paulson@14387
   743
text{*Collapse applications of @{term real} to @{term number_of}*}
paulson@14387
   744
lemma real_number_of [simp]: "real (number_of v :: int) = number_of v"
paulson@14387
   745
by (simp add:  real_of_int_def of_int_number_of_eq)
paulson@14387
   746
paulson@14387
   747
lemma real_of_nat_number_of [simp]:
paulson@14387
   748
     "real (number_of v :: nat) =  
paulson@14387
   749
        (if neg (number_of v :: int) then 0  
paulson@14387
   750
         else (number_of v :: real))"
paulson@14387
   751
by (simp add: real_of_int_real_of_nat [symmetric] int_nat_number_of)
paulson@14387
   752
 
paulson@14387
   753
paulson@14387
   754
use "real_arith.ML"
paulson@14387
   755
paulson@14387
   756
setup real_arith_setup
paulson@14387
   757
paulson@14387
   758
subsection{* Simprules combining x+y and 0: ARE THEY NEEDED?*}
paulson@14387
   759
paulson@14387
   760
text{*Needed in this non-standard form by Hyperreal/Transcendental*}
paulson@14387
   761
lemma real_0_le_divide_iff:
paulson@14387
   762
     "((0::real) \<le> x/y) = ((x \<le> 0 | 0 \<le> y) & (0 \<le> x | y \<le> 0))"
paulson@14387
   763
by (simp add: real_divide_def zero_le_mult_iff, auto)
paulson@14387
   764
paulson@14387
   765
lemma real_add_minus_iff [simp]: "(x + - a = (0::real)) = (x=a)" 
paulson@14387
   766
by arith
paulson@14387
   767
paulson@15085
   768
lemma real_add_eq_0_iff: "(x+y = (0::real)) = (y = -x)"
paulson@14387
   769
by auto
paulson@14387
   770
paulson@15085
   771
lemma real_add_less_0_iff: "(x+y < (0::real)) = (y < -x)"
paulson@14387
   772
by auto
paulson@14387
   773
paulson@15085
   774
lemma real_0_less_add_iff: "((0::real) < x+y) = (-x < y)"
paulson@14387
   775
by auto
paulson@14387
   776
paulson@15085
   777
lemma real_add_le_0_iff: "(x+y \<le> (0::real)) = (y \<le> -x)"
paulson@14387
   778
by auto
paulson@14387
   779
paulson@15085
   780
lemma real_0_le_add_iff: "((0::real) \<le> x+y) = (-x \<le> y)"
paulson@14387
   781
by auto
paulson@14387
   782
paulson@14387
   783
paulson@14387
   784
(*
paulson@14387
   785
FIXME: we should have this, as for type int, but many proofs would break.
paulson@14387
   786
It replaces x+-y by x-y.
paulson@15086
   787
declare real_diff_def [symmetric, simp]
paulson@14387
   788
*)
paulson@14387
   789
paulson@14387
   790
paulson@14387
   791
subsubsection{*Density of the Reals*}
paulson@14387
   792
paulson@14387
   793
lemma real_lbound_gt_zero:
paulson@14387
   794
     "[| (0::real) < d1; 0 < d2 |] ==> \<exists>e. 0 < e & e < d1 & e < d2"
paulson@14387
   795
apply (rule_tac x = " (min d1 d2) /2" in exI)
paulson@14387
   796
apply (simp add: min_def)
paulson@14387
   797
done
paulson@14387
   798
paulson@14387
   799
paulson@14387
   800
text{*Similar results are proved in @{text Ring_and_Field}*}
paulson@14387
   801
lemma real_less_half_sum: "x < y ==> x < (x+y) / (2::real)"
paulson@14387
   802
  by auto
paulson@14387
   803
paulson@14387
   804
lemma real_gt_half_sum: "x < y ==> (x+y)/(2::real) < y"
paulson@14387
   805
  by auto
paulson@14387
   806
paulson@14387
   807
paulson@14387
   808
subsection{*Absolute Value Function for the Reals*}
paulson@14387
   809
paulson@14387
   810
text{*FIXME: these should go!*}
paulson@14387
   811
lemma abs_eqI1: "(0::real)\<le>x ==> abs x = x"
paulson@15003
   812
by (simp add: abs_if)
paulson@14387
   813
paulson@14387
   814
lemma abs_eqI2: "(0::real) < x ==> abs x = x"
paulson@15003
   815
by (simp add: abs_if)
paulson@14387
   816
paulson@14387
   817
lemma abs_minus_eqI2: "x < (0::real) ==> abs x = -x"
paulson@15003
   818
by (simp add: abs_if linorder_not_less [symmetric])
paulson@14387
   819
paulson@14387
   820
lemma abs_minus_add_cancel: "abs(x + (-y)) = abs (y + (-(x::real)))"
paulson@15003
   821
by (simp add: abs_if)
paulson@14387
   822
paulson@14387
   823
lemma abs_interval_iff: "(abs x < r) = (-r < x & x < (r::real))"
paulson@14387
   824
by (force simp add: Ring_and_Field.abs_less_iff)
paulson@14387
   825
paulson@14387
   826
lemma abs_le_interval_iff: "(abs x \<le> r) = (-r\<le>x & x\<le>(r::real))"
obua@14738
   827
by (force simp add: OrderedGroup.abs_le_iff)
paulson@14387
   828
paulson@14484
   829
(*FIXME: used only once, in SEQ.ML*)
paulson@14387
   830
lemma abs_add_one_gt_zero [simp]: "(0::real) < 1 + abs(x)"
paulson@15003
   831
by (simp add: abs_if)
paulson@14387
   832
paulson@14387
   833
lemma abs_real_of_nat_cancel [simp]: "abs (real x) = real (x::nat)"
paulson@14387
   834
by (auto intro: abs_eqI1 simp add: real_of_nat_ge_zero)
paulson@14387
   835
paulson@14387
   836
lemma abs_add_one_not_less_self [simp]: "~ abs(x) + (1::real) < x"
paulson@14387
   837
apply (simp add: linorder_not_less)
paulson@14387
   838
apply (auto intro: abs_ge_self [THEN order_trans])
paulson@14387
   839
done
paulson@14387
   840
 
paulson@14387
   841
text{*Used only in Hyperreal/Lim.ML*}
paulson@14387
   842
lemma abs_sum_triangle_ineq: "abs ((x::real) + y + (-l + -m)) \<le> abs(x + -l) + abs(y + -m)"
paulson@14387
   843
apply (simp add: real_add_assoc)
paulson@14387
   844
apply (rule_tac a1 = y in add_left_commute [THEN ssubst])
paulson@14387
   845
apply (rule real_add_assoc [THEN subst])
paulson@14387
   846
apply (rule abs_triangle_ineq)
paulson@14387
   847
done
paulson@14387
   848
paulson@14387
   849
paulson@14387
   850
paulson@14334
   851
ML
paulson@14334
   852
{*
paulson@14387
   853
val real_lbound_gt_zero = thm"real_lbound_gt_zero";
paulson@14387
   854
val real_less_half_sum = thm"real_less_half_sum";
paulson@14387
   855
val real_gt_half_sum = thm"real_gt_half_sum";
paulson@14341
   856
paulson@14387
   857
val abs_eqI1 = thm"abs_eqI1";
paulson@14387
   858
val abs_eqI2 = thm"abs_eqI2";
paulson@14387
   859
val abs_minus_eqI2 = thm"abs_minus_eqI2";
paulson@14387
   860
val abs_ge_zero = thm"abs_ge_zero";
paulson@14387
   861
val abs_idempotent = thm"abs_idempotent";
obua@14738
   862
val abs_eq_0 = thm"abs_eq_0";
paulson@14387
   863
val abs_ge_self = thm"abs_ge_self";
paulson@14387
   864
val abs_ge_minus_self = thm"abs_ge_minus_self";
paulson@14387
   865
val abs_mult = thm"abs_mult";
paulson@14387
   866
val abs_inverse = thm"abs_inverse";
paulson@14387
   867
val abs_triangle_ineq = thm"abs_triangle_ineq";
paulson@14387
   868
val abs_minus_cancel = thm"abs_minus_cancel";
paulson@14387
   869
val abs_minus_add_cancel = thm"abs_minus_add_cancel";
paulson@14387
   870
val abs_interval_iff = thm"abs_interval_iff";
paulson@14387
   871
val abs_le_interval_iff = thm"abs_le_interval_iff";
paulson@14387
   872
val abs_add_one_gt_zero = thm"abs_add_one_gt_zero";
paulson@14387
   873
val abs_le_zero_iff = thm"abs_le_zero_iff";
paulson@14387
   874
val abs_add_one_not_less_self = thm"abs_add_one_not_less_self";
paulson@14387
   875
val abs_sum_triangle_ineq = thm"abs_sum_triangle_ineq";
paulson@14334
   876
paulson@14387
   877
val abs_mult_less = thm"abs_mult_less";
paulson@14334
   878
*}
paulson@10752
   879
paulson@14387
   880
paulson@5588
   881
end