src/CTT/CTT.thy
author paulson
Tue Nov 14 13:26:48 2000 +0100 (2000-11-14)
changeset 10467 e6e7205e9e91
parent 3837 d7f033c74b38
child 12110 f8b4b11cd79d
permissions -rw-r--r--
x-symbol support for Pi, Sigma, -->, : (membership)
note that "lam" is displayed as TWO lambda-symbols
clasohm@0
     1
(*  Title:      CTT/ctt.thy
clasohm@0
     2
    ID:         $Id$
clasohm@0
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
clasohm@0
     6
Constructive Type Theory
clasohm@0
     7
*)
clasohm@0
     8
clasohm@0
     9
CTT = Pure +
clasohm@0
    10
lcp@283
    11
types
lcp@283
    12
  i
lcp@283
    13
  t
lcp@283
    14
  o
clasohm@0
    15
lcp@283
    16
arities
lcp@283
    17
   i,t,o :: logic
clasohm@0
    18
clasohm@0
    19
consts
clasohm@0
    20
  (*Types*)
clasohm@0
    21
  F,T       :: "t"          (*F is empty, T contains one element*)
clasohm@0
    22
  contr     :: "i=>i"
clasohm@0
    23
  tt        :: "i"
clasohm@0
    24
  (*Natural numbers*)
clasohm@0
    25
  N         :: "t"
clasohm@0
    26
  succ      :: "i=>i"
clasohm@0
    27
  rec       :: "[i, i, [i,i]=>i] => i"
clasohm@0
    28
  (*Unions*)
clasohm@0
    29
  inl,inr   :: "i=>i"
clasohm@0
    30
  when      :: "[i, i=>i, i=>i]=>i"
clasohm@0
    31
  (*General Sum and Binary Product*)
clasohm@0
    32
  Sum       :: "[t, i=>t]=>t"
clasohm@0
    33
  fst,snd   :: "i=>i"
clasohm@0
    34
  split     :: "[i, [i,i]=>i] =>i"
clasohm@0
    35
  (*General Product and Function Space*)
clasohm@0
    36
  Prod      :: "[t, i=>t]=>t"
clasohm@0
    37
  (*Equality type*)
clasohm@0
    38
  Eq        :: "[t,i,i]=>t"
clasohm@0
    39
  eq        :: "i"
clasohm@0
    40
  (*Judgements*)
clasohm@0
    41
  Type      :: "t => prop"          ("(_ type)" [10] 5)
paulson@10467
    42
  Eqtype    :: "[t,t]=>prop"        ("(_ =/ _)" [10,10] 5)
clasohm@0
    43
  Elem      :: "[i, t]=>prop"       ("(_ /: _)" [10,10] 5)
paulson@10467
    44
  Eqelem    :: "[i,i,t]=>prop"      ("(_ =/ _ :/ _)" [10,10,10] 5)
clasohm@0
    45
  Reduce    :: "[i,i]=>prop"        ("Reduce[_,_]")
clasohm@0
    46
  (*Types*)
wenzelm@23
    47
  "@PROD"   :: "[idt,t,t]=>t"       ("(3PROD _:_./ _)" 10)
wenzelm@23
    48
  "@SUM"    :: "[idt,t,t]=>t"       ("(3SUM _:_./ _)" 10)
clasohm@0
    49
  "+"       :: "[t,t]=>t"           (infixr 40)
clasohm@0
    50
  (*Invisible infixes!*)
clasohm@0
    51
  "@-->"    :: "[t,t]=>t"           ("(_ -->/ _)" [31,30] 30)
clasohm@0
    52
  "@*"      :: "[t,t]=>t"           ("(_ */ _)" [51,50] 50)
clasohm@0
    53
  (*Functions*)
clasohm@0
    54
  lambda    :: "(i => i) => i"      (binder "lam " 10)
clasohm@0
    55
  "`"       :: "[i,i]=>i"           (infixl 60)
clasohm@0
    56
  (*Natural numbers*)
clasohm@0
    57
  "0"       :: "i"                  ("0")
clasohm@0
    58
  (*Pairing*)
clasohm@0
    59
  pair      :: "[i,i]=>i"           ("(1<_,/_>)")
clasohm@0
    60
clasohm@0
    61
translations
clasohm@0
    62
  "PROD x:A. B" => "Prod(A, %x. B)"
wenzelm@23
    63
  "A --> B"     => "Prod(A, _K(B))"
clasohm@0
    64
  "SUM x:A. B"  => "Sum(A, %x. B)"
wenzelm@23
    65
  "A * B"       => "Sum(A, _K(B))"
clasohm@0
    66
paulson@10467
    67
syntax (xsymbols)
paulson@10467
    68
  "@-->"    :: "[t,t]=>t"           ("(_ \\<longrightarrow>/ _)" [31,30] 30)
paulson@10467
    69
  "@*"      :: "[t,t]=>t"           ("(_ \\<times>/ _)"          [51,50] 50)
paulson@10467
    70
paulson@10467
    71
syntax (symbols)
paulson@10467
    72
  Elem      :: "[i, t]=>prop"     ("(_ /\\<in> _)" [10,10] 5)
paulson@10467
    73
  Eqelem    :: "[i,i,t]=>prop"    ("(2_ =/ _ \\<in>/ _)" [10,10,10] 5)
paulson@10467
    74
  "@SUM"    :: "[idt,t,t] => t"   ("(3\\<Sigma> _\\<in>_./ _)" 10)
paulson@10467
    75
  "@PROD"   :: "[idt,t,t] => t"   ("(3\\<Pi> _\\<in>_./ _)"    10)
paulson@10467
    76
  "lam "    :: "[idts, i] => i"   ("(3\\<lambda>\\<lambda>_./ _)" 10)
paulson@10467
    77
clasohm@0
    78
rules
clasohm@0
    79
clasohm@0
    80
  (*Reduction: a weaker notion than equality;  a hack for simplification.
clasohm@0
    81
    Reduce[a,b] means either that  a=b:A  for some A or else that "a" and "b"
clasohm@0
    82
    are textually identical.*)
clasohm@0
    83
clasohm@0
    84
  (*does not verify a:A!  Sound because only trans_red uses a Reduce premise
clasohm@0
    85
    No new theorems can be proved about the standard judgements.*)
clasohm@0
    86
  refl_red "Reduce[a,a]"
clasohm@0
    87
  red_if_equal "a = b : A ==> Reduce[a,b]"
clasohm@0
    88
  trans_red "[| a = b : A;  Reduce[b,c] |] ==> a = c : A"
clasohm@0
    89
clasohm@0
    90
  (*Reflexivity*)
clasohm@0
    91
clasohm@0
    92
  refl_type "A type ==> A = A"
clasohm@0
    93
  refl_elem "a : A ==> a = a : A"
clasohm@0
    94
clasohm@0
    95
  (*Symmetry*)
clasohm@0
    96
clasohm@0
    97
  sym_type  "A = B ==> B = A"
clasohm@0
    98
  sym_elem  "a = b : A ==> b = a : A"
clasohm@0
    99
clasohm@0
   100
  (*Transitivity*)
clasohm@0
   101
clasohm@0
   102
  trans_type   "[| A = B;  B = C |] ==> A = C"
clasohm@0
   103
  trans_elem   "[| a = b : A;  b = c : A |] ==> a = c : A"
clasohm@0
   104
clasohm@0
   105
  equal_types  "[| a : A;  A = B |] ==> a : B"
clasohm@0
   106
  equal_typesL "[| a = b : A;  A = B |] ==> a = b : B"
clasohm@0
   107
clasohm@0
   108
  (*Substitution*)
clasohm@0
   109
clasohm@0
   110
  subst_type   "[| a : A;  !!z. z:A ==> B(z) type |] ==> B(a) type"
clasohm@0
   111
  subst_typeL  "[| a = c : A;  !!z. z:A ==> B(z) = D(z) |] ==> B(a) = D(c)"
clasohm@0
   112
clasohm@0
   113
  subst_elem   "[| a : A;  !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)"
clasohm@0
   114
  subst_elemL
clasohm@0
   115
    "[| a=c : A;  !!z. z:A ==> b(z)=d(z) : B(z) |] ==> b(a)=d(c) : B(a)"
clasohm@0
   116
clasohm@0
   117
clasohm@0
   118
  (*The type N -- natural numbers*)
clasohm@0
   119
clasohm@0
   120
  NF "N type"
clasohm@0
   121
  NI0 "0 : N"
clasohm@0
   122
  NI_succ "a : N ==> succ(a) : N"
clasohm@0
   123
  NI_succL  "a = b : N ==> succ(a) = succ(b) : N"
clasohm@0
   124
clasohm@0
   125
  NE
clasohm@1149
   126
   "[| p: N;  a: C(0);  !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] 
wenzelm@3837
   127
   ==> rec(p, a, %u v. b(u,v)) : C(p)"
clasohm@0
   128
clasohm@0
   129
  NEL
clasohm@1149
   130
   "[| p = q : N;  a = c : C(0);  
clasohm@1149
   131
      !!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |] 
wenzelm@3837
   132
   ==> rec(p, a, %u v. b(u,v)) = rec(q,c,d) : C(p)"
clasohm@0
   133
clasohm@0
   134
  NC0
clasohm@1149
   135
   "[| a: C(0);  !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] 
wenzelm@3837
   136
   ==> rec(0, a, %u v. b(u,v)) = a : C(0)"
clasohm@0
   137
clasohm@0
   138
  NC_succ
clasohm@1149
   139
   "[| p: N;  a: C(0);  
clasohm@1149
   140
       !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==>  
wenzelm@3837
   141
   rec(succ(p), a, %u v. b(u,v)) = b(p, rec(p, a, %u v. b(u,v))) : C(succ(p))"
clasohm@0
   142
clasohm@0
   143
  (*The fourth Peano axiom.  See page 91 of Martin-Lof's book*)
clasohm@0
   144
  zero_ne_succ
clasohm@0
   145
    "[| a: N;  0 = succ(a) : N |] ==> 0: F"
clasohm@0
   146
clasohm@0
   147
clasohm@0
   148
  (*The Product of a family of types*)
clasohm@0
   149
wenzelm@3837
   150
  ProdF  "[| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A. B(x) type"
clasohm@0
   151
clasohm@0
   152
  ProdFL
clasohm@1149
   153
   "[| A = C;  !!x. x:A ==> B(x) = D(x) |] ==> 
wenzelm@3837
   154
   PROD x:A. B(x) = PROD x:C. D(x)"
clasohm@0
   155
clasohm@0
   156
  ProdI
wenzelm@3837
   157
   "[| A type;  !!x. x:A ==> b(x):B(x)|] ==> lam x. b(x) : PROD x:A. B(x)"
clasohm@0
   158
clasohm@0
   159
  ProdIL
clasohm@1149
   160
   "[| A type;  !!x. x:A ==> b(x) = c(x) : B(x)|] ==> 
wenzelm@3837
   161
   lam x. b(x) = lam x. c(x) : PROD x:A. B(x)"
clasohm@0
   162
wenzelm@3837
   163
  ProdE  "[| p : PROD x:A. B(x);  a : A |] ==> p`a : B(a)"
wenzelm@3837
   164
  ProdEL "[| p=q: PROD x:A. B(x);  a=b : A |] ==> p`a = q`b : B(a)"
clasohm@0
   165
clasohm@0
   166
  ProdC
clasohm@1149
   167
   "[| a : A;  !!x. x:A ==> b(x) : B(x)|] ==> 
wenzelm@3837
   168
   (lam x. b(x)) ` a = b(a) : B(a)"
clasohm@0
   169
clasohm@0
   170
  ProdC2
wenzelm@3837
   171
   "p : PROD x:A. B(x) ==> (lam x. p`x) = p : PROD x:A. B(x)"
clasohm@0
   172
clasohm@0
   173
clasohm@0
   174
  (*The Sum of a family of types*)
clasohm@0
   175
wenzelm@3837
   176
  SumF  "[| A type;  !!x. x:A ==> B(x) type |] ==> SUM x:A. B(x) type"
clasohm@0
   177
  SumFL
wenzelm@3837
   178
    "[| A = C;  !!x. x:A ==> B(x) = D(x) |] ==> SUM x:A. B(x) = SUM x:C. D(x)"
clasohm@0
   179
wenzelm@3837
   180
  SumI  "[| a : A;  b : B(a) |] ==> <a,b> : SUM x:A. B(x)"
wenzelm@3837
   181
  SumIL "[| a=c:A;  b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A. B(x)"
clasohm@0
   182
clasohm@0
   183
  SumE
wenzelm@3837
   184
    "[| p: SUM x:A. B(x);  !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] 
wenzelm@3837
   185
    ==> split(p, %x y. c(x,y)) : C(p)"
clasohm@0
   186
clasohm@0
   187
  SumEL
wenzelm@3837
   188
    "[| p=q : SUM x:A. B(x); 
clasohm@1149
   189
       !!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)|] 
wenzelm@3837
   190
    ==> split(p, %x y. c(x,y)) = split(q, % x y. d(x,y)) : C(p)"
clasohm@0
   191
clasohm@0
   192
  SumC
clasohm@1149
   193
    "[| a: A;  b: B(a);  !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] 
wenzelm@3837
   194
    ==> split(<a,b>, %x y. c(x,y)) = c(a,b) : C(<a,b>)"
clasohm@0
   195
wenzelm@3837
   196
  fst_def   "fst(a) == split(a, %x y. x)"
wenzelm@3837
   197
  snd_def   "snd(a) == split(a, %x y. y)"
clasohm@0
   198
clasohm@0
   199
clasohm@0
   200
  (*The sum of two types*)
clasohm@0
   201
clasohm@0
   202
  PlusF   "[| A type;  B type |] ==> A+B type"
clasohm@0
   203
  PlusFL  "[| A = C;  B = D |] ==> A+B = C+D"
clasohm@0
   204
clasohm@0
   205
  PlusI_inl   "[| a : A;  B type |] ==> inl(a) : A+B"
clasohm@0
   206
  PlusI_inlL "[| a = c : A;  B type |] ==> inl(a) = inl(c) : A+B"
clasohm@0
   207
clasohm@0
   208
  PlusI_inr   "[| A type;  b : B |] ==> inr(b) : A+B"
clasohm@0
   209
  PlusI_inrL "[| A type;  b = d : B |] ==> inr(b) = inr(d) : A+B"
clasohm@0
   210
clasohm@0
   211
  PlusE
clasohm@1149
   212
    "[| p: A+B;  !!x. x:A ==> c(x): C(inl(x));  
clasohm@1149
   213
                !!y. y:B ==> d(y): C(inr(y)) |] 
wenzelm@3837
   214
    ==> when(p, %x. c(x), %y. d(y)) : C(p)"
clasohm@0
   215
clasohm@0
   216
  PlusEL
clasohm@1149
   217
    "[| p = q : A+B;  !!x. x: A ==> c(x) = e(x) : C(inl(x));   
clasohm@1149
   218
                     !!y. y: B ==> d(y) = f(y) : C(inr(y)) |] 
wenzelm@3837
   219
    ==> when(p, %x. c(x), %y. d(y)) = when(q, %x. e(x), %y. f(y)) : C(p)"
clasohm@0
   220
clasohm@0
   221
  PlusC_inl
clasohm@1149
   222
    "[| a: A;  !!x. x:A ==> c(x): C(inl(x));  
clasohm@1149
   223
              !!y. y:B ==> d(y): C(inr(y)) |] 
wenzelm@3837
   224
    ==> when(inl(a), %x. c(x), %y. d(y)) = c(a) : C(inl(a))"
clasohm@0
   225
clasohm@0
   226
  PlusC_inr
clasohm@1149
   227
    "[| b: B;  !!x. x:A ==> c(x): C(inl(x));  
clasohm@1149
   228
              !!y. y:B ==> d(y): C(inr(y)) |] 
wenzelm@3837
   229
    ==> when(inr(b), %x. c(x), %y. d(y)) = d(b) : C(inr(b))"
clasohm@0
   230
clasohm@0
   231
clasohm@0
   232
  (*The type Eq*)
clasohm@0
   233
clasohm@0
   234
  EqF    "[| A type;  a : A;  b : A |] ==> Eq(A,a,b) type"
clasohm@0
   235
  EqFL "[| A=B;  a=c: A;  b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)"
clasohm@0
   236
  EqI "a = b : A ==> eq : Eq(A,a,b)"
clasohm@0
   237
  EqE "p : Eq(A,a,b) ==> a = b : A"
clasohm@0
   238
clasohm@0
   239
  (*By equality of types, can prove C(p) from C(eq), an elimination rule*)
clasohm@0
   240
  EqC "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)"
clasohm@0
   241
clasohm@0
   242
  (*The type F*)
clasohm@0
   243
clasohm@0
   244
  FF "F type"
clasohm@0
   245
  FE "[| p: F;  C type |] ==> contr(p) : C"
clasohm@0
   246
  FEL  "[| p = q : F;  C type |] ==> contr(p) = contr(q) : C"
clasohm@0
   247
clasohm@0
   248
  (*The type T
clasohm@0
   249
     Martin-Lof's book (page 68) discusses elimination and computation.
clasohm@0
   250
     Elimination can be derived by computation and equality of types,
clasohm@0
   251
     but with an extra premise C(x) type x:T.
clasohm@0
   252
     Also computation can be derived from elimination. *)
clasohm@0
   253
clasohm@0
   254
  TF "T type"
clasohm@0
   255
  TI "tt : T"
clasohm@0
   256
  TE "[| p : T;  c : C(tt) |] ==> c : C(p)"
clasohm@0
   257
  TEL "[| p = q : T;  c = d : C(tt) |] ==> c = d : C(p)"
clasohm@0
   258
  TC "p : T ==> p = tt : T"
clasohm@0
   259
end
clasohm@0
   260
clasohm@0
   261
clasohm@0
   262
ML
clasohm@0
   263
clasohm@0
   264
val print_translation =
clasohm@0
   265
  [("Prod", dependent_tr' ("@PROD", "@-->")),
clasohm@0
   266
   ("Sum", dependent_tr' ("@SUM", "@*"))];
clasohm@0
   267