src/Pure/Tools/find_theorems.ML
 author wenzelm Fri Aug 02 16:02:06 2013 +0200 (2013-08-02) changeset 52851 e71b5160f242 parent 52788 da1fdbfebd39 child 52854 92932931bd82 permissions -rw-r--r--
minimal print function "find_theorems", which merely echos its arguments;
 wenzelm@30143 ` 1` ```(* Title: Pure/Tools/find_theorems.ML ``` wenzelm@26283 ` 2` ``` Author: Rafal Kolanski and Gerwin Klein, NICTA ``` wenzelm@46718 ` 3` ``` Author: Lars Noschinski and Alexander Krauss, TU Muenchen ``` wenzelm@16033 ` 4` wenzelm@16033 ` 5` ```Retrieve theorems from proof context. ``` wenzelm@16033 ` 6` ```*) ``` wenzelm@16033 ` 7` wenzelm@16033 ` 8` ```signature FIND_THEOREMS = ``` wenzelm@16033 ` 9` ```sig ``` wenzelm@16036 ` 10` ``` datatype 'term criterion = ``` wenzelm@46717 ` 11` ``` Name of string | Intro | Elim | Dest | Solves | Simp of 'term | Pattern of 'term ``` krauss@41844 ` 12` krauss@41844 ` 13` ``` datatype theorem = ``` krauss@41845 ` 14` ``` Internal of Facts.ref * thm | External of Facts.ref * term ``` krauss@41844 ` 15` krauss@43070 ` 16` ``` type 'term query = { ``` krauss@43070 ` 17` ``` goal: thm option, ``` krauss@43070 ` 18` ``` limit: int option, ``` krauss@43070 ` 19` ``` rem_dups: bool, ``` krauss@43070 ` 20` ``` criteria: (bool * 'term criterion) list ``` krauss@43070 ` 21` ``` } ``` krauss@43070 ` 22` krauss@43067 ` 23` ``` val read_criterion: Proof.context -> string criterion -> term criterion ``` krauss@43068 ` 24` ``` val query_parser: (bool * string criterion) list parser ``` krauss@43067 ` 25` krauss@43071 ` 26` ``` val xml_of_query: term query -> XML.tree ``` krauss@43071 ` 27` ``` val query_of_xml: XML.tree -> term query ``` krauss@43071 ` 28` ``` val xml_of_result: int option * theorem list -> XML.tree ``` krauss@43071 ` 29` ``` val result_of_xml: XML.tree -> int option * theorem list ``` krauss@43071 ` 30` Timothy@30785 ` 31` ``` val find_theorems: Proof.context -> thm option -> int option -> bool -> ``` krauss@43067 ` 32` ``` (bool * term criterion) list -> int option * (Facts.ref * thm) list ``` krauss@43067 ` 33` ``` val find_theorems_cmd: Proof.context -> thm option -> int option -> bool -> ``` Timothy@30785 ` 34` ``` (bool * string criterion) list -> int option * (Facts.ref * thm) list ``` krauss@43070 ` 35` krauss@43070 ` 36` ``` val filter_theorems: Proof.context -> theorem list -> term query -> ``` krauss@43067 ` 37` ``` int option * theorem list ``` krauss@43070 ` 38` ``` val filter_theorems_cmd: Proof.context -> theorem list -> string query -> ``` krauss@41844 ` 39` ``` int option * theorem list ``` noschinl@41841 ` 40` krauss@41845 ` 41` ``` val pretty_theorem: Proof.context -> theorem -> Pretty.T ``` wenzelm@30186 ` 42` ``` val pretty_thm: Proof.context -> Facts.ref * thm -> Pretty.T ``` krauss@41845 ` 43` wenzelm@16033 ` 44` ```end; ``` wenzelm@16033 ` 45` wenzelm@33301 ` 46` ```structure Find_Theorems: FIND_THEOREMS = ``` wenzelm@16033 ` 47` ```struct ``` wenzelm@16033 ` 48` wenzelm@16033 ` 49` ```(** search criteria **) ``` wenzelm@16033 ` 50` wenzelm@16036 ` 51` ```datatype 'term criterion = ``` wenzelm@46717 ` 52` ``` Name of string | Intro | Elim | Dest | Solves | Simp of 'term | Pattern of 'term; ``` wenzelm@16036 ` 53` kleing@33036 ` 54` ```fun apply_dummies tm = ``` wenzelm@33301 ` 55` ``` let ``` wenzelm@33301 ` 56` ``` val (xs, _) = Term.strip_abs tm; ``` wenzelm@33301 ` 57` ``` val tm' = Term.betapplys (tm, map (Term.dummy_pattern o #2) xs); ``` wenzelm@33301 ` 58` ``` in #1 (Term.replace_dummy_patterns tm' 1) end; ``` kleing@33036 ` 59` kleing@33036 ` 60` ```fun parse_pattern ctxt nm = ``` kleing@33036 ` 61` ``` let ``` wenzelm@42360 ` 62` ``` val consts = Proof_Context.consts_of ctxt; ``` wenzelm@33301 ` 63` ``` val nm' = ``` wenzelm@33301 ` 64` ``` (case Syntax.parse_term ctxt nm of ``` wenzelm@33301 ` 65` ``` Const (c, _) => c ``` wenzelm@33301 ` 66` ``` | _ => Consts.intern consts nm); ``` kleing@33036 ` 67` ``` in ``` wenzelm@33301 ` 68` ``` (case try (Consts.the_abbreviation consts) nm' of ``` wenzelm@42360 ` 69` ``` SOME (_, rhs) => apply_dummies (Proof_Context.expand_abbrevs ctxt rhs) ``` wenzelm@42360 ` 70` ``` | NONE => Proof_Context.read_term_pattern ctxt nm) ``` kleing@33036 ` 71` ``` end; ``` kleing@33036 ` 72` wenzelm@16036 ` 73` ```fun read_criterion _ (Name name) = Name name ``` wenzelm@16036 ` 74` ``` | read_criterion _ Intro = Intro ``` wenzelm@16036 ` 75` ``` | read_criterion _ Elim = Elim ``` wenzelm@16036 ` 76` ``` | read_criterion _ Dest = Dest ``` kleing@29857 ` 77` ``` | read_criterion _ Solves = Solves ``` wenzelm@42360 ` 78` ``` | read_criterion ctxt (Simp str) = Simp (Proof_Context.read_term_pattern ctxt str) ``` kleing@33036 ` 79` ``` | read_criterion ctxt (Pattern str) = Pattern (parse_pattern ctxt str); ``` wenzelm@16033 ` 80` wenzelm@16036 ` 81` ```fun pretty_criterion ctxt (b, c) = ``` wenzelm@16036 ` 82` ``` let ``` wenzelm@16036 ` 83` ``` fun prfx s = if b then s else "-" ^ s; ``` wenzelm@16036 ` 84` ``` in ``` wenzelm@16036 ` 85` ``` (case c of ``` wenzelm@16036 ` 86` ``` Name name => Pretty.str (prfx "name: " ^ quote name) ``` wenzelm@16036 ` 87` ``` | Intro => Pretty.str (prfx "intro") ``` wenzelm@16036 ` 88` ``` | Elim => Pretty.str (prfx "elim") ``` wenzelm@16036 ` 89` ``` | Dest => Pretty.str (prfx "dest") ``` kleing@29857 ` 90` ``` | Solves => Pretty.str (prfx "solves") ``` kleing@16088 ` 91` ``` | Simp pat => Pretty.block [Pretty.str (prfx "simp:"), Pretty.brk 1, ``` wenzelm@24920 ` 92` ``` Pretty.quote (Syntax.pretty_term ctxt (Term.show_dummy_patterns pat))] ``` wenzelm@16036 ` 93` ``` | Pattern pat => Pretty.enclose (prfx " \"") "\"" ``` wenzelm@24920 ` 94` ``` [Syntax.pretty_term ctxt (Term.show_dummy_patterns pat)]) ``` wenzelm@16036 ` 95` ``` end; ``` wenzelm@16033 ` 96` wenzelm@30142 ` 97` wenzelm@43620 ` 98` krauss@43070 ` 99` ```(** queries **) ``` krauss@43070 ` 100` krauss@43070 ` 101` ```type 'term query = { ``` krauss@43070 ` 102` ``` goal: thm option, ``` krauss@43070 ` 103` ``` limit: int option, ``` krauss@43070 ` 104` ``` rem_dups: bool, ``` krauss@43070 ` 105` ``` criteria: (bool * 'term criterion) list ``` krauss@43070 ` 106` ```}; ``` krauss@43070 ` 107` krauss@43070 ` 108` ```fun map_criteria f {goal, limit, rem_dups, criteria} = ``` wenzelm@46718 ` 109` ``` {goal = goal, limit = limit, rem_dups = rem_dups, criteria = f criteria}; ``` krauss@43070 ` 110` krauss@43071 ` 111` ```fun xml_of_criterion (Name name) = XML.Elem (("Name", [("val", name)]), []) ``` krauss@43071 ` 112` ``` | xml_of_criterion Intro = XML.Elem (("Intro", []) , []) ``` krauss@43071 ` 113` ``` | xml_of_criterion Elim = XML.Elem (("Elim", []) , []) ``` krauss@43071 ` 114` ``` | xml_of_criterion Dest = XML.Elem (("Dest", []) , []) ``` krauss@43071 ` 115` ``` | xml_of_criterion Solves = XML.Elem (("Solves", []) , []) ``` wenzelm@50217 ` 116` ``` | xml_of_criterion (Simp pat) = XML.Elem (("Simp", []), [Legacy_XML_Syntax.xml_of_term pat]) ``` wenzelm@50217 ` 117` ``` | xml_of_criterion (Pattern pat) = XML.Elem (("Pattern", []), [Legacy_XML_Syntax.xml_of_term pat]); ``` krauss@43071 ` 118` krauss@43071 ` 119` ```fun criterion_of_xml (XML.Elem (("Name", [("val", name)]), [])) = Name name ``` krauss@43071 ` 120` ``` | criterion_of_xml (XML.Elem (("Intro", []) , [])) = Intro ``` krauss@43071 ` 121` ``` | criterion_of_xml (XML.Elem (("Elim", []) , [])) = Elim ``` krauss@43071 ` 122` ``` | criterion_of_xml (XML.Elem (("Dest", []) , [])) = Dest ``` krauss@43071 ` 123` ``` | criterion_of_xml (XML.Elem (("Solves", []) , [])) = Solves ``` wenzelm@50217 ` 124` ``` | criterion_of_xml (XML.Elem (("Simp", []), [tree])) = Simp (Legacy_XML_Syntax.term_of_xml tree) ``` wenzelm@50217 ` 125` ``` | criterion_of_xml (XML.Elem (("Pattern", []), [tree])) = Pattern (Legacy_XML_Syntax.term_of_xml tree) ``` wenzelm@50217 ` 126` ``` | criterion_of_xml tree = raise Legacy_XML_Syntax.XML ("criterion_of_xml: bad tree", tree); ``` krauss@43071 ` 127` wenzelm@46718 ` 128` ```fun xml_of_query {goal = NONE, limit, rem_dups, criteria} = ``` krauss@43071 ` 129` ``` let ``` krauss@43071 ` 130` ``` val properties = [] ``` krauss@43071 ` 131` ``` |> (if rem_dups then cons ("rem_dups", "") else I) ``` krauss@43071 ` 132` ``` |> (if is_some limit then cons ("limit", Markup.print_int (the limit)) else I); ``` krauss@43071 ` 133` ``` in ``` wenzelm@43767 ` 134` ``` XML.Elem (("Query", properties), XML.Encode.list ``` wenzelm@43767 ` 135` ``` (XML.Encode.pair XML.Encode.bool (single o xml_of_criterion)) criteria) ``` krauss@43071 ` 136` ``` end ``` krauss@43071 ` 137` ``` | xml_of_query _ = raise Fail "cannot serialize goal"; ``` krauss@43071 ` 138` krauss@43071 ` 139` ```fun query_of_xml (XML.Elem (("Query", properties), body)) = ``` krauss@43071 ` 140` ``` let ``` krauss@43071 ` 141` ``` val rem_dups = Properties.defined properties "rem_dups"; ``` krauss@43071 ` 142` ``` val limit = Properties.get properties "limit" |> Option.map Markup.parse_int; ``` wenzelm@43724 ` 143` ``` val criteria = ``` wenzelm@43767 ` 144` ``` XML.Decode.list (XML.Decode.pair XML.Decode.bool ``` wenzelm@43724 ` 145` ``` (criterion_of_xml o the_single)) body; ``` krauss@43071 ` 146` ``` in ``` wenzelm@46718 ` 147` ``` {goal = NONE, limit = limit, rem_dups = rem_dups, criteria = criteria} ``` krauss@43071 ` 148` ``` end ``` wenzelm@50217 ` 149` ``` | query_of_xml tree = raise Legacy_XML_Syntax.XML ("query_of_xml: bad tree", tree); ``` krauss@43070 ` 150` wenzelm@43620 ` 151` wenzelm@43620 ` 152` krauss@41845 ` 153` ```(** theorems, either internal or external (without proof) **) ``` krauss@41844 ` 154` krauss@41844 ` 155` ```datatype theorem = ``` krauss@41844 ` 156` ``` Internal of Facts.ref * thm | ``` krauss@43071 ` 157` ``` External of Facts.ref * term; (* FIXME: Facts.ref not appropriate *) ``` krauss@43071 ` 158` krauss@43071 ` 159` ```fun fact_ref_markup (Facts.Named ((name, pos), SOME [Facts.Single i])) = ``` krauss@43071 ` 160` ``` Position.markup pos o Markup.properties [("name", name), ("index", Markup.print_int i)] ``` krauss@43071 ` 161` ``` | fact_ref_markup (Facts.Named ((name, pos), NONE)) = ``` krauss@43071 ` 162` ``` Position.markup pos o Markup.properties [("name", name)] ``` wenzelm@43620 ` 163` ``` | fact_ref_markup fact_ref = raise Fail "bad fact ref"; ``` krauss@43071 ` 164` krauss@43071 ` 165` ```fun xml_of_theorem (Internal _) = raise Fail "xml_of_theorem: Internal" ``` krauss@43071 ` 166` ``` | xml_of_theorem (External (fact_ref, prop)) = ``` wenzelm@50217 ` 167` ``` XML.Elem (fact_ref_markup fact_ref ("External", []), [Legacy_XML_Syntax.xml_of_term prop]); ``` krauss@43071 ` 168` krauss@43071 ` 169` ```fun theorem_of_xml (XML.Elem (("External", properties), [tree])) = ``` wenzelm@43620 ` 170` ``` let ``` wenzelm@43620 ` 171` ``` val name = the (Properties.get properties "name"); ``` wenzelm@43620 ` 172` ``` val pos = Position.of_properties properties; ``` wenzelm@46718 ` 173` ``` val intvs_opt = ``` wenzelm@46718 ` 174` ``` Option.map (single o Facts.Single o Markup.parse_int) ``` wenzelm@46718 ` 175` ``` (Properties.get properties "index"); ``` wenzelm@43620 ` 176` ``` in ``` wenzelm@50217 ` 177` ``` External (Facts.Named ((name, pos), intvs_opt), Legacy_XML_Syntax.term_of_xml tree) ``` wenzelm@43620 ` 178` ``` end ``` wenzelm@50217 ` 179` ``` | theorem_of_xml tree = raise Legacy_XML_Syntax.XML ("theorem_of_xml: bad tree", tree); ``` krauss@43071 ` 180` krauss@43071 ` 181` ```fun xml_of_result (opt_found, theorems) = ``` krauss@43071 ` 182` ``` let ``` krauss@43071 ` 183` ``` val properties = ``` krauss@43071 ` 184` ``` if is_some opt_found then [("found", Markup.print_int (the opt_found))] else []; ``` krauss@43071 ` 185` ``` in ``` wenzelm@43767 ` 186` ``` XML.Elem (("Result", properties), XML.Encode.list (single o xml_of_theorem) theorems) ``` krauss@43071 ` 187` ``` end; ``` krauss@43071 ` 188` krauss@43071 ` 189` ```fun result_of_xml (XML.Elem (("Result", properties), body)) = ``` krauss@43071 ` 190` ``` (Properties.get properties "found" |> Option.map Markup.parse_int, ``` wenzelm@43767 ` 191` ``` XML.Decode.list (theorem_of_xml o the_single) body) ``` wenzelm@50217 ` 192` ``` | result_of_xml tree = raise Legacy_XML_Syntax.XML ("result_of_xml: bad tree", tree); ``` krauss@41844 ` 193` krauss@41844 ` 194` ```fun prop_of (Internal (_, thm)) = Thm.full_prop_of thm ``` krauss@41844 ` 195` ``` | prop_of (External (_, prop)) = prop; ``` krauss@41844 ` 196` krauss@41844 ` 197` ```fun nprems_of (Internal (_, thm)) = Thm.nprems_of thm ``` krauss@41844 ` 198` ``` | nprems_of (External (_, prop)) = Logic.count_prems prop; ``` krauss@41844 ` 199` krauss@41844 ` 200` ```fun major_prem_of (Internal (_, thm)) = Thm.major_prem_of thm ``` krauss@41844 ` 201` ``` | major_prem_of (External (_, prop)) = ``` krauss@41844 ` 202` ``` Logic.strip_assums_concl (hd (Logic.strip_imp_prems prop)); ``` krauss@41844 ` 203` krauss@41844 ` 204` ```fun fact_ref_of (Internal (fact_ref, _)) = fact_ref ``` krauss@41844 ` 205` ``` | fact_ref_of (External (fact_ref, _)) = fact_ref; ``` wenzelm@30142 ` 206` wenzelm@43620 ` 207` wenzelm@43620 ` 208` wenzelm@16033 ` 209` ```(** search criterion filters **) ``` wenzelm@16033 ` 210` kleing@16895 ` 211` ```(*generated filters are to be of the form ``` krauss@41844 ` 212` ``` input: theorem ``` wenzelm@17106 ` 213` ``` output: (p:int, s:int) option, where ``` kleing@16895 ` 214` ``` NONE indicates no match ``` wenzelm@17106 ` 215` ``` p is the primary sorting criterion ``` kleing@16895 ` 216` ``` (eg. number of assumptions in the theorem) ``` kleing@16895 ` 217` ``` s is the secondary sorting criterion ``` kleing@16895 ` 218` ``` (eg. size of the substitution for intro, elim and dest) ``` kleing@16895 ` 219` ``` when applying a set of filters to a thm, fold results in: ``` kleing@16895 ` 220` ``` (biggest p, sum of all s) ``` wenzelm@17106 ` 221` ``` currently p and s only matter for intro, elim, dest and simp filters, ``` wenzelm@17106 ` 222` ``` otherwise the default ordering is used. ``` kleing@16895 ` 223` ```*) ``` kleing@16895 ` 224` kleing@16088 ` 225` kleing@16088 ` 226` ```(* matching theorems *) ``` wenzelm@17106 ` 227` wenzelm@35625 ` 228` ```fun is_nontrivial thy = Term.is_Const o Term.head_of o Object_Logic.drop_judgment thy; ``` kleing@16088 ` 229` kleing@16964 ` 230` ```(*extract terms from term_src, refine them to the parts that concern us, ``` kleing@16964 ` 231` ``` if po try match them against obj else vice versa. ``` kleing@16964 ` 232` ``` trivial matches are ignored. ``` kleing@16964 ` 233` ``` returns: smallest substitution size*) ``` wenzelm@46717 ` 234` ```fun is_matching_thm (extract_terms, refine_term) ctxt po obj term_src = ``` kleing@16088 ` 235` ``` let ``` wenzelm@42360 ` 236` ``` val thy = Proof_Context.theory_of ctxt; ``` kleing@16088 ` 237` wenzelm@16486 ` 238` ``` fun matches pat = ``` wenzelm@46717 ` 239` ``` is_nontrivial thy pat andalso ``` wenzelm@46717 ` 240` ``` Pattern.matches thy (if po then (pat, obj) else (obj, pat)); ``` kleing@16895 ` 241` kleing@16895 ` 242` ``` fun substsize pat = ``` wenzelm@18184 ` 243` ``` let val (_, subst) = ``` wenzelm@18184 ` 244` ``` Pattern.match thy (if po then (pat, obj) else (obj, pat)) (Vartab.empty, Vartab.empty) ``` wenzelm@17205 ` 245` ``` in Vartab.fold (fn (_, (_, t)) => fn n => size_of_term t + n) subst 0 end; ``` kleing@16088 ` 246` kleing@16895 ` 247` ``` fun bestmatch [] = NONE ``` wenzelm@33029 ` 248` ``` | bestmatch xs = SOME (foldl1 Int.min xs); ``` kleing@16895 ` 249` kleing@16964 ` 250` ``` val match_thm = matches o refine_term; ``` wenzelm@16486 ` 251` ``` in ``` wenzelm@46717 ` 252` ``` map (substsize o refine_term) (filter match_thm (extract_terms term_src)) ``` wenzelm@26283 ` 253` ``` |> bestmatch ``` kleing@16088 ` 254` ``` end; ``` kleing@16088 ` 255` kleing@16088 ` 256` wenzelm@16033 ` 257` ```(* filter_name *) ``` wenzelm@16033 ` 258` krauss@41844 ` 259` ```fun filter_name str_pat theorem = ``` krauss@41844 ` 260` ``` if match_string str_pat (Facts.name_of_ref (fact_ref_of theorem)) ``` wenzelm@17205 ` 261` ``` then SOME (0, 0) else NONE; ``` wenzelm@16033 ` 262` wenzelm@30142 ` 263` kleing@29857 ` 264` ```(* filter intro/elim/dest/solves rules *) ``` wenzelm@16033 ` 265` krauss@41844 ` 266` ```fun filter_dest ctxt goal theorem = ``` wenzelm@16033 ` 267` ``` let ``` kleing@16964 ` 268` ``` val extract_dest = ``` krauss@41844 ` 269` ``` (fn theorem => if nprems_of theorem = 0 then [] else [prop_of theorem], ``` wenzelm@16033 ` 270` ``` hd o Logic.strip_imp_prems); ``` wenzelm@16033 ` 271` ``` val prems = Logic.prems_of_goal goal 1; ``` kleing@16895 ` 272` wenzelm@46717 ` 273` ``` fun try_subst prem = is_matching_thm extract_dest ctxt true prem theorem; ``` wenzelm@19482 ` 274` ``` val successful = prems |> map_filter try_subst; ``` wenzelm@16033 ` 275` ``` in ``` kleing@16895 ` 276` ``` (*if possible, keep best substitution (one with smallest size)*) ``` wenzelm@17106 ` 277` ``` (*dest rules always have assumptions, so a dest with one ``` kleing@16895 ` 278` ``` assumption is as good as an intro rule with none*) ``` wenzelm@17205 ` 279` ``` if not (null successful) ``` krauss@41844 ` 280` ``` then SOME (nprems_of theorem - 1, foldl1 Int.min successful) else NONE ``` wenzelm@16033 ` 281` ``` end; ``` wenzelm@16033 ` 282` wenzelm@46717 ` 283` ```fun filter_intro ctxt goal theorem = ``` wenzelm@16033 ` 284` ``` let ``` krauss@41844 ` 285` ``` val extract_intro = (single o prop_of, Logic.strip_imp_concl); ``` wenzelm@16036 ` 286` ``` val concl = Logic.concl_of_goal goal 1; ``` wenzelm@46717 ` 287` ``` val ss = is_matching_thm extract_intro ctxt true concl theorem; ``` wenzelm@16033 ` 288` ``` in ``` krauss@41844 ` 289` ``` if is_some ss then SOME (nprems_of theorem, the ss) else NONE ``` wenzelm@16033 ` 290` ``` end; ``` wenzelm@16033 ` 291` krauss@41844 ` 292` ```fun filter_elim ctxt goal theorem = ``` krauss@41844 ` 293` ``` if nprems_of theorem > 0 then ``` kleing@16964 ` 294` ``` let ``` krauss@41844 ` 295` ``` val rule = prop_of theorem; ``` kleing@16964 ` 296` ``` val prems = Logic.prems_of_goal goal 1; ``` kleing@16964 ` 297` ``` val goal_concl = Logic.concl_of_goal goal 1; ``` wenzelm@26283 ` 298` ``` val rule_mp = hd (Logic.strip_imp_prems rule); ``` kleing@16964 ` 299` ``` val rule_concl = Logic.strip_imp_concl rule; ``` wenzelm@26283 ` 300` ``` fun combine t1 t2 = Const ("*combine*", dummyT --> dummyT) \$ (t1 \$ t2); ``` kleing@16964 ` 301` ``` val rule_tree = combine rule_mp rule_concl; ``` wenzelm@26283 ` 302` ``` fun goal_tree prem = combine prem goal_concl; ``` wenzelm@46717 ` 303` ``` fun try_subst prem = is_matching_thm (single, I) ctxt true (goal_tree prem) rule_tree; ``` wenzelm@19482 ` 304` ``` val successful = prems |> map_filter try_subst; ``` kleing@16964 ` 305` ``` in ``` wenzelm@32798 ` 306` ``` (*elim rules always have assumptions, so an elim with one ``` wenzelm@32798 ` 307` ``` assumption is as good as an intro rule with none*) ``` wenzelm@42360 ` 308` ``` if is_nontrivial (Proof_Context.theory_of ctxt) (major_prem_of theorem) ``` wenzelm@17205 ` 309` ``` andalso not (null successful) ``` krauss@41844 ` 310` ``` then SOME (nprems_of theorem - 1, foldl1 Int.min successful) else NONE ``` kleing@16964 ` 311` ``` end ``` wenzelm@46718 ` 312` ``` else NONE; ``` wenzelm@16036 ` 313` wenzelm@30143 ` 314` ```fun filter_solves ctxt goal = ``` wenzelm@30143 ` 315` ``` let ``` wenzelm@52704 ` 316` ``` val thy' = ``` wenzelm@52704 ` 317` ``` Proof_Context.theory_of ctxt ``` wenzelm@52788 ` 318` ``` |> Context_Position.set_visible_global (Context_Position.is_visible ctxt); ``` wenzelm@52704 ` 319` ``` val ctxt' = Proof_Context.transfer thy' ctxt; ``` wenzelm@52704 ` 320` ``` val goal' = Thm.transfer thy' goal; ``` wenzelm@52704 ` 321` wenzelm@52702 ` 322` ``` fun etacn thm i = ``` wenzelm@52702 ` 323` ``` Seq.take (Options.default_int @{option find_theorems_tac_limit}) o etac thm i; ``` wenzelm@30143 ` 324` ``` fun try_thm thm = ``` wenzelm@52704 ` 325` ``` if Thm.no_prems thm then rtac thm 1 goal' ``` wenzelm@52704 ` 326` ``` else (etacn thm THEN_ALL_NEW (Goal.norm_hhf_tac THEN' Method.assm_tac ctxt')) 1 goal'; ``` kleing@29857 ` 327` ``` in ``` krauss@41844 ` 328` ``` fn Internal (_, thm) => ``` wenzelm@43620 ` 329` ``` if is_some (Seq.pull (try_thm thm)) ``` wenzelm@43620 ` 330` ``` then SOME (Thm.nprems_of thm, 0) else NONE ``` krauss@41844 ` 331` ``` | External _ => NONE ``` kleing@29857 ` 332` ``` end; ``` wenzelm@16033 ` 333` wenzelm@30142 ` 334` kleing@16074 ` 335` ```(* filter_simp *) ``` wenzelm@16033 ` 336` krauss@41844 ` 337` ```fun filter_simp ctxt t (Internal (_, thm)) = ``` krauss@41844 ` 338` ``` let ``` wenzelm@51717 ` 339` ``` val mksimps = Simplifier.mksimps ctxt; ``` krauss@41844 ` 340` ``` val extract_simp = ``` krauss@41844 ` 341` ``` (map Thm.full_prop_of o mksimps, #1 o Logic.dest_equals o Logic.strip_imp_concl); ``` wenzelm@46717 ` 342` ``` val ss = is_matching_thm extract_simp ctxt false t thm; ``` krauss@41844 ` 343` ``` in ``` krauss@41844 ` 344` ``` if is_some ss then SOME (Thm.nprems_of thm, the ss) else NONE ``` krauss@41844 ` 345` ``` end ``` krauss@41844 ` 346` ``` | filter_simp _ _ (External _) = NONE; ``` wenzelm@16033 ` 347` wenzelm@16033 ` 348` wenzelm@16033 ` 349` ```(* filter_pattern *) ``` wenzelm@16033 ` 350` wenzelm@32798 ` 351` ```fun get_names t = Term.add_const_names t (Term.add_free_names t []); ``` kleing@28900 ` 352` wenzelm@30143 ` 353` ```(*Including all constants and frees is only sound because ``` wenzelm@30143 ` 354` ``` matching uses higher-order patterns. If full matching ``` wenzelm@30143 ` 355` ``` were used, then constants that may be subject to ``` wenzelm@30143 ` 356` ``` beta-reduction after substitution of frees should ``` wenzelm@30143 ` 357` ``` not be included for LHS set because they could be ``` wenzelm@30143 ` 358` ``` thrown away by the substituted function. ``` wenzelm@30143 ` 359` ``` e.g. for (?F 1 2) do not include 1 or 2, if it were ``` wenzelm@30143 ` 360` ``` possible for ?F to be (% x y. 3) ``` wenzelm@30143 ` 361` ``` The largest possible set should always be included on ``` wenzelm@30143 ` 362` ``` the RHS.*) ``` wenzelm@30143 ` 363` wenzelm@30143 ` 364` ```fun filter_pattern ctxt pat = ``` wenzelm@30143 ` 365` ``` let ``` kleing@29857 ` 366` ``` val pat_consts = get_names pat; ``` kleing@28900 ` 367` krauss@41844 ` 368` ``` fun check (theorem, NONE) = check (theorem, SOME (get_names (prop_of theorem))) ``` krauss@41844 ` 369` ``` | check (theorem, c as SOME thm_consts) = ``` haftmann@33038 ` 370` ``` (if subset (op =) (pat_consts, thm_consts) andalso ``` wenzelm@42360 ` 371` ``` Pattern.matches_subterm (Proof_Context.theory_of ctxt) (pat, prop_of theorem) ``` wenzelm@32798 ` 372` ``` then SOME (0, 0) else NONE, c); ``` kleing@28900 ` 373` ``` in check end; ``` wenzelm@16033 ` 374` wenzelm@30142 ` 375` wenzelm@16033 ` 376` ```(* interpret criteria as filters *) ``` wenzelm@16033 ` 377` wenzelm@16036 ` 378` ```local ``` wenzelm@16036 ` 379` wenzelm@16036 ` 380` ```fun err_no_goal c = ``` wenzelm@16036 ` 381` ``` error ("Current goal required for " ^ c ^ " search criterion"); ``` wenzelm@16036 ` 382` kleing@29857 ` 383` ```val fix_goal = Thm.prop_of; ``` kleing@29857 ` 384` kleing@28900 ` 385` ```fun filter_crit _ _ (Name name) = apfst (filter_name name) ``` wenzelm@16036 ` 386` ``` | filter_crit _ NONE Intro = err_no_goal "intro" ``` wenzelm@16036 ` 387` ``` | filter_crit _ NONE Elim = err_no_goal "elim" ``` wenzelm@16036 ` 388` ``` | filter_crit _ NONE Dest = err_no_goal "dest" ``` kleing@29857 ` 389` ``` | filter_crit _ NONE Solves = err_no_goal "solves" ``` wenzelm@46717 ` 390` ``` | filter_crit ctxt (SOME goal) Intro = apfst (filter_intro ctxt (fix_goal goal)) ``` wenzelm@30143 ` 391` ``` | filter_crit ctxt (SOME goal) Elim = apfst (filter_elim ctxt (fix_goal goal)) ``` wenzelm@30143 ` 392` ``` | filter_crit ctxt (SOME goal) Dest = apfst (filter_dest ctxt (fix_goal goal)) ``` kleing@29857 ` 393` ``` | filter_crit ctxt (SOME goal) Solves = apfst (filter_solves ctxt goal) ``` kleing@28900 ` 394` ``` | filter_crit ctxt _ (Simp pat) = apfst (filter_simp ctxt pat) ``` kleing@16088 ` 395` ``` | filter_crit ctxt _ (Pattern pat) = filter_pattern ctxt pat; ``` wenzelm@16036 ` 396` wenzelm@19502 ` 397` ```fun opt_not x = if is_some x then NONE else SOME (0, 0); ``` kleing@16895 ` 398` wenzelm@17756 ` 399` ```fun opt_add (SOME (a, x)) (SOME (b, y)) = SOME (Int.max (a, b), x + y : int) ``` wenzelm@26283 ` 400` ``` | opt_add _ _ = NONE; ``` kleing@16895 ` 401` wenzelm@30143 ` 402` ```fun app_filters thm = ``` wenzelm@30143 ` 403` ``` let ``` kleing@28900 ` 404` ``` fun app (NONE, _, _) = NONE ``` wenzelm@32798 ` 405` ``` | app (SOME v, _, []) = SOME (v, thm) ``` wenzelm@30143 ` 406` ``` | app (r, consts, f :: fs) = ``` wenzelm@30143 ` 407` ``` let val (r', consts') = f (thm, consts) ``` wenzelm@30143 ` 408` ``` in app (opt_add r r', consts', fs) end; ``` kleing@28900 ` 409` ``` in app end; ``` kleing@28900 ` 410` wenzelm@16036 ` 411` ```in ``` wenzelm@16033 ` 412` wenzelm@16033 ` 413` ```fun filter_criterion ctxt opt_goal (b, c) = ``` kleing@28900 ` 414` ``` (if b then I else (apfst opt_not)) o filter_crit ctxt opt_goal c; ``` kleing@16895 ` 415` krauss@41844 ` 416` ```fun sorted_filter filters theorems = ``` kleing@16895 ` 417` ``` let ``` krauss@41844 ` 418` ``` fun eval_filters theorem = app_filters theorem (SOME (0, 0), NONE, filters); ``` wenzelm@16033 ` 419` kleing@16895 ` 420` ``` (*filters return: (number of assumptions, substitution size) option, so ``` kleing@16964 ` 421` ``` sort (desc. in both cases) according to number of assumptions first, ``` kleing@16895 ` 422` ``` then by the substitution size*) ``` krauss@41844 ` 423` ``` fun result_ord (((p0, s0), _), ((p1, s1), _)) = ``` wenzelm@17205 ` 424` ``` prod_ord int_ord int_ord ((p1, s1), (p0, s0)); ``` wenzelm@46977 ` 425` ``` in ``` wenzelm@46977 ` 426` ``` grouped 100 Par_List.map eval_filters theorems ``` wenzelm@46977 ` 427` ``` |> map_filter I |> sort result_ord |> map #2 ``` wenzelm@46977 ` 428` ``` end; ``` wenzelm@16033 ` 429` wenzelm@30822 ` 430` ```fun lazy_filter filters = ``` wenzelm@30822 ` 431` ``` let ``` Timothy@30785 ` 432` ``` fun lazy_match thms = Seq.make (fn () => first_match thms) ``` Timothy@30785 ` 433` ``` and first_match [] = NONE ``` wenzelm@30822 ` 434` ``` | first_match (thm :: thms) = ``` wenzelm@30822 ` 435` ``` (case app_filters thm (SOME (0, 0), NONE, filters) of ``` Timothy@30785 ` 436` ``` NONE => first_match thms ``` wenzelm@30822 ` 437` ``` | SOME (_, t) => SOME (t, lazy_match thms)); ``` Timothy@30785 ` 438` ``` in lazy_match end; ``` wenzelm@30822 ` 439` wenzelm@16036 ` 440` ```end; ``` wenzelm@16036 ` 441` wenzelm@16033 ` 442` kleing@22414 ` 443` ```(* removing duplicates, preferring nicer names, roughly n log n *) ``` kleing@22340 ` 444` wenzelm@25226 ` 445` ```local ``` wenzelm@25226 ` 446` huffman@27486 ` 447` ```val index_ord = option_ord (K EQUAL); ``` wenzelm@33095 ` 448` ```val hidden_ord = bool_ord o pairself Name_Space.is_hidden; ``` wenzelm@30364 ` 449` ```val qual_ord = int_ord o pairself (length o Long_Name.explode); ``` wenzelm@25226 ` 450` ```val txt_ord = int_ord o pairself size; ``` wenzelm@25226 ` 451` huffman@27486 ` 452` ```fun nicer_name (x, i) (y, j) = ``` huffman@27486 ` 453` ``` (case hidden_ord (x, y) of EQUAL => ``` huffman@27486 ` 454` ``` (case index_ord (i, j) of EQUAL => ``` huffman@27486 ` 455` ``` (case qual_ord (x, y) of EQUAL => txt_ord (x, y) | ord => ord) ``` huffman@27486 ` 456` ``` | ord => ord) ``` wenzelm@25226 ` 457` ``` | ord => ord) <> GREATER; ``` wenzelm@25226 ` 458` Timothy@29848 ` 459` ```fun rem_cdups nicer xs = ``` wenzelm@26336 ` 460` ``` let ``` wenzelm@26336 ` 461` ``` fun rem_c rev_seen [] = rev rev_seen ``` wenzelm@26336 ` 462` ``` | rem_c rev_seen [x] = rem_c (x :: rev_seen) [] ``` krauss@41844 ` 463` ``` | rem_c rev_seen ((x as (t, _)) :: (y as (t', _)) :: xs) = ``` krauss@41844 ` 464` ``` if (prop_of t) aconv (prop_of t') ``` krauss@41844 ` 465` ``` then rem_c rev_seen ((if nicer (fact_ref_of t) (fact_ref_of t') then x else y) :: xs) ``` wenzelm@30822 ` 466` ``` else rem_c (x :: rev_seen) (y :: xs) ``` wenzelm@26336 ` 467` ``` in rem_c [] xs end; ``` wenzelm@25226 ` 468` wenzelm@26336 ` 469` ```in ``` wenzelm@25226 ` 470` wenzelm@30143 ` 471` ```fun nicer_shortest ctxt = ``` wenzelm@30143 ` 472` ``` let ``` wenzelm@46718 ` 473` ``` (* FIXME Why global name space!?? *) ``` wenzelm@42360 ` 474` ``` val space = Facts.space_of (Global_Theory.facts_of (Proof_Context.theory_of ctxt)); ``` Timothy@29848 ` 475` wenzelm@30216 ` 476` ``` val shorten = ``` wenzelm@42358 ` 477` ``` Name_Space.extern ``` wenzelm@42358 ` 478` ``` (ctxt ``` wenzelm@42669 ` 479` ``` |> Config.put Name_Space.names_long false ``` wenzelm@42669 ` 480` ``` |> Config.put Name_Space.names_short false ``` wenzelm@42669 ` 481` ``` |> Config.put Name_Space.names_unique false) space; ``` Timothy@29848 ` 482` Timothy@29848 ` 483` ``` fun nicer (Facts.Named ((x, _), i)) (Facts.Named ((y, _), j)) = ``` Timothy@29848 ` 484` ``` nicer_name (shorten x, i) (shorten y, j) ``` Timothy@29848 ` 485` ``` | nicer (Facts.Fact _) (Facts.Named _) = true ``` Timothy@29848 ` 486` ``` | nicer (Facts.Named _) (Facts.Fact _) = false; ``` Timothy@29848 ` 487` ``` in nicer end; ``` Timothy@29848 ` 488` Timothy@29848 ` 489` ```fun rem_thm_dups nicer xs = ``` wenzelm@26336 ` 490` ``` xs ~~ (1 upto length xs) ``` krauss@41844 ` 491` ``` |> sort (Term_Ord.fast_term_ord o pairself (prop_of o #1)) ``` Timothy@29848 ` 492` ``` |> rem_cdups nicer ``` wenzelm@26336 ` 493` ``` |> sort (int_ord o pairself #2) ``` wenzelm@26336 ` 494` ``` |> map #1; ``` kleing@22340 ` 495` wenzelm@26336 ` 496` ```end; ``` kleing@22340 ` 497` kleing@22340 ` 498` wenzelm@16033 ` 499` ```(* print_theorems *) ``` wenzelm@16033 ` 500` wenzelm@26283 ` 501` ```fun all_facts_of ctxt = ``` krauss@33381 ` 502` ``` let ``` wenzelm@33382 ` 503` ``` fun visible_facts facts = ``` wenzelm@33382 ` 504` ``` Facts.dest_static [] facts ``` wenzelm@33382 ` 505` ``` |> filter_out (Facts.is_concealed facts o #1); ``` krauss@33381 ` 506` ``` in ``` krauss@33381 ` 507` ``` maps Facts.selections ``` wenzelm@42360 ` 508` ``` (visible_facts (Global_Theory.facts_of (Proof_Context.theory_of ctxt)) @ ``` wenzelm@42360 ` 509` ``` visible_facts (Proof_Context.facts_of ctxt)) ``` krauss@33381 ` 510` ``` end; ``` wenzelm@17972 ` 511` krauss@43070 ` 512` ```fun filter_theorems ctxt theorems query = ``` wenzelm@16033 ` 513` ``` let ``` wenzelm@46718 ` 514` ``` val {goal = opt_goal, limit = opt_limit, rem_dups, criteria} = query; ``` krauss@43069 ` 515` ``` val filters = map (filter_criterion ctxt opt_goal) criteria; ``` wenzelm@16033 ` 516` krauss@41844 ` 517` ``` fun find_all theorems = ``` Timothy@30785 ` 518` ``` let ``` krauss@41844 ` 519` ``` val raw_matches = sorted_filter filters theorems; ``` Timothy@30785 ` 520` Timothy@30785 ` 521` ``` val matches = ``` Timothy@30785 ` 522` ``` if rem_dups ``` Timothy@30785 ` 523` ``` then rem_thm_dups (nicer_shortest ctxt) raw_matches ``` Timothy@30785 ` 524` ``` else raw_matches; ``` kleing@28900 ` 525` Timothy@30785 ` 526` ``` val len = length matches; ``` wenzelm@52702 ` 527` ``` val lim = the_default (Options.default_int @{option find_theorems_limit}) opt_limit; ``` haftmann@34088 ` 528` ``` in (SOME len, drop (Int.max (len - lim, 0)) matches) end; ``` Timothy@30785 ` 529` Timothy@30785 ` 530` ``` val find = ``` Timothy@30785 ` 531` ``` if rem_dups orelse is_none opt_limit ``` Timothy@30785 ` 532` ``` then find_all ``` wenzelm@30822 ` 533` ``` else pair NONE o Seq.list_of o Seq.take (the opt_limit) o lazy_filter filters; ``` Timothy@30785 ` 534` krauss@41844 ` 535` ``` in find theorems end; ``` kleing@29857 ` 536` wenzelm@46718 ` 537` ```fun filter_theorems_cmd ctxt theorems raw_query = ``` wenzelm@46718 ` 538` ``` filter_theorems ctxt theorems (map_criteria ``` krauss@43070 ` 539` ``` (map (apsnd (read_criterion ctxt))) raw_query); ``` krauss@43067 ` 540` krauss@43067 ` 541` ```fun gen_find_theorems filter ctxt opt_goal opt_limit rem_dups raw_criteria = ``` krauss@43069 ` 542` ``` let ``` krauss@43069 ` 543` ``` val assms = ``` krauss@43069 ` 544` ``` Proof_Context.get_fact ctxt (Facts.named "local.assms") ``` krauss@43069 ` 545` ``` handle ERROR _ => []; ``` krauss@43069 ` 546` ``` val add_prems = Seq.hd o TRY (Method.insert_tac assms 1); ``` krauss@43069 ` 547` ``` val opt_goal' = Option.map add_prems opt_goal; ``` krauss@43069 ` 548` ``` in ``` wenzelm@46718 ` 549` ``` filter ctxt (map Internal (all_facts_of ctxt)) ``` wenzelm@46718 ` 550` ``` {goal = opt_goal', limit = opt_limit, rem_dups = rem_dups, criteria = raw_criteria} ``` krauss@43069 ` 551` ``` |> apsnd (map (fn Internal f => f)) ``` krauss@43069 ` 552` ``` end; ``` wenzelm@30186 ` 553` krauss@43067 ` 554` ```val find_theorems = gen_find_theorems filter_theorems; ``` krauss@43067 ` 555` ```val find_theorems_cmd = gen_find_theorems filter_theorems_cmd; ``` krauss@43067 ` 556` wenzelm@49888 ` 557` ```fun pretty_ref ctxt thmref = ``` wenzelm@49888 ` 558` ``` let ``` wenzelm@49888 ` 559` ``` val (name, sel) = ``` wenzelm@49888 ` 560` ``` (case thmref of ``` wenzelm@49888 ` 561` ``` Facts.Named ((name, _), sel) => (name, sel) ``` wenzelm@49888 ` 562` ``` | Facts.Fact _ => raise Fail "Illegal literal fact"); ``` wenzelm@49888 ` 563` ``` in ``` wenzelm@49888 ` 564` ``` [Pretty.mark (Proof_Context.markup_fact ctxt name) (Pretty.str name), ``` wenzelm@49888 ` 565` ``` Pretty.str (Facts.string_of_selection sel), Pretty.str ":", Pretty.brk 1] ``` wenzelm@49888 ` 566` ``` end; ``` wenzelm@49888 ` 567` wenzelm@49888 ` 568` ```fun pretty_theorem ctxt (Internal (thmref, thm)) = ``` wenzelm@49888 ` 569` ``` Pretty.block (pretty_ref ctxt thmref @ [Display.pretty_thm ctxt thm]) ``` wenzelm@49888 ` 570` ``` | pretty_theorem ctxt (External (thmref, prop)) = ``` wenzelm@49888 ` 571` ``` Pretty.block (pretty_ref ctxt thmref @ [Syntax.unparse_term ctxt prop]); ``` wenzelm@30186 ` 572` krauss@41845 ` 573` ```fun pretty_thm ctxt (thmref, thm) = pretty_theorem ctxt (Internal (thmref, thm)); ``` krauss@41845 ` 574` krauss@43076 ` 575` ```fun gen_print_theorems find ctxt opt_goal opt_limit rem_dups raw_criteria = ``` wenzelm@30143 ` 576` ``` let ``` kleing@29857 ` 577` ``` val criteria = map (apsnd (read_criterion ctxt)) raw_criteria; ``` krauss@43076 ` 578` ``` val (foundo, theorems) = find ``` wenzelm@46718 ` 579` ``` {goal = opt_goal, limit = opt_limit, rem_dups = rem_dups, criteria = criteria}; ``` krauss@41845 ` 580` ``` val returned = length theorems; ``` wenzelm@31684 ` 581` Timothy@30785 ` 582` ``` val tally_msg = ``` wenzelm@30822 ` 583` ``` (case foundo of ``` wenzelm@38335 ` 584` ``` NONE => "displaying " ^ string_of_int returned ^ " theorem(s)" ``` wenzelm@30822 ` 585` ``` | SOME found => ``` wenzelm@38335 ` 586` ``` "found " ^ string_of_int found ^ " theorem(s)" ^ ``` wenzelm@30822 ` 587` ``` (if returned < found ``` wenzelm@30822 ` 588` ``` then " (" ^ string_of_int returned ^ " displayed)" ``` wenzelm@30822 ` 589` ``` else "")); ``` wenzelm@16033 ` 590` ``` in ``` wenzelm@38335 ` 591` ``` Pretty.big_list "searched for:" (map (pretty_criterion ctxt) criteria) :: ``` wenzelm@38335 ` 592` ``` Pretty.str "" :: ``` wenzelm@46716 ` 593` ``` (if null theorems then [Pretty.str "nothing found"] ``` wenzelm@38335 ` 594` ``` else ``` wenzelm@46716 ` 595` ``` [Pretty.str (tally_msg ^ ":"), Pretty.str ""] @ ``` wenzelm@46977 ` 596` ``` grouped 10 Par_List.map (pretty_theorem ctxt) theorems) ``` wenzelm@52703 ` 597` ``` end |> Pretty.fbreaks |> curry Pretty.blk 0 |> Pretty.writeln; ``` wenzelm@30142 ` 598` krauss@43076 ` 599` ```fun print_theorems ctxt = ``` krauss@43076 ` 600` ``` gen_print_theorems (filter_theorems ctxt (map Internal (all_facts_of ctxt))) ctxt; ``` wenzelm@30142 ` 601` wenzelm@32798 ` 602` wenzelm@46718 ` 603` wenzelm@30142 ` 604` ```(** command syntax **) ``` wenzelm@30142 ` 605` wenzelm@30142 ` 606` ```local ``` wenzelm@30142 ` 607` wenzelm@30142 ` 608` ```val criterion = ``` wenzelm@36950 ` 609` ``` Parse.reserved "name" |-- Parse.!!! (Parse.\$\$\$ ":" |-- Parse.xname) >> Name || ``` wenzelm@36950 ` 610` ``` Parse.reserved "intro" >> K Intro || ``` wenzelm@36950 ` 611` ``` Parse.reserved "elim" >> K Elim || ``` wenzelm@36950 ` 612` ``` Parse.reserved "dest" >> K Dest || ``` wenzelm@36950 ` 613` ``` Parse.reserved "solves" >> K Solves || ``` wenzelm@36950 ` 614` ``` Parse.reserved "simp" |-- Parse.!!! (Parse.\$\$\$ ":" |-- Parse.term) >> Simp || ``` wenzelm@36950 ` 615` ``` Parse.term >> Pattern; ``` wenzelm@30142 ` 616` wenzelm@30142 ` 617` ```val options = ``` wenzelm@30142 ` 618` ``` Scan.optional ``` wenzelm@36950 ` 619` ``` (Parse.\$\$\$ "(" |-- ``` wenzelm@36950 ` 620` ``` Parse.!!! (Scan.option Parse.nat -- Scan.optional (Parse.reserved "with_dups" >> K false) true ``` wenzelm@36950 ` 621` ``` --| Parse.\$\$\$ ")")) (NONE, true); ``` wenzelm@30142 ` 622` ```in ``` wenzelm@30142 ` 623` krauss@43068 ` 624` ```val query_parser = Scan.repeat (((Scan.option Parse.minus >> is_none) -- criterion)); ``` krauss@43068 ` 625` wenzelm@30142 ` 626` ```val _ = ``` wenzelm@48646 ` 627` ``` Outer_Syntax.improper_command @{command_spec "find_theorems"} ``` wenzelm@50214 ` 628` ``` "find theorems meeting specified criteria" ``` krauss@43068 ` 629` ``` (options -- query_parser ``` wenzelm@38334 ` 630` ``` >> (fn ((opt_lim, rem_dups), spec) => ``` wenzelm@38334 ` 631` ``` Toplevel.keep (fn state => ``` wenzelm@38334 ` 632` ``` let ``` wenzelm@38334 ` 633` ``` val ctxt = Toplevel.context_of state; ``` wenzelm@38334 ` 634` ``` val opt_goal = try (Proof.simple_goal o Toplevel.proof_of) state |> Option.map #goal; ``` wenzelm@52704 ` 635` ``` in print_theorems ctxt opt_goal opt_lim rem_dups spec end))); ``` wenzelm@16033 ` 636` wenzelm@16033 ` 637` ```end; ``` wenzelm@30142 ` 638` wenzelm@52851 ` 639` wenzelm@52851 ` 640` wenzelm@52851 ` 641` ```(** print function **) ``` wenzelm@52851 ` 642` wenzelm@52851 ` 643` ```val _ = Command.print_function "find_theorems" ``` wenzelm@52851 ` 644` ``` (fn {args, ...} => ``` wenzelm@52851 ` 645` ``` if null args then NONE ``` wenzelm@52851 ` 646` ``` else ``` wenzelm@52851 ` 647` ``` SOME {delay = NONE, pri = 0, persistent = false, ``` wenzelm@52851 ` 648` ``` print_fn = fn _ => fn st => ``` wenzelm@52851 ` 649` ``` writeln (cat_lines ("find_theorems" :: args))}); ``` wenzelm@52851 ` 650` wenzelm@30142 ` 651` ```end; ```