src/HOL/Library/Multiset.thy
author kleing
Mon Jun 21 10:25:57 2004 +0200 (2004-06-21)
changeset 14981 e73f8140af78
parent 14738 83f1a514dcb4
child 15072 4861bf6af0b4
permissions -rw-r--r--
Merged in license change from Isabelle2004
wenzelm@10249
     1
(*  Title:      HOL/Library/Multiset.thy
wenzelm@10249
     2
    ID:         $Id$
wenzelm@12399
     3
    Author:     Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson
wenzelm@10249
     4
*)
wenzelm@10249
     5
wenzelm@14706
     6
header {* Multisets *}
wenzelm@10249
     7
wenzelm@10249
     8
theory Multiset = Accessible_Part:
wenzelm@10249
     9
wenzelm@10249
    10
subsection {* The type of multisets *}
wenzelm@10249
    11
wenzelm@10249
    12
typedef 'a multiset = "{f::'a => nat. finite {x . 0 < f x}}"
wenzelm@10249
    13
proof
nipkow@11464
    14
  show "(\<lambda>x. 0::nat) \<in> ?multiset" by simp
wenzelm@10249
    15
qed
wenzelm@10249
    16
wenzelm@10249
    17
lemmas multiset_typedef [simp] =
wenzelm@10277
    18
    Abs_multiset_inverse Rep_multiset_inverse Rep_multiset
wenzelm@10277
    19
  and [simp] = Rep_multiset_inject [symmetric]
wenzelm@10249
    20
wenzelm@10249
    21
constdefs
wenzelm@10249
    22
  Mempty :: "'a multiset"    ("{#}")
nipkow@11464
    23
  "{#} == Abs_multiset (\<lambda>a. 0)"
wenzelm@10249
    24
wenzelm@10249
    25
  single :: "'a => 'a multiset"    ("{#_#}")
wenzelm@11701
    26
  "{#a#} == Abs_multiset (\<lambda>b. if b = a then 1 else 0)"
wenzelm@10249
    27
wenzelm@10249
    28
  count :: "'a multiset => 'a => nat"
wenzelm@10249
    29
  "count == Rep_multiset"
wenzelm@10249
    30
wenzelm@10249
    31
  MCollect :: "'a multiset => ('a => bool) => 'a multiset"
nipkow@11464
    32
  "MCollect M P == Abs_multiset (\<lambda>x. if P x then Rep_multiset M x else 0)"
wenzelm@10249
    33
wenzelm@10249
    34
syntax
wenzelm@10249
    35
  "_Melem" :: "'a => 'a multiset => bool"    ("(_/ :# _)" [50, 51] 50)
wenzelm@10249
    36
  "_MCollect" :: "pttrn => 'a multiset => bool => 'a multiset"    ("(1{# _ : _./ _#})")
wenzelm@10249
    37
translations
wenzelm@10249
    38
  "a :# M" == "0 < count M a"
nipkow@11464
    39
  "{#x:M. P#}" == "MCollect M (\<lambda>x. P)"
wenzelm@10249
    40
wenzelm@10249
    41
constdefs
wenzelm@10249
    42
  set_of :: "'a multiset => 'a set"
wenzelm@10249
    43
  "set_of M == {x. x :# M}"
wenzelm@10249
    44
wenzelm@14691
    45
instance multiset :: (type) "{plus, minus, zero}" ..
wenzelm@10249
    46
wenzelm@10249
    47
defs (overloaded)
nipkow@11464
    48
  union_def: "M + N == Abs_multiset (\<lambda>a. Rep_multiset M a + Rep_multiset N a)"
nipkow@11464
    49
  diff_def: "M - N == Abs_multiset (\<lambda>a. Rep_multiset M a - Rep_multiset N a)"
wenzelm@11701
    50
  Zero_multiset_def [simp]: "0 == {#}"
wenzelm@10249
    51
  size_def: "size M == setsum (count M) (set_of M)"
wenzelm@10249
    52
wenzelm@10249
    53
wenzelm@10249
    54
text {*
wenzelm@10249
    55
 \medskip Preservation of the representing set @{term multiset}.
wenzelm@10249
    56
*}
wenzelm@10249
    57
nipkow@11464
    58
lemma const0_in_multiset [simp]: "(\<lambda>a. 0) \<in> multiset"
wenzelm@10249
    59
  apply (simp add: multiset_def)
wenzelm@10249
    60
  done
wenzelm@10249
    61
wenzelm@11701
    62
lemma only1_in_multiset [simp]: "(\<lambda>b. if b = a then 1 else 0) \<in> multiset"
wenzelm@10249
    63
  apply (simp add: multiset_def)
wenzelm@10249
    64
  done
wenzelm@10249
    65
wenzelm@10249
    66
lemma union_preserves_multiset [simp]:
nipkow@11464
    67
    "M \<in> multiset ==> N \<in> multiset ==> (\<lambda>a. M a + N a) \<in> multiset"
wenzelm@10249
    68
  apply (unfold multiset_def)
wenzelm@10249
    69
  apply simp
wenzelm@10249
    70
  apply (drule finite_UnI)
wenzelm@10249
    71
   apply assumption
wenzelm@10249
    72
  apply (simp del: finite_Un add: Un_def)
wenzelm@10249
    73
  done
wenzelm@10249
    74
wenzelm@10249
    75
lemma diff_preserves_multiset [simp]:
nipkow@11464
    76
    "M \<in> multiset ==> (\<lambda>a. M a - N a) \<in> multiset"
wenzelm@10249
    77
  apply (unfold multiset_def)
wenzelm@10249
    78
  apply simp
wenzelm@10249
    79
  apply (rule finite_subset)
wenzelm@10249
    80
   prefer 2
wenzelm@10249
    81
   apply assumption
wenzelm@10249
    82
  apply auto
wenzelm@10249
    83
  done
wenzelm@10249
    84
wenzelm@10249
    85
wenzelm@10249
    86
subsection {* Algebraic properties of multisets *}
wenzelm@10249
    87
wenzelm@10249
    88
subsubsection {* Union *}
wenzelm@10249
    89
nipkow@11464
    90
theorem union_empty [simp]: "M + {#} = M \<and> {#} + M = M"
wenzelm@10249
    91
  apply (simp add: union_def Mempty_def)
wenzelm@10249
    92
  done
wenzelm@10249
    93
wenzelm@10249
    94
theorem union_commute: "M + N = N + (M::'a multiset)"
wenzelm@10249
    95
  apply (simp add: union_def add_ac)
wenzelm@10249
    96
  done
wenzelm@10249
    97
wenzelm@10249
    98
theorem union_assoc: "(M + N) + K = M + (N + (K::'a multiset))"
wenzelm@10249
    99
  apply (simp add: union_def add_ac)
wenzelm@10249
   100
  done
wenzelm@10249
   101
wenzelm@10249
   102
theorem union_lcomm: "M + (N + K) = N + (M + (K::'a multiset))"
wenzelm@10249
   103
  apply (rule union_commute [THEN trans])
wenzelm@10249
   104
  apply (rule union_assoc [THEN trans])
wenzelm@10249
   105
  apply (rule union_commute [THEN arg_cong])
wenzelm@10249
   106
  done
wenzelm@10249
   107
wenzelm@10249
   108
theorems union_ac = union_assoc union_commute union_lcomm
wenzelm@10249
   109
obua@14738
   110
instance multiset :: (type) comm_monoid_add
obua@14722
   111
proof 
obua@14722
   112
  fix a b c :: "'a multiset"
obua@14722
   113
  show "(a + b) + c = a + (b + c)" by (rule union_assoc)
obua@14722
   114
  show "a + b = b + a" by (rule union_commute)
obua@14722
   115
  show "0 + a = a" by simp
obua@14722
   116
qed
wenzelm@10277
   117
wenzelm@10249
   118
wenzelm@10249
   119
subsubsection {* Difference *}
wenzelm@10249
   120
nipkow@11464
   121
theorem diff_empty [simp]: "M - {#} = M \<and> {#} - M = {#}"
wenzelm@10249
   122
  apply (simp add: Mempty_def diff_def)
wenzelm@10249
   123
  done
wenzelm@10249
   124
wenzelm@10249
   125
theorem diff_union_inverse2 [simp]: "M + {#a#} - {#a#} = M"
wenzelm@10249
   126
  apply (simp add: union_def diff_def)
wenzelm@10249
   127
  done
wenzelm@10249
   128
wenzelm@10249
   129
wenzelm@10249
   130
subsubsection {* Count of elements *}
wenzelm@10249
   131
wenzelm@10249
   132
theorem count_empty [simp]: "count {#} a = 0"
wenzelm@10249
   133
  apply (simp add: count_def Mempty_def)
wenzelm@10249
   134
  done
wenzelm@10249
   135
wenzelm@11701
   136
theorem count_single [simp]: "count {#b#} a = (if b = a then 1 else 0)"
wenzelm@10249
   137
  apply (simp add: count_def single_def)
wenzelm@10249
   138
  done
wenzelm@10249
   139
wenzelm@10249
   140
theorem count_union [simp]: "count (M + N) a = count M a + count N a"
wenzelm@10249
   141
  apply (simp add: count_def union_def)
wenzelm@10249
   142
  done
wenzelm@10249
   143
wenzelm@10249
   144
theorem count_diff [simp]: "count (M - N) a = count M a - count N a"
wenzelm@10249
   145
  apply (simp add: count_def diff_def)
wenzelm@10249
   146
  done
wenzelm@10249
   147
wenzelm@10249
   148
wenzelm@10249
   149
subsubsection {* Set of elements *}
wenzelm@10249
   150
wenzelm@10249
   151
theorem set_of_empty [simp]: "set_of {#} = {}"
wenzelm@10249
   152
  apply (simp add: set_of_def)
wenzelm@10249
   153
  done
wenzelm@10249
   154
wenzelm@10249
   155
theorem set_of_single [simp]: "set_of {#b#} = {b}"
wenzelm@10249
   156
  apply (simp add: set_of_def)
wenzelm@10249
   157
  done
wenzelm@10249
   158
nipkow@11464
   159
theorem set_of_union [simp]: "set_of (M + N) = set_of M \<union> set_of N"
wenzelm@10249
   160
  apply (auto simp add: set_of_def)
wenzelm@10249
   161
  done
wenzelm@10249
   162
wenzelm@10249
   163
theorem set_of_eq_empty_iff [simp]: "(set_of M = {}) = (M = {#})"
wenzelm@10249
   164
  apply (auto simp add: set_of_def Mempty_def count_def expand_fun_eq)
wenzelm@10249
   165
  done
wenzelm@10249
   166
nipkow@11464
   167
theorem mem_set_of_iff [simp]: "(x \<in> set_of M) = (x :# M)"
wenzelm@10249
   168
  apply (auto simp add: set_of_def)
wenzelm@10249
   169
  done
wenzelm@10249
   170
wenzelm@10249
   171
wenzelm@10249
   172
subsubsection {* Size *}
wenzelm@10249
   173
wenzelm@10249
   174
theorem size_empty [simp]: "size {#} = 0"
wenzelm@10249
   175
  apply (simp add: size_def)
wenzelm@10249
   176
  done
wenzelm@10249
   177
wenzelm@10249
   178
theorem size_single [simp]: "size {#b#} = 1"
wenzelm@10249
   179
  apply (simp add: size_def)
wenzelm@10249
   180
  done
wenzelm@10249
   181
wenzelm@10249
   182
theorem finite_set_of [iff]: "finite (set_of M)"
wenzelm@10249
   183
  apply (cut_tac x = M in Rep_multiset)
wenzelm@10249
   184
  apply (simp add: multiset_def set_of_def count_def)
wenzelm@10249
   185
  done
wenzelm@10249
   186
wenzelm@10249
   187
theorem setsum_count_Int:
nipkow@11464
   188
    "finite A ==> setsum (count N) (A \<inter> set_of N) = setsum (count N) A"
wenzelm@10249
   189
  apply (erule finite_induct)
wenzelm@10249
   190
   apply simp
wenzelm@10249
   191
  apply (simp add: Int_insert_left set_of_def)
wenzelm@10249
   192
  done
wenzelm@10249
   193
wenzelm@10249
   194
theorem size_union [simp]: "size (M + N::'a multiset) = size M + size N"
wenzelm@10249
   195
  apply (unfold size_def)
nipkow@11464
   196
  apply (subgoal_tac "count (M + N) = (\<lambda>a. count M a + count N a)")
wenzelm@10249
   197
   prefer 2
wenzelm@10249
   198
   apply (rule ext)
wenzelm@10249
   199
   apply simp
wenzelm@10249
   200
  apply (simp (no_asm_simp) add: setsum_Un setsum_addf setsum_count_Int)
wenzelm@10249
   201
  apply (subst Int_commute)
wenzelm@10249
   202
  apply (simp (no_asm_simp) add: setsum_count_Int)
wenzelm@10249
   203
  done
wenzelm@10249
   204
wenzelm@10249
   205
theorem size_eq_0_iff_empty [iff]: "(size M = 0) = (M = {#})"
wenzelm@10249
   206
  apply (unfold size_def Mempty_def count_def)
wenzelm@10249
   207
  apply auto
wenzelm@10249
   208
  apply (simp add: set_of_def count_def expand_fun_eq)
wenzelm@10249
   209
  done
wenzelm@10249
   210
nipkow@11464
   211
theorem size_eq_Suc_imp_elem: "size M = Suc n ==> \<exists>a. a :# M"
wenzelm@10249
   212
  apply (unfold size_def)
wenzelm@10249
   213
  apply (drule setsum_SucD)
wenzelm@10249
   214
  apply auto
wenzelm@10249
   215
  done
wenzelm@10249
   216
wenzelm@10249
   217
wenzelm@10249
   218
subsubsection {* Equality of multisets *}
wenzelm@10249
   219
nipkow@11464
   220
theorem multiset_eq_conv_count_eq: "(M = N) = (\<forall>a. count M a = count N a)"
wenzelm@10249
   221
  apply (simp add: count_def expand_fun_eq)
wenzelm@10249
   222
  done
wenzelm@10249
   223
nipkow@11464
   224
theorem single_not_empty [simp]: "{#a#} \<noteq> {#} \<and> {#} \<noteq> {#a#}"
wenzelm@10249
   225
  apply (simp add: single_def Mempty_def expand_fun_eq)
wenzelm@10249
   226
  done
wenzelm@10249
   227
wenzelm@10249
   228
theorem single_eq_single [simp]: "({#a#} = {#b#}) = (a = b)"
wenzelm@10249
   229
  apply (auto simp add: single_def expand_fun_eq)
wenzelm@10249
   230
  done
wenzelm@10249
   231
nipkow@11464
   232
theorem union_eq_empty [iff]: "(M + N = {#}) = (M = {#} \<and> N = {#})"
wenzelm@10249
   233
  apply (auto simp add: union_def Mempty_def expand_fun_eq)
wenzelm@10249
   234
  done
wenzelm@10249
   235
nipkow@11464
   236
theorem empty_eq_union [iff]: "({#} = M + N) = (M = {#} \<and> N = {#})"
wenzelm@10249
   237
  apply (auto simp add: union_def Mempty_def expand_fun_eq)
wenzelm@10249
   238
  done
wenzelm@10249
   239
wenzelm@10249
   240
theorem union_right_cancel [simp]: "(M + K = N + K) = (M = (N::'a multiset))"
wenzelm@10249
   241
  apply (simp add: union_def expand_fun_eq)
wenzelm@10249
   242
  done
wenzelm@10249
   243
wenzelm@10249
   244
theorem union_left_cancel [simp]: "(K + M = K + N) = (M = (N::'a multiset))"
wenzelm@10249
   245
  apply (simp add: union_def expand_fun_eq)
wenzelm@10249
   246
  done
wenzelm@10249
   247
wenzelm@10249
   248
theorem union_is_single:
nipkow@11464
   249
    "(M + N = {#a#}) = (M = {#a#} \<and> N={#} \<or> M = {#} \<and> N = {#a#})"
wenzelm@10249
   250
  apply (unfold Mempty_def single_def union_def)
wenzelm@10249
   251
  apply (simp add: add_is_1 expand_fun_eq)
wenzelm@10249
   252
  apply blast
wenzelm@10249
   253
  done
wenzelm@10249
   254
wenzelm@10249
   255
theorem single_is_union:
wenzelm@10249
   256
  "({#a#} = M + N) =
nipkow@11464
   257
    ({#a#} = M \<and> N = {#} \<or> M = {#} \<and> {#a#} = N)"
wenzelm@10249
   258
  apply (unfold Mempty_def single_def union_def)
nipkow@11464
   259
  apply (simp add: add_is_1 one_is_add expand_fun_eq)
wenzelm@10249
   260
  apply (blast dest: sym)
wenzelm@10249
   261
  done
wenzelm@10249
   262
wenzelm@10249
   263
theorem add_eq_conv_diff:
wenzelm@10249
   264
  "(M + {#a#} = N + {#b#}) =
nipkow@11464
   265
    (M = N \<and> a = b \<or>
nipkow@11464
   266
      M = N - {#a#} + {#b#} \<and> N = M - {#b#} + {#a#})"
wenzelm@10249
   267
  apply (unfold single_def union_def diff_def)
wenzelm@10249
   268
  apply (simp (no_asm) add: expand_fun_eq)
wenzelm@10249
   269
  apply (rule conjI)
wenzelm@10249
   270
   apply force
paulson@11868
   271
  apply safe
berghofe@13601
   272
  apply simp_all
berghofe@13601
   273
  apply (simp add: eq_sym_conv)
wenzelm@10249
   274
  done
wenzelm@10249
   275
wenzelm@10249
   276
(*
wenzelm@10249
   277
val prems = Goal
wenzelm@10249
   278
 "[| !!F. [| finite F; !G. G < F --> P G |] ==> P F |] ==> finite F --> P F";
nipkow@11464
   279
by (res_inst_tac [("a","F"),("f","\<lambda>A. if finite A then card A else 0")]
wenzelm@10249
   280
     measure_induct 1);
wenzelm@10249
   281
by (Clarify_tac 1);
wenzelm@10249
   282
by (resolve_tac prems 1);
wenzelm@10249
   283
 by (assume_tac 1);
wenzelm@10249
   284
by (Clarify_tac 1);
wenzelm@10249
   285
by (subgoal_tac "finite G" 1);
wenzelm@10249
   286
 by (fast_tac (claset() addDs [finite_subset,order_less_le RS iffD1]) 2);
wenzelm@10249
   287
by (etac allE 1);
wenzelm@10249
   288
by (etac impE 1);
wenzelm@10249
   289
 by (Blast_tac 2);
wenzelm@10249
   290
by (asm_simp_tac (simpset() addsimps [psubset_card]) 1);
wenzelm@10249
   291
no_qed();
wenzelm@10249
   292
val lemma = result();
wenzelm@10249
   293
wenzelm@10249
   294
val prems = Goal
wenzelm@10249
   295
 "[| finite F; !!F. [| finite F; !G. G < F --> P G |] ==> P F |] ==> P F";
wenzelm@10249
   296
by (rtac (lemma RS mp) 1);
wenzelm@10249
   297
by (REPEAT(ares_tac prems 1));
wenzelm@10249
   298
qed "finite_psubset_induct";
wenzelm@10249
   299
wenzelm@10249
   300
Better: use wf_finite_psubset in WF_Rel
wenzelm@10249
   301
*)
wenzelm@10249
   302
wenzelm@10249
   303
wenzelm@10249
   304
subsection {* Induction over multisets *}
wenzelm@10249
   305
wenzelm@10249
   306
lemma setsum_decr:
wenzelm@11701
   307
  "finite F ==> (0::nat) < f a ==>
wenzelm@11701
   308
    setsum (f (a := f a - 1)) F = (if a \<in> F then setsum f F - 1 else setsum f F)"
wenzelm@10249
   309
  apply (erule finite_induct)
wenzelm@10249
   310
   apply auto
wenzelm@10249
   311
  apply (drule_tac a = a in mk_disjoint_insert)
wenzelm@10249
   312
  apply auto
wenzelm@10249
   313
  done
wenzelm@10249
   314
wenzelm@10313
   315
lemma rep_multiset_induct_aux:
wenzelm@11701
   316
  "P (\<lambda>a. (0::nat)) ==> (!!f b. f \<in> multiset ==> P f ==> P (f (b := f b + 1)))
nipkow@11464
   317
    ==> \<forall>f. f \<in> multiset --> setsum f {x. 0 < f x} = n --> P f"
wenzelm@10249
   318
proof -
wenzelm@11549
   319
  case rule_context
wenzelm@11549
   320
  note premises = this [unfolded multiset_def]
wenzelm@10249
   321
  show ?thesis
wenzelm@10249
   322
    apply (unfold multiset_def)
wenzelm@10249
   323
    apply (induct_tac n)
wenzelm@10249
   324
     apply simp
wenzelm@10249
   325
     apply clarify
nipkow@11464
   326
     apply (subgoal_tac "f = (\<lambda>a.0)")
wenzelm@10249
   327
      apply simp
wenzelm@11549
   328
      apply (rule premises)
wenzelm@10249
   329
     apply (rule ext)
wenzelm@10249
   330
     apply force
wenzelm@10249
   331
    apply clarify
wenzelm@10249
   332
    apply (frule setsum_SucD)
wenzelm@10249
   333
    apply clarify
wenzelm@10249
   334
    apply (rename_tac a)
wenzelm@11701
   335
    apply (subgoal_tac "finite {x. 0 < (f (a := f a - 1)) x}")
wenzelm@10249
   336
     prefer 2
wenzelm@10249
   337
     apply (rule finite_subset)
wenzelm@10249
   338
      prefer 2
wenzelm@10249
   339
      apply assumption
wenzelm@10249
   340
     apply simp
wenzelm@10249
   341
     apply blast
wenzelm@11701
   342
    apply (subgoal_tac "f = (f (a := f a - 1))(a := (f (a := f a - 1)) a + 1)")
wenzelm@10249
   343
     prefer 2
wenzelm@10249
   344
     apply (rule ext)
wenzelm@10249
   345
     apply (simp (no_asm_simp))
wenzelm@11549
   346
     apply (erule ssubst, rule premises)
wenzelm@10249
   347
     apply blast
wenzelm@10249
   348
    apply (erule allE, erule impE, erule_tac [2] mp)
wenzelm@10249
   349
     apply blast
wenzelm@11701
   350
    apply (simp (no_asm_simp) add: setsum_decr del: fun_upd_apply One_nat_def)
nipkow@11464
   351
    apply (subgoal_tac "{x. x \<noteq> a --> 0 < f x} = {x. 0 < f x}")
wenzelm@10249
   352
     prefer 2
wenzelm@10249
   353
     apply blast
nipkow@11464
   354
    apply (subgoal_tac "{x. x \<noteq> a \<and> 0 < f x} = {x. 0 < f x} - {a}")
wenzelm@10249
   355
     prefer 2
wenzelm@10249
   356
     apply blast
wenzelm@10249
   357
    apply (simp add: le_imp_diff_is_add setsum_diff1 cong: conj_cong)
wenzelm@10249
   358
    done
wenzelm@10249
   359
qed
wenzelm@10249
   360
wenzelm@10313
   361
theorem rep_multiset_induct:
nipkow@11464
   362
  "f \<in> multiset ==> P (\<lambda>a. 0) ==>
wenzelm@11701
   363
    (!!f b. f \<in> multiset ==> P f ==> P (f (b := f b + 1))) ==> P f"
wenzelm@10313
   364
  apply (insert rep_multiset_induct_aux)
wenzelm@10249
   365
  apply blast
wenzelm@10249
   366
  done
wenzelm@10249
   367
wenzelm@10249
   368
theorem multiset_induct [induct type: multiset]:
wenzelm@10249
   369
  "P {#} ==> (!!M x. P M ==> P (M + {#x#})) ==> P M"
wenzelm@10249
   370
proof -
wenzelm@10249
   371
  note defns = union_def single_def Mempty_def
wenzelm@10249
   372
  assume prem1 [unfolded defns]: "P {#}"
wenzelm@10249
   373
  assume prem2 [unfolded defns]: "!!M x. P M ==> P (M + {#x#})"
wenzelm@10249
   374
  show ?thesis
wenzelm@10249
   375
    apply (rule Rep_multiset_inverse [THEN subst])
wenzelm@10313
   376
    apply (rule Rep_multiset [THEN rep_multiset_induct])
wenzelm@10249
   377
     apply (rule prem1)
wenzelm@11701
   378
    apply (subgoal_tac "f (b := f b + 1) = (\<lambda>a. f a + (if a = b then 1 else 0))")
wenzelm@10249
   379
     prefer 2
wenzelm@10249
   380
     apply (simp add: expand_fun_eq)
wenzelm@10249
   381
    apply (erule ssubst)
wenzelm@10249
   382
    apply (erule Abs_multiset_inverse [THEN subst])
wenzelm@10249
   383
    apply (erule prem2 [simplified])
wenzelm@10249
   384
    done
wenzelm@10249
   385
qed
wenzelm@10249
   386
wenzelm@10249
   387
wenzelm@10249
   388
lemma MCollect_preserves_multiset:
nipkow@11464
   389
    "M \<in> multiset ==> (\<lambda>x. if P x then M x else 0) \<in> multiset"
wenzelm@10249
   390
  apply (simp add: multiset_def)
wenzelm@10249
   391
  apply (rule finite_subset)
wenzelm@10249
   392
   apply auto
wenzelm@10249
   393
  done
wenzelm@10249
   394
wenzelm@10249
   395
theorem count_MCollect [simp]:
wenzelm@10249
   396
    "count {# x:M. P x #} a = (if P a then count M a else 0)"
wenzelm@10249
   397
  apply (unfold count_def MCollect_def)
wenzelm@10249
   398
  apply (simp add: MCollect_preserves_multiset)
wenzelm@10249
   399
  done
wenzelm@10249
   400
nipkow@11464
   401
theorem set_of_MCollect [simp]: "set_of {# x:M. P x #} = set_of M \<inter> {x. P x}"
wenzelm@10249
   402
  apply (auto simp add: set_of_def)
wenzelm@10249
   403
  done
wenzelm@10249
   404
nipkow@11464
   405
theorem multiset_partition: "M = {# x:M. P x #} + {# x:M. \<not> P x #}"
wenzelm@10249
   406
  apply (subst multiset_eq_conv_count_eq)
wenzelm@10249
   407
  apply auto
wenzelm@10249
   408
  done
wenzelm@10249
   409
wenzelm@10277
   410
declare Rep_multiset_inject [symmetric, simp del]
wenzelm@10249
   411
declare multiset_typedef [simp del]
wenzelm@10249
   412
wenzelm@10249
   413
theorem add_eq_conv_ex:
wenzelm@10249
   414
  "(M + {#a#} = N + {#b#}) =
nipkow@11464
   415
    (M = N \<and> a = b \<or> (\<exists>K. M = K + {#b#} \<and> N = K + {#a#}))"
wenzelm@10249
   416
  apply (auto simp add: add_eq_conv_diff)
wenzelm@10249
   417
  done
wenzelm@10249
   418
wenzelm@10249
   419
wenzelm@10249
   420
subsection {* Multiset orderings *}
wenzelm@10249
   421
wenzelm@10249
   422
subsubsection {* Well-foundedness *}
wenzelm@10249
   423
wenzelm@10249
   424
constdefs
nipkow@11464
   425
  mult1 :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set"
wenzelm@10249
   426
  "mult1 r ==
nipkow@11464
   427
    {(N, M). \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and>
nipkow@11464
   428
      (\<forall>b. b :# K --> (b, a) \<in> r)}"
wenzelm@10249
   429
nipkow@11464
   430
  mult :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set"
wenzelm@10392
   431
  "mult r == (mult1 r)\<^sup>+"
wenzelm@10249
   432
nipkow@11464
   433
lemma not_less_empty [iff]: "(M, {#}) \<notin> mult1 r"
wenzelm@10277
   434
  by (simp add: mult1_def)
wenzelm@10249
   435
nipkow@11464
   436
lemma less_add: "(N, M0 + {#a#}) \<in> mult1 r ==>
nipkow@11464
   437
    (\<exists>M. (M, M0) \<in> mult1 r \<and> N = M + {#a#}) \<or>
nipkow@11464
   438
    (\<exists>K. (\<forall>b. b :# K --> (b, a) \<in> r) \<and> N = M0 + K)"
nipkow@11464
   439
  (concl is "?case1 (mult1 r) \<or> ?case2")
wenzelm@10249
   440
proof (unfold mult1_def)
nipkow@11464
   441
  let ?r = "\<lambda>K a. \<forall>b. b :# K --> (b, a) \<in> r"
nipkow@11464
   442
  let ?R = "\<lambda>N M. \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and> ?r K a"
wenzelm@10249
   443
  let ?case1 = "?case1 {(N, M). ?R N M}"
wenzelm@10249
   444
nipkow@11464
   445
  assume "(N, M0 + {#a#}) \<in> {(N, M). ?R N M}"
nipkow@11464
   446
  hence "\<exists>a' M0' K.
nipkow@11464
   447
      M0 + {#a#} = M0' + {#a'#} \<and> N = M0' + K \<and> ?r K a'" by simp
nipkow@11464
   448
  thus "?case1 \<or> ?case2"
wenzelm@10249
   449
  proof (elim exE conjE)
wenzelm@10249
   450
    fix a' M0' K
wenzelm@10249
   451
    assume N: "N = M0' + K" and r: "?r K a'"
wenzelm@10249
   452
    assume "M0 + {#a#} = M0' + {#a'#}"
nipkow@11464
   453
    hence "M0 = M0' \<and> a = a' \<or>
nipkow@11464
   454
        (\<exists>K'. M0 = K' + {#a'#} \<and> M0' = K' + {#a#})"
wenzelm@10249
   455
      by (simp only: add_eq_conv_ex)
wenzelm@10249
   456
    thus ?thesis
wenzelm@10249
   457
    proof (elim disjE conjE exE)
wenzelm@10249
   458
      assume "M0 = M0'" "a = a'"
nipkow@11464
   459
      with N r have "?r K a \<and> N = M0 + K" by simp
wenzelm@10249
   460
      hence ?case2 .. thus ?thesis ..
wenzelm@10249
   461
    next
wenzelm@10249
   462
      fix K'
wenzelm@10249
   463
      assume "M0' = K' + {#a#}"
wenzelm@10249
   464
      with N have n: "N = K' + K + {#a#}" by (simp add: union_ac)
wenzelm@10249
   465
wenzelm@10249
   466
      assume "M0 = K' + {#a'#}"
wenzelm@10249
   467
      with r have "?R (K' + K) M0" by blast
wenzelm@10249
   468
      with n have ?case1 by simp thus ?thesis ..
wenzelm@10249
   469
    qed
wenzelm@10249
   470
  qed
wenzelm@10249
   471
qed
wenzelm@10249
   472
nipkow@11464
   473
lemma all_accessible: "wf r ==> \<forall>M. M \<in> acc (mult1 r)"
wenzelm@10249
   474
proof
wenzelm@10249
   475
  let ?R = "mult1 r"
wenzelm@10249
   476
  let ?W = "acc ?R"
wenzelm@10249
   477
  {
wenzelm@10249
   478
    fix M M0 a
nipkow@11464
   479
    assume M0: "M0 \<in> ?W"
wenzelm@12399
   480
      and wf_hyp: "!!b. (b, a) \<in> r ==> (\<forall>M \<in> ?W. M + {#b#} \<in> ?W)"
nipkow@11464
   481
      and acc_hyp: "\<forall>M. (M, M0) \<in> ?R --> M + {#a#} \<in> ?W"
nipkow@11464
   482
    have "M0 + {#a#} \<in> ?W"
wenzelm@10249
   483
    proof (rule accI [of "M0 + {#a#}"])
wenzelm@10249
   484
      fix N
nipkow@11464
   485
      assume "(N, M0 + {#a#}) \<in> ?R"
nipkow@11464
   486
      hence "((\<exists>M. (M, M0) \<in> ?R \<and> N = M + {#a#}) \<or>
nipkow@11464
   487
          (\<exists>K. (\<forall>b. b :# K --> (b, a) \<in> r) \<and> N = M0 + K))"
wenzelm@10249
   488
        by (rule less_add)
nipkow@11464
   489
      thus "N \<in> ?W"
wenzelm@10249
   490
      proof (elim exE disjE conjE)
nipkow@11464
   491
        fix M assume "(M, M0) \<in> ?R" and N: "N = M + {#a#}"
nipkow@11464
   492
        from acc_hyp have "(M, M0) \<in> ?R --> M + {#a#} \<in> ?W" ..
nipkow@11464
   493
        hence "M + {#a#} \<in> ?W" ..
nipkow@11464
   494
        thus "N \<in> ?W" by (simp only: N)
wenzelm@10249
   495
      next
wenzelm@10249
   496
        fix K
wenzelm@10249
   497
        assume N: "N = M0 + K"
nipkow@11464
   498
        assume "\<forall>b. b :# K --> (b, a) \<in> r"
nipkow@11464
   499
        have "?this --> M0 + K \<in> ?W" (is "?P K")
wenzelm@10249
   500
        proof (induct K)
nipkow@11464
   501
          from M0 have "M0 + {#} \<in> ?W" by simp
wenzelm@10249
   502
          thus "?P {#}" ..
wenzelm@10249
   503
wenzelm@10249
   504
          fix K x assume hyp: "?P K"
wenzelm@10249
   505
          show "?P (K + {#x#})"
wenzelm@10249
   506
          proof
nipkow@11464
   507
            assume a: "\<forall>b. b :# (K + {#x#}) --> (b, a) \<in> r"
nipkow@11464
   508
            hence "(x, a) \<in> r" by simp
nipkow@11464
   509
            with wf_hyp have b: "\<forall>M \<in> ?W. M + {#x#} \<in> ?W" by blast
wenzelm@10249
   510
nipkow@11464
   511
            from a hyp have "M0 + K \<in> ?W" by simp
nipkow@11464
   512
            with b have "(M0 + K) + {#x#} \<in> ?W" ..
nipkow@11464
   513
            thus "M0 + (K + {#x#}) \<in> ?W" by (simp only: union_assoc)
wenzelm@10249
   514
          qed
wenzelm@10249
   515
        qed
nipkow@11464
   516
        hence "M0 + K \<in> ?W" ..
nipkow@11464
   517
        thus "N \<in> ?W" by (simp only: N)
wenzelm@10249
   518
      qed
wenzelm@10249
   519
    qed
wenzelm@10249
   520
  } note tedious_reasoning = this
wenzelm@10249
   521
wenzelm@10249
   522
  assume wf: "wf r"
wenzelm@10249
   523
  fix M
nipkow@11464
   524
  show "M \<in> ?W"
wenzelm@10249
   525
  proof (induct M)
nipkow@11464
   526
    show "{#} \<in> ?W"
wenzelm@10249
   527
    proof (rule accI)
nipkow@11464
   528
      fix b assume "(b, {#}) \<in> ?R"
nipkow@11464
   529
      with not_less_empty show "b \<in> ?W" by contradiction
wenzelm@10249
   530
    qed
wenzelm@10249
   531
nipkow@11464
   532
    fix M a assume "M \<in> ?W"
nipkow@11464
   533
    from wf have "\<forall>M \<in> ?W. M + {#a#} \<in> ?W"
wenzelm@10249
   534
    proof induct
wenzelm@10249
   535
      fix a
wenzelm@12399
   536
      assume "!!b. (b, a) \<in> r ==> (\<forall>M \<in> ?W. M + {#b#} \<in> ?W)"
nipkow@11464
   537
      show "\<forall>M \<in> ?W. M + {#a#} \<in> ?W"
wenzelm@10249
   538
      proof
nipkow@11464
   539
        fix M assume "M \<in> ?W"
nipkow@11464
   540
        thus "M + {#a#} \<in> ?W"
wenzelm@10249
   541
          by (rule acc_induct) (rule tedious_reasoning)
wenzelm@10249
   542
      qed
wenzelm@10249
   543
    qed
nipkow@11464
   544
    thus "M + {#a#} \<in> ?W" ..
wenzelm@10249
   545
  qed
wenzelm@10249
   546
qed
wenzelm@10249
   547
wenzelm@10249
   548
theorem wf_mult1: "wf r ==> wf (mult1 r)"
wenzelm@10249
   549
  by (rule acc_wfI, rule all_accessible)
wenzelm@10249
   550
wenzelm@10249
   551
theorem wf_mult: "wf r ==> wf (mult r)"
wenzelm@10249
   552
  by (unfold mult_def, rule wf_trancl, rule wf_mult1)
wenzelm@10249
   553
wenzelm@10249
   554
wenzelm@10249
   555
subsubsection {* Closure-free presentation *}
wenzelm@10249
   556
wenzelm@10249
   557
(*Badly needed: a linear arithmetic procedure for multisets*)
wenzelm@10249
   558
wenzelm@10249
   559
lemma diff_union_single_conv: "a :# J ==> I + J - {#a#} = I + (J - {#a#})"
wenzelm@10249
   560
  apply (simp add: multiset_eq_conv_count_eq)
wenzelm@10249
   561
  done
wenzelm@10249
   562
wenzelm@10249
   563
text {* One direction. *}
wenzelm@10249
   564
wenzelm@10249
   565
lemma mult_implies_one_step:
nipkow@11464
   566
  "trans r ==> (M, N) \<in> mult r ==>
nipkow@11464
   567
    \<exists>I J K. N = I + J \<and> M = I + K \<and> J \<noteq> {#} \<and>
nipkow@11464
   568
    (\<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r)"
wenzelm@10249
   569
  apply (unfold mult_def mult1_def set_of_def)
wenzelm@10249
   570
  apply (erule converse_trancl_induct)
wenzelm@10249
   571
  apply clarify
wenzelm@10249
   572
   apply (rule_tac x = M0 in exI)
wenzelm@10249
   573
   apply simp
wenzelm@10249
   574
  apply clarify
wenzelm@10249
   575
  apply (case_tac "a :# K")
wenzelm@10249
   576
   apply (rule_tac x = I in exI)
wenzelm@10249
   577
   apply (simp (no_asm))
wenzelm@10249
   578
   apply (rule_tac x = "(K - {#a#}) + Ka" in exI)
wenzelm@10249
   579
   apply (simp (no_asm_simp) add: union_assoc [symmetric])
nipkow@11464
   580
   apply (drule_tac f = "\<lambda>M. M - {#a#}" in arg_cong)
wenzelm@10249
   581
   apply (simp add: diff_union_single_conv)
wenzelm@10249
   582
   apply (simp (no_asm_use) add: trans_def)
wenzelm@10249
   583
   apply blast
wenzelm@10249
   584
  apply (subgoal_tac "a :# I")
wenzelm@10249
   585
   apply (rule_tac x = "I - {#a#}" in exI)
wenzelm@10249
   586
   apply (rule_tac x = "J + {#a#}" in exI)
wenzelm@10249
   587
   apply (rule_tac x = "K + Ka" in exI)
wenzelm@10249
   588
   apply (rule conjI)
wenzelm@10249
   589
    apply (simp add: multiset_eq_conv_count_eq split: nat_diff_split)
wenzelm@10249
   590
   apply (rule conjI)
nipkow@11464
   591
    apply (drule_tac f = "\<lambda>M. M - {#a#}" in arg_cong)
wenzelm@10249
   592
    apply simp
wenzelm@10249
   593
    apply (simp add: multiset_eq_conv_count_eq split: nat_diff_split)
wenzelm@10249
   594
   apply (simp (no_asm_use) add: trans_def)
wenzelm@10249
   595
   apply blast
wenzelm@10277
   596
  apply (subgoal_tac "a :# (M0 + {#a#})")
wenzelm@10249
   597
   apply simp
wenzelm@10249
   598
  apply (simp (no_asm))
wenzelm@10249
   599
  done
wenzelm@10249
   600
wenzelm@10249
   601
lemma elem_imp_eq_diff_union: "a :# M ==> M = M - {#a#} + {#a#}"
wenzelm@10249
   602
  apply (simp add: multiset_eq_conv_count_eq)
wenzelm@10249
   603
  done
wenzelm@10249
   604
nipkow@11464
   605
lemma size_eq_Suc_imp_eq_union: "size M = Suc n ==> \<exists>a N. M = N + {#a#}"
wenzelm@10249
   606
  apply (erule size_eq_Suc_imp_elem [THEN exE])
wenzelm@10249
   607
  apply (drule elem_imp_eq_diff_union)
wenzelm@10249
   608
  apply auto
wenzelm@10249
   609
  done
wenzelm@10249
   610
wenzelm@10249
   611
lemma one_step_implies_mult_aux:
wenzelm@10249
   612
  "trans r ==>
nipkow@11464
   613
    \<forall>I J K. (size J = n \<and> J \<noteq> {#} \<and> (\<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r))
nipkow@11464
   614
      --> (I + K, I + J) \<in> mult r"
wenzelm@10249
   615
  apply (induct_tac n)
wenzelm@10249
   616
   apply auto
wenzelm@10249
   617
  apply (frule size_eq_Suc_imp_eq_union)
wenzelm@10249
   618
  apply clarify
wenzelm@10249
   619
  apply (rename_tac "J'")
wenzelm@10249
   620
  apply simp
wenzelm@10249
   621
  apply (erule notE)
wenzelm@10249
   622
   apply auto
wenzelm@10249
   623
  apply (case_tac "J' = {#}")
wenzelm@10249
   624
   apply (simp add: mult_def)
wenzelm@10249
   625
   apply (rule r_into_trancl)
wenzelm@10249
   626
   apply (simp add: mult1_def set_of_def)
wenzelm@10249
   627
   apply blast
nipkow@11464
   628
  txt {* Now we know @{term "J' \<noteq> {#}"}. *}
nipkow@11464
   629
  apply (cut_tac M = K and P = "\<lambda>x. (x, a) \<in> r" in multiset_partition)
nipkow@11464
   630
  apply (erule_tac P = "\<forall>k \<in> set_of K. ?P k" in rev_mp)
wenzelm@10249
   631
  apply (erule ssubst)
wenzelm@10249
   632
  apply (simp add: Ball_def)
wenzelm@10249
   633
  apply auto
wenzelm@10249
   634
  apply (subgoal_tac
nipkow@11464
   635
    "((I + {# x : K. (x, a) \<in> r #}) + {# x : K. (x, a) \<notin> r #},
nipkow@11464
   636
      (I + {# x : K. (x, a) \<in> r #}) + J') \<in> mult r")
wenzelm@10249
   637
   prefer 2
wenzelm@10249
   638
   apply force
wenzelm@10249
   639
  apply (simp (no_asm_use) add: union_assoc [symmetric] mult_def)
wenzelm@10249
   640
  apply (erule trancl_trans)
wenzelm@10249
   641
  apply (rule r_into_trancl)
wenzelm@10249
   642
  apply (simp add: mult1_def set_of_def)
wenzelm@10249
   643
  apply (rule_tac x = a in exI)
wenzelm@10249
   644
  apply (rule_tac x = "I + J'" in exI)
wenzelm@10249
   645
  apply (simp add: union_ac)
wenzelm@10249
   646
  done
wenzelm@10249
   647
wenzelm@10249
   648
theorem one_step_implies_mult:
nipkow@11464
   649
  "trans r ==> J \<noteq> {#} ==> \<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r
nipkow@11464
   650
    ==> (I + K, I + J) \<in> mult r"
wenzelm@10249
   651
  apply (insert one_step_implies_mult_aux)
wenzelm@10249
   652
  apply blast
wenzelm@10249
   653
  done
wenzelm@10249
   654
wenzelm@10249
   655
wenzelm@10249
   656
subsubsection {* Partial-order properties *}
wenzelm@10249
   657
wenzelm@12338
   658
instance multiset :: (type) ord ..
wenzelm@10249
   659
wenzelm@10249
   660
defs (overloaded)
nipkow@11464
   661
  less_multiset_def: "M' < M == (M', M) \<in> mult {(x', x). x' < x}"
nipkow@11464
   662
  le_multiset_def: "M' <= M == M' = M \<or> M' < (M::'a multiset)"
wenzelm@10249
   663
wenzelm@10249
   664
lemma trans_base_order: "trans {(x', x). x' < (x::'a::order)}"
wenzelm@10249
   665
  apply (unfold trans_def)
wenzelm@10249
   666
  apply (blast intro: order_less_trans)
wenzelm@10249
   667
  done
wenzelm@10249
   668
wenzelm@10249
   669
text {*
wenzelm@10249
   670
 \medskip Irreflexivity.
wenzelm@10249
   671
*}
wenzelm@10249
   672
wenzelm@10249
   673
lemma mult_irrefl_aux:
nipkow@11464
   674
    "finite A ==> (\<forall>x \<in> A. \<exists>y \<in> A. x < (y::'a::order)) --> A = {}"
wenzelm@10249
   675
  apply (erule finite_induct)
wenzelm@10249
   676
   apply (auto intro: order_less_trans)
wenzelm@10249
   677
  done
wenzelm@10249
   678
nipkow@11464
   679
theorem mult_less_not_refl: "\<not> M < (M::'a::order multiset)"
wenzelm@10249
   680
  apply (unfold less_multiset_def)
wenzelm@10249
   681
  apply auto
wenzelm@10249
   682
  apply (drule trans_base_order [THEN mult_implies_one_step])
wenzelm@10249
   683
  apply auto
wenzelm@10249
   684
  apply (drule finite_set_of [THEN mult_irrefl_aux [rule_format (no_asm)]])
wenzelm@10249
   685
  apply (simp add: set_of_eq_empty_iff)
wenzelm@10249
   686
  done
wenzelm@10249
   687
wenzelm@10249
   688
lemma mult_less_irrefl [elim!]: "M < (M::'a::order multiset) ==> R"
wenzelm@10249
   689
  apply (insert mult_less_not_refl)
nipkow@13596
   690
  apply fast
wenzelm@10249
   691
  done
wenzelm@10249
   692
wenzelm@10249
   693
wenzelm@10249
   694
text {* Transitivity. *}
wenzelm@10249
   695
wenzelm@10249
   696
theorem mult_less_trans: "K < M ==> M < N ==> K < (N::'a::order multiset)"
wenzelm@10249
   697
  apply (unfold less_multiset_def mult_def)
wenzelm@10249
   698
  apply (blast intro: trancl_trans)
wenzelm@10249
   699
  done
wenzelm@10249
   700
wenzelm@10249
   701
text {* Asymmetry. *}
wenzelm@10249
   702
nipkow@11464
   703
theorem mult_less_not_sym: "M < N ==> \<not> N < (M::'a::order multiset)"
wenzelm@10249
   704
  apply auto
wenzelm@10249
   705
  apply (rule mult_less_not_refl [THEN notE])
wenzelm@10249
   706
  apply (erule mult_less_trans)
wenzelm@10249
   707
  apply assumption
wenzelm@10249
   708
  done
wenzelm@10249
   709
wenzelm@10249
   710
theorem mult_less_asym:
nipkow@11464
   711
    "M < N ==> (\<not> P ==> N < (M::'a::order multiset)) ==> P"
wenzelm@10249
   712
  apply (insert mult_less_not_sym)
wenzelm@10249
   713
  apply blast
wenzelm@10249
   714
  done
wenzelm@10249
   715
wenzelm@10249
   716
theorem mult_le_refl [iff]: "M <= (M::'a::order multiset)"
wenzelm@10249
   717
  apply (unfold le_multiset_def)
wenzelm@10249
   718
  apply auto
wenzelm@10249
   719
  done
wenzelm@10249
   720
wenzelm@10249
   721
text {* Anti-symmetry. *}
wenzelm@10249
   722
wenzelm@10249
   723
theorem mult_le_antisym:
wenzelm@10249
   724
    "M <= N ==> N <= M ==> M = (N::'a::order multiset)"
wenzelm@10249
   725
  apply (unfold le_multiset_def)
wenzelm@10249
   726
  apply (blast dest: mult_less_not_sym)
wenzelm@10249
   727
  done
wenzelm@10249
   728
wenzelm@10249
   729
text {* Transitivity. *}
wenzelm@10249
   730
wenzelm@10249
   731
theorem mult_le_trans:
wenzelm@10249
   732
    "K <= M ==> M <= N ==> K <= (N::'a::order multiset)"
wenzelm@10249
   733
  apply (unfold le_multiset_def)
wenzelm@10249
   734
  apply (blast intro: mult_less_trans)
wenzelm@10249
   735
  done
wenzelm@10249
   736
wenzelm@11655
   737
theorem mult_less_le: "(M < N) = (M <= N \<and> M \<noteq> (N::'a::order multiset))"
wenzelm@10249
   738
  apply (unfold le_multiset_def)
wenzelm@10249
   739
  apply auto
wenzelm@10249
   740
  done
wenzelm@10249
   741
wenzelm@10277
   742
text {* Partial order. *}
wenzelm@10277
   743
wenzelm@10277
   744
instance multiset :: (order) order
wenzelm@10277
   745
  apply intro_classes
wenzelm@10277
   746
     apply (rule mult_le_refl)
wenzelm@10277
   747
    apply (erule mult_le_trans)
wenzelm@10277
   748
    apply assumption
wenzelm@10277
   749
   apply (erule mult_le_antisym)
wenzelm@10277
   750
   apply assumption
wenzelm@10277
   751
  apply (rule mult_less_le)
wenzelm@10277
   752
  done
wenzelm@10277
   753
wenzelm@10249
   754
wenzelm@10249
   755
subsubsection {* Monotonicity of multiset union *}
wenzelm@10249
   756
wenzelm@10249
   757
theorem mult1_union:
nipkow@11464
   758
    "(B, D) \<in> mult1 r ==> trans r ==> (C + B, C + D) \<in> mult1 r"
wenzelm@10249
   759
  apply (unfold mult1_def)
wenzelm@10249
   760
  apply auto
wenzelm@10249
   761
  apply (rule_tac x = a in exI)
wenzelm@10249
   762
  apply (rule_tac x = "C + M0" in exI)
wenzelm@10249
   763
  apply (simp add: union_assoc)
wenzelm@10249
   764
  done
wenzelm@10249
   765
wenzelm@10249
   766
lemma union_less_mono2: "B < D ==> C + B < C + (D::'a::order multiset)"
wenzelm@10249
   767
  apply (unfold less_multiset_def mult_def)
wenzelm@10249
   768
  apply (erule trancl_induct)
wenzelm@10249
   769
   apply (blast intro: mult1_union transI order_less_trans r_into_trancl)
wenzelm@10249
   770
  apply (blast intro: mult1_union transI order_less_trans r_into_trancl trancl_trans)
wenzelm@10249
   771
  done
wenzelm@10249
   772
wenzelm@10249
   773
lemma union_less_mono1: "B < D ==> B + C < D + (C::'a::order multiset)"
wenzelm@10249
   774
  apply (subst union_commute [of B C])
wenzelm@10249
   775
  apply (subst union_commute [of D C])
wenzelm@10249
   776
  apply (erule union_less_mono2)
wenzelm@10249
   777
  done
wenzelm@10249
   778
wenzelm@10249
   779
theorem union_less_mono:
wenzelm@10249
   780
    "A < C ==> B < D ==> A + B < C + (D::'a::order multiset)"
wenzelm@10249
   781
  apply (blast intro!: union_less_mono1 union_less_mono2 mult_less_trans)
wenzelm@10249
   782
  done
wenzelm@10249
   783
wenzelm@10249
   784
theorem union_le_mono:
wenzelm@10249
   785
    "A <= C ==> B <= D ==> A + B <= C + (D::'a::order multiset)"
wenzelm@10249
   786
  apply (unfold le_multiset_def)
wenzelm@10249
   787
  apply (blast intro: union_less_mono union_less_mono1 union_less_mono2)
wenzelm@10249
   788
  done
wenzelm@10249
   789
wenzelm@10249
   790
theorem empty_leI [iff]: "{#} <= (M::'a::order multiset)"
wenzelm@10249
   791
  apply (unfold le_multiset_def less_multiset_def)
wenzelm@10249
   792
  apply (case_tac "M = {#}")
wenzelm@10249
   793
   prefer 2
nipkow@11464
   794
   apply (subgoal_tac "({#} + {#}, {#} + M) \<in> mult (Collect (split op <))")
wenzelm@10249
   795
    prefer 2
wenzelm@10249
   796
    apply (rule one_step_implies_mult)
wenzelm@10249
   797
      apply (simp only: trans_def)
wenzelm@10249
   798
      apply auto
wenzelm@10249
   799
  done
wenzelm@10249
   800
wenzelm@10249
   801
theorem union_upper1: "A <= A + (B::'a::order multiset)"
wenzelm@10249
   802
  apply (subgoal_tac "A + {#} <= A + B")
wenzelm@10249
   803
   prefer 2
wenzelm@10249
   804
   apply (rule union_le_mono)
wenzelm@10249
   805
    apply auto
wenzelm@10249
   806
  done
wenzelm@10249
   807
wenzelm@10249
   808
theorem union_upper2: "B <= A + (B::'a::order multiset)"
wenzelm@10249
   809
  apply (subst union_commute, rule union_upper1)
wenzelm@10249
   810
  done
wenzelm@10249
   811
wenzelm@10249
   812
end