src/HOL/Map.thy
author haftmann
Wed Nov 28 15:26:39 2007 +0100 (2007-11-28)
changeset 25490 e8ab1c42c14f
parent 25483 65de74f62874
child 25670 497474b69c86
permissions -rw-r--r--
(reverted to unnamed infix)
nipkow@3981
     1
(*  Title:      HOL/Map.thy
nipkow@3981
     2
    ID:         $Id$
nipkow@3981
     3
    Author:     Tobias Nipkow, based on a theory by David von Oheimb
webertj@13908
     4
    Copyright   1997-2003 TU Muenchen
nipkow@3981
     5
nipkow@3981
     6
The datatype of `maps' (written ~=>); strongly resembles maps in VDM.
nipkow@3981
     7
*)
nipkow@3981
     8
nipkow@13914
     9
header {* Maps *}
nipkow@13914
    10
nipkow@15131
    11
theory Map
nipkow@15140
    12
imports List
nipkow@15131
    13
begin
nipkow@3981
    14
haftmann@25490
    15
types ('a,'b) "~=>" = "'a => 'b option"  (infixr 0)
oheimb@14100
    16
translations (type) "a ~=> b " <= (type) "a => b option"
nipkow@3981
    17
wenzelm@19656
    18
syntax (xsymbols)
haftmann@25490
    19
  "~=>" :: "[type, type] => type"  (infixr "\<rightharpoonup>" 0)
wenzelm@19656
    20
nipkow@19378
    21
abbreviation
wenzelm@21404
    22
  empty :: "'a ~=> 'b" where
nipkow@19378
    23
  "empty == %x. None"
nipkow@19378
    24
wenzelm@19656
    25
definition
wenzelm@21404
    26
  map_comp :: "('b ~=> 'c)  => ('a ~=> 'b) => ('a ~=> 'c)"  (infixl "o'_m" 55) where
wenzelm@20800
    27
  "f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)"
nipkow@19378
    28
wenzelm@21210
    29
notation (xsymbols)
wenzelm@19656
    30
  map_comp  (infixl "\<circ>\<^sub>m" 55)
wenzelm@19656
    31
wenzelm@20800
    32
definition
wenzelm@21404
    33
  map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)"  (infixl "++" 100) where
wenzelm@20800
    34
  "m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)"
wenzelm@20800
    35
wenzelm@21404
    36
definition
wenzelm@21404
    37
  restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)"  (infixl "|`"  110) where
wenzelm@20800
    38
  "m|`A = (\<lambda>x. if x : A then m x else None)"
nipkow@13910
    39
wenzelm@21210
    40
notation (latex output)
wenzelm@19656
    41
  restrict_map  ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
wenzelm@19656
    42
wenzelm@20800
    43
definition
wenzelm@21404
    44
  dom :: "('a ~=> 'b) => 'a set" where
wenzelm@20800
    45
  "dom m = {a. m a ~= None}"
wenzelm@20800
    46
wenzelm@21404
    47
definition
wenzelm@21404
    48
  ran :: "('a ~=> 'b) => 'b set" where
wenzelm@20800
    49
  "ran m = {b. EX a. m a = Some b}"
wenzelm@20800
    50
wenzelm@21404
    51
definition
wenzelm@21404
    52
  map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool"  (infix "\<subseteq>\<^sub>m" 50) where
wenzelm@20800
    53
  "(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)"
wenzelm@20800
    54
wenzelm@20800
    55
consts
wenzelm@20800
    56
  map_of :: "('a * 'b) list => 'a ~=> 'b"
wenzelm@20800
    57
  map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)"
wenzelm@20800
    58
nipkow@14180
    59
nonterminals
nipkow@14180
    60
  maplets maplet
nipkow@14180
    61
oheimb@5300
    62
syntax
nipkow@14180
    63
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /|->/ _")
nipkow@14180
    64
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[|->]/ _")
nipkow@14180
    65
  ""         :: "maplet => maplets"             ("_")
nipkow@14180
    66
  "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
nipkow@14180
    67
  "_MapUpd"  :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
nipkow@14180
    68
  "_Map"     :: "maplets => 'a ~=> 'b"            ("(1[_])")
nipkow@3981
    69
wenzelm@12114
    70
syntax (xsymbols)
nipkow@14180
    71
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /\<mapsto>/ _")
nipkow@14180
    72
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[\<mapsto>]/ _")
nipkow@14180
    73
oheimb@5300
    74
translations
nipkow@14180
    75
  "_MapUpd m (_Maplets xy ms)"  == "_MapUpd (_MapUpd m xy) ms"
nipkow@14180
    76
  "_MapUpd m (_maplet  x y)"    == "m(x:=Some y)"
nipkow@14180
    77
  "_MapUpd m (_maplets x y)"    == "map_upds m x y"
wenzelm@19947
    78
  "_Map ms"                     == "_MapUpd (CONST empty) ms"
nipkow@14180
    79
  "_Map (_Maplets ms1 ms2)"     <= "_MapUpd (_Map ms1) ms2"
nipkow@14180
    80
  "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3"
nipkow@14180
    81
berghofe@5183
    82
primrec
berghofe@5183
    83
  "map_of [] = empty"
oheimb@5300
    84
  "map_of (p#ps) = (map_of ps)(fst p |-> snd p)"
oheimb@5300
    85
wenzelm@20800
    86
defs
haftmann@22744
    87
  map_upds_def [code func]: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))"
wenzelm@20800
    88
wenzelm@20800
    89
wenzelm@17399
    90
subsection {* @{term [source] empty} *}
webertj@13908
    91
wenzelm@20800
    92
lemma empty_upd_none [simp]: "empty(x := None) = empty"
nipkow@24331
    93
by (rule ext) simp
webertj@13908
    94
webertj@13908
    95
wenzelm@17399
    96
subsection {* @{term [source] map_upd} *}
webertj@13908
    97
webertj@13908
    98
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t"
nipkow@24331
    99
by (rule ext) simp
webertj@13908
   100
wenzelm@20800
   101
lemma map_upd_nonempty [simp]: "t(k|->x) ~= empty"
wenzelm@20800
   102
proof
wenzelm@20800
   103
  assume "t(k \<mapsto> x) = empty"
wenzelm@20800
   104
  then have "(t(k \<mapsto> x)) k = None" by simp
wenzelm@20800
   105
  then show False by simp
wenzelm@20800
   106
qed
webertj@13908
   107
wenzelm@20800
   108
lemma map_upd_eqD1:
wenzelm@20800
   109
  assumes "m(a\<mapsto>x) = n(a\<mapsto>y)"
wenzelm@20800
   110
  shows "x = y"
wenzelm@20800
   111
proof -
wenzelm@20800
   112
  from prems have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp
wenzelm@20800
   113
  then show ?thesis by simp
wenzelm@20800
   114
qed
oheimb@14100
   115
wenzelm@20800
   116
lemma map_upd_Some_unfold:
nipkow@24331
   117
  "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"
nipkow@24331
   118
by auto
oheimb@14100
   119
wenzelm@20800
   120
lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A"
nipkow@24331
   121
by auto
nipkow@15303
   122
webertj@13908
   123
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))"
nipkow@24331
   124
unfolding image_def
nipkow@24331
   125
apply (simp (no_asm_use) add:full_SetCompr_eq)
nipkow@24331
   126
apply (rule finite_subset)
nipkow@24331
   127
 prefer 2 apply assumption
nipkow@24331
   128
apply (auto)
nipkow@24331
   129
done
webertj@13908
   130
webertj@13908
   131
wenzelm@17399
   132
subsection {* @{term [source] map_of} *}
webertj@13908
   133
nipkow@15304
   134
lemma map_of_eq_None_iff:
nipkow@24331
   135
  "(map_of xys x = None) = (x \<notin> fst ` (set xys))"
nipkow@24331
   136
by (induct xys) simp_all
nipkow@15304
   137
nipkow@24331
   138
lemma map_of_is_SomeD: "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys"
nipkow@24331
   139
apply (induct xys)
nipkow@24331
   140
 apply simp
nipkow@24331
   141
apply (clarsimp split: if_splits)
nipkow@24331
   142
done
nipkow@15304
   143
wenzelm@20800
   144
lemma map_of_eq_Some_iff [simp]:
nipkow@24331
   145
  "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)"
nipkow@24331
   146
apply (induct xys)
nipkow@24331
   147
 apply simp
nipkow@24331
   148
apply (auto simp: map_of_eq_None_iff [symmetric])
nipkow@24331
   149
done
nipkow@15304
   150
wenzelm@20800
   151
lemma Some_eq_map_of_iff [simp]:
nipkow@24331
   152
  "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)"
nipkow@24331
   153
by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric])
nipkow@15304
   154
paulson@17724
   155
lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk>
wenzelm@20800
   156
    \<Longrightarrow> map_of xys x = Some y"
nipkow@24331
   157
apply (induct xys)
nipkow@24331
   158
 apply simp
nipkow@24331
   159
apply force
nipkow@24331
   160
done
nipkow@15304
   161
wenzelm@20800
   162
lemma map_of_zip_is_None [simp]:
nipkow@24331
   163
  "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)"
nipkow@24331
   164
by (induct rule: list_induct2) simp_all
nipkow@15110
   165
nipkow@15110
   166
lemma finite_range_map_of: "finite (range (map_of xys))"
nipkow@24331
   167
apply (induct xys)
nipkow@24331
   168
 apply (simp_all add: image_constant)
nipkow@24331
   169
apply (rule finite_subset)
nipkow@24331
   170
 prefer 2 apply assumption
nipkow@24331
   171
apply auto
nipkow@24331
   172
done
nipkow@15110
   173
wenzelm@20800
   174
lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs"
nipkow@24331
   175
by (induct xs) (simp, atomize (full), auto)
webertj@13908
   176
wenzelm@20800
   177
lemma map_of_mapk_SomeI:
nipkow@24331
   178
  "inj f ==> map_of t k = Some x ==>
nipkow@24331
   179
   map_of (map (split (%k. Pair (f k))) t) (f k) = Some x"
nipkow@24331
   180
by (induct t) (auto simp add: inj_eq)
webertj@13908
   181
wenzelm@20800
   182
lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x"
nipkow@24331
   183
by (induct l) auto
webertj@13908
   184
wenzelm@20800
   185
lemma map_of_filter_in:
nipkow@24331
   186
  "map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (split P) xs) k = Some z"
nipkow@24331
   187
by (induct xs) auto
webertj@13908
   188
webertj@13908
   189
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)"
nipkow@24331
   190
by (induct xs) auto
webertj@13908
   191
webertj@13908
   192
wenzelm@17399
   193
subsection {* @{term [source] option_map} related *}
webertj@13908
   194
wenzelm@20800
   195
lemma option_map_o_empty [simp]: "option_map f o empty = empty"
nipkow@24331
   196
by (rule ext) simp
webertj@13908
   197
wenzelm@20800
   198
lemma option_map_o_map_upd [simp]:
nipkow@24331
   199
  "option_map f o m(a|->b) = (option_map f o m)(a|->f b)"
nipkow@24331
   200
by (rule ext) simp
wenzelm@20800
   201
webertj@13908
   202
wenzelm@17399
   203
subsection {* @{term [source] map_comp} related *}
schirmer@17391
   204
wenzelm@20800
   205
lemma map_comp_empty [simp]:
nipkow@24331
   206
  "m \<circ>\<^sub>m empty = empty"
nipkow@24331
   207
  "empty \<circ>\<^sub>m m = empty"
nipkow@24331
   208
by (auto simp add: map_comp_def intro: ext split: option.splits)
schirmer@17391
   209
wenzelm@20800
   210
lemma map_comp_simps [simp]:
nipkow@24331
   211
  "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None"
nipkow@24331
   212
  "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'"
nipkow@24331
   213
by (auto simp add: map_comp_def)
schirmer@17391
   214
schirmer@17391
   215
lemma map_comp_Some_iff:
nipkow@24331
   216
  "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)"
nipkow@24331
   217
by (auto simp add: map_comp_def split: option.splits)
schirmer@17391
   218
schirmer@17391
   219
lemma map_comp_None_iff:
nipkow@24331
   220
  "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) "
nipkow@24331
   221
by (auto simp add: map_comp_def split: option.splits)
webertj@13908
   222
wenzelm@20800
   223
oheimb@14100
   224
subsection {* @{text "++"} *}
webertj@13908
   225
nipkow@14025
   226
lemma map_add_empty[simp]: "m ++ empty = m"
nipkow@24331
   227
by(simp add: map_add_def)
webertj@13908
   228
nipkow@14025
   229
lemma empty_map_add[simp]: "empty ++ m = m"
nipkow@24331
   230
by (rule ext) (simp add: map_add_def split: option.split)
webertj@13908
   231
nipkow@14025
   232
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"
nipkow@24331
   233
by (rule ext) (simp add: map_add_def split: option.split)
wenzelm@20800
   234
wenzelm@20800
   235
lemma map_add_Some_iff:
nipkow@24331
   236
  "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)"
nipkow@24331
   237
by (simp add: map_add_def split: option.split)
nipkow@14025
   238
wenzelm@20800
   239
lemma map_add_SomeD [dest!]:
nipkow@24331
   240
  "(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x"
nipkow@24331
   241
by (rule map_add_Some_iff [THEN iffD1])
webertj@13908
   242
wenzelm@20800
   243
lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx"
nipkow@24331
   244
by (subst map_add_Some_iff) fast
webertj@13908
   245
nipkow@14025
   246
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)"
nipkow@24331
   247
by (simp add: map_add_def split: option.split)
webertj@13908
   248
nipkow@14025
   249
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)"
nipkow@24331
   250
by (rule ext) (simp add: map_add_def)
webertj@13908
   251
nipkow@14186
   252
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)"
nipkow@24331
   253
by (simp add: map_upds_def)
nipkow@14186
   254
wenzelm@20800
   255
lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs"
nipkow@24331
   256
unfolding map_add_def
nipkow@24331
   257
apply (induct xs)
nipkow@24331
   258
 apply simp
nipkow@24331
   259
apply (rule ext)
nipkow@24331
   260
apply (simp split add: option.split)
nipkow@24331
   261
done
webertj@13908
   262
nipkow@14025
   263
lemma finite_range_map_of_map_add:
wenzelm@20800
   264
  "finite (range f) ==> finite (range (f ++ map_of l))"
nipkow@24331
   265
apply (induct l)
nipkow@24331
   266
 apply (auto simp del: fun_upd_apply)
nipkow@24331
   267
apply (erule finite_range_updI)
nipkow@24331
   268
done
webertj@13908
   269
wenzelm@20800
   270
lemma inj_on_map_add_dom [iff]:
nipkow@24331
   271
  "inj_on (m ++ m') (dom m') = inj_on m' (dom m')"
nipkow@24331
   272
by (fastsimp simp: map_add_def dom_def inj_on_def split: option.splits)
wenzelm@20800
   273
nipkow@15304
   274
wenzelm@17399
   275
subsection {* @{term [source] restrict_map} *}
oheimb@14100
   276
wenzelm@20800
   277
lemma restrict_map_to_empty [simp]: "m|`{} = empty"
nipkow@24331
   278
by (simp add: restrict_map_def)
nipkow@14186
   279
wenzelm@20800
   280
lemma restrict_map_empty [simp]: "empty|`D = empty"
nipkow@24331
   281
by (simp add: restrict_map_def)
nipkow@14186
   282
nipkow@15693
   283
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x"
nipkow@24331
   284
by (simp add: restrict_map_def)
oheimb@14100
   285
nipkow@15693
   286
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None"
nipkow@24331
   287
by (simp add: restrict_map_def)
oheimb@14100
   288
nipkow@15693
   289
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"
nipkow@24331
   290
by (auto simp: restrict_map_def ran_def split: split_if_asm)
oheimb@14100
   291
nipkow@15693
   292
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A"
nipkow@24331
   293
by (auto simp: restrict_map_def dom_def split: split_if_asm)
oheimb@14100
   294
nipkow@15693
   295
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
nipkow@24331
   296
by (rule ext) (auto simp: restrict_map_def)
oheimb@14100
   297
nipkow@15693
   298
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)"
nipkow@24331
   299
by (rule ext) (auto simp: restrict_map_def)
oheimb@14100
   300
wenzelm@20800
   301
lemma restrict_fun_upd [simp]:
nipkow@24331
   302
  "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
nipkow@24331
   303
by (simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   304
wenzelm@20800
   305
lemma fun_upd_None_restrict [simp]:
nipkow@24331
   306
  "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)"
nipkow@24331
   307
by (simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   308
wenzelm@20800
   309
lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
nipkow@24331
   310
by (simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   311
wenzelm@20800
   312
lemma fun_upd_restrict_conv [simp]:
nipkow@24331
   313
  "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
nipkow@24331
   314
by (simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   315
oheimb@14100
   316
wenzelm@17399
   317
subsection {* @{term [source] map_upds} *}
nipkow@14025
   318
wenzelm@20800
   319
lemma map_upds_Nil1 [simp]: "m([] [|->] bs) = m"
nipkow@24331
   320
by (simp add: map_upds_def)
nipkow@14025
   321
wenzelm@20800
   322
lemma map_upds_Nil2 [simp]: "m(as [|->] []) = m"
nipkow@24331
   323
by (simp add:map_upds_def)
wenzelm@20800
   324
wenzelm@20800
   325
lemma map_upds_Cons [simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)"
nipkow@24331
   326
by (simp add:map_upds_def)
nipkow@14025
   327
wenzelm@20800
   328
lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow>
nipkow@24331
   329
  m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)"
nipkow@24331
   330
apply(induct xs)
nipkow@24331
   331
 apply (clarsimp simp add: neq_Nil_conv)
nipkow@24331
   332
apply (case_tac ys)
nipkow@24331
   333
 apply simp
nipkow@24331
   334
apply simp
nipkow@24331
   335
done
nipkow@14187
   336
wenzelm@20800
   337
lemma map_upds_list_update2_drop [simp]:
wenzelm@20800
   338
  "\<lbrakk>size xs \<le> i; i < size ys\<rbrakk>
wenzelm@20800
   339
    \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)"
nipkow@24331
   340
apply (induct xs arbitrary: m ys i)
nipkow@24331
   341
 apply simp
nipkow@24331
   342
apply (case_tac ys)
nipkow@24331
   343
 apply simp
nipkow@24331
   344
apply (simp split: nat.split)
nipkow@24331
   345
done
nipkow@14025
   346
wenzelm@20800
   347
lemma map_upd_upds_conv_if:
wenzelm@20800
   348
  "(f(x|->y))(xs [|->] ys) =
wenzelm@20800
   349
   (if x : set(take (length ys) xs) then f(xs [|->] ys)
wenzelm@20800
   350
                                    else (f(xs [|->] ys))(x|->y))"
nipkow@24331
   351
apply (induct xs arbitrary: x y ys f)
nipkow@24331
   352
 apply simp
nipkow@24331
   353
apply (case_tac ys)
nipkow@24331
   354
 apply (auto split: split_if simp: fun_upd_twist)
nipkow@24331
   355
done
nipkow@14025
   356
nipkow@14025
   357
lemma map_upds_twist [simp]:
nipkow@24331
   358
  "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)"
nipkow@24331
   359
using set_take_subset by (fastsimp simp add: map_upd_upds_conv_if)
nipkow@14025
   360
wenzelm@20800
   361
lemma map_upds_apply_nontin [simp]:
nipkow@24331
   362
  "x ~: set xs ==> (f(xs[|->]ys)) x = f x"
nipkow@24331
   363
apply (induct xs arbitrary: ys)
nipkow@24331
   364
 apply simp
nipkow@24331
   365
apply (case_tac ys)
nipkow@24331
   366
 apply (auto simp: map_upd_upds_conv_if)
nipkow@24331
   367
done
nipkow@14025
   368
wenzelm@20800
   369
lemma fun_upds_append_drop [simp]:
nipkow@24331
   370
  "size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)"
nipkow@24331
   371
apply (induct xs arbitrary: m ys)
nipkow@24331
   372
 apply simp
nipkow@24331
   373
apply (case_tac ys)
nipkow@24331
   374
 apply simp_all
nipkow@24331
   375
done
nipkow@14300
   376
wenzelm@20800
   377
lemma fun_upds_append2_drop [simp]:
nipkow@24331
   378
  "size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)"
nipkow@24331
   379
apply (induct xs arbitrary: m ys)
nipkow@24331
   380
 apply simp
nipkow@24331
   381
apply (case_tac ys)
nipkow@24331
   382
 apply simp_all
nipkow@24331
   383
done
nipkow@14300
   384
nipkow@14300
   385
wenzelm@20800
   386
lemma restrict_map_upds[simp]:
wenzelm@20800
   387
  "\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
wenzelm@20800
   388
    \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)"
nipkow@24331
   389
apply (induct xs arbitrary: m ys)
nipkow@24331
   390
 apply simp
nipkow@24331
   391
apply (case_tac ys)
nipkow@24331
   392
 apply simp
nipkow@24331
   393
apply (simp add: Diff_insert [symmetric] insert_absorb)
nipkow@24331
   394
apply (simp add: map_upd_upds_conv_if)
nipkow@24331
   395
done
nipkow@14186
   396
nipkow@14186
   397
wenzelm@17399
   398
subsection {* @{term [source] dom} *}
webertj@13908
   399
webertj@13908
   400
lemma domI: "m a = Some b ==> a : dom m"
nipkow@24331
   401
by(simp add:dom_def)
oheimb@14100
   402
(* declare domI [intro]? *)
webertj@13908
   403
paulson@15369
   404
lemma domD: "a : dom m ==> \<exists>b. m a = Some b"
nipkow@24331
   405
by (cases "m a") (auto simp add: dom_def)
webertj@13908
   406
wenzelm@20800
   407
lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)"
nipkow@24331
   408
by(simp add:dom_def)
webertj@13908
   409
wenzelm@20800
   410
lemma dom_empty [simp]: "dom empty = {}"
nipkow@24331
   411
by(simp add:dom_def)
webertj@13908
   412
wenzelm@20800
   413
lemma dom_fun_upd [simp]:
nipkow@24331
   414
  "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
nipkow@24331
   415
by(auto simp add:dom_def)
webertj@13908
   416
nipkow@13937
   417
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
nipkow@24331
   418
by (induct xys) (auto simp del: fun_upd_apply)
nipkow@13937
   419
nipkow@15304
   420
lemma dom_map_of_conv_image_fst:
nipkow@24331
   421
  "dom(map_of xys) = fst ` (set xys)"
nipkow@24331
   422
by(force simp: dom_map_of)
nipkow@15304
   423
wenzelm@20800
   424
lemma dom_map_of_zip [simp]: "[| length xs = length ys; distinct xs |] ==>
nipkow@24331
   425
  dom(map_of(zip xs ys)) = set xs"
nipkow@24331
   426
by (induct rule: list_induct2) simp_all
nipkow@15110
   427
webertj@13908
   428
lemma finite_dom_map_of: "finite (dom (map_of l))"
nipkow@24331
   429
by (induct l) (auto simp add: dom_def insert_Collect [symmetric])
webertj@13908
   430
wenzelm@20800
   431
lemma dom_map_upds [simp]:
nipkow@24331
   432
  "dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m"
nipkow@24331
   433
apply (induct xs arbitrary: m ys)
nipkow@24331
   434
 apply simp
nipkow@24331
   435
apply (case_tac ys)
nipkow@24331
   436
 apply auto
nipkow@24331
   437
done
nipkow@13910
   438
wenzelm@20800
   439
lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m"
nipkow@24331
   440
by(auto simp:dom_def)
nipkow@13910
   441
wenzelm@20800
   442
lemma dom_override_on [simp]:
wenzelm@20800
   443
  "dom(override_on f g A) =
wenzelm@20800
   444
    (dom f  - {a. a : A - dom g}) Un {a. a : A Int dom g}"
nipkow@24331
   445
by(auto simp: dom_def override_on_def)
webertj@13908
   446
nipkow@14027
   447
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
nipkow@24331
   448
by (rule ext) (force simp: map_add_def dom_def split: option.split)
wenzelm@20800
   449
nipkow@22230
   450
(* Due to John Matthews - could be rephrased with dom *)
nipkow@22230
   451
lemma finite_map_freshness:
nipkow@22230
   452
  "finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow>
nipkow@22230
   453
   \<exists>x. f x = None"
nipkow@22230
   454
by(bestsimp dest:ex_new_if_finite)
nipkow@14027
   455
wenzelm@17399
   456
subsection {* @{term [source] ran} *}
oheimb@14100
   457
wenzelm@20800
   458
lemma ranI: "m a = Some b ==> b : ran m"
nipkow@24331
   459
by(auto simp: ran_def)
oheimb@14100
   460
(* declare ranI [intro]? *)
webertj@13908
   461
wenzelm@20800
   462
lemma ran_empty [simp]: "ran empty = {}"
nipkow@24331
   463
by(auto simp: ran_def)
webertj@13908
   464
wenzelm@20800
   465
lemma ran_map_upd [simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)"
nipkow@24331
   466
unfolding ran_def
nipkow@24331
   467
apply auto
nipkow@24331
   468
apply (subgoal_tac "aa ~= a")
nipkow@24331
   469
 apply auto
nipkow@24331
   470
done
wenzelm@20800
   471
nipkow@13910
   472
oheimb@14100
   473
subsection {* @{text "map_le"} *}
nipkow@13910
   474
kleing@13912
   475
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"
nipkow@24331
   476
by (simp add: map_le_def)
nipkow@13910
   477
paulson@17724
   478
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f"
nipkow@24331
   479
by (force simp add: map_le_def)
nipkow@14187
   480
nipkow@13910
   481
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"
nipkow@24331
   482
by (fastsimp simp add: map_le_def)
nipkow@13910
   483
paulson@17724
   484
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)"
nipkow@24331
   485
by (force simp add: map_le_def)
nipkow@14187
   486
wenzelm@20800
   487
lemma map_le_upds [simp]:
nipkow@24331
   488
  "f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)"
nipkow@24331
   489
apply (induct as arbitrary: f g bs)
nipkow@24331
   490
 apply simp
nipkow@24331
   491
apply (case_tac bs)
nipkow@24331
   492
 apply auto
nipkow@24331
   493
done
webertj@13908
   494
webertj@14033
   495
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"
nipkow@24331
   496
by (fastsimp simp add: map_le_def dom_def)
webertj@14033
   497
webertj@14033
   498
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"
nipkow@24331
   499
by (simp add: map_le_def)
webertj@14033
   500
nipkow@14187
   501
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3"
nipkow@24331
   502
by (auto simp add: map_le_def dom_def)
webertj@14033
   503
webertj@14033
   504
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"
nipkow@24331
   505
unfolding map_le_def
nipkow@24331
   506
apply (rule ext)
nipkow@24331
   507
apply (case_tac "x \<in> dom f", simp)
nipkow@24331
   508
apply (case_tac "x \<in> dom g", simp, fastsimp)
nipkow@24331
   509
done
webertj@14033
   510
webertj@14033
   511
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)"
nipkow@24331
   512
by (fastsimp simp add: map_le_def)
webertj@14033
   513
nipkow@15304
   514
lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)"
nipkow@24331
   515
by(fastsimp simp: map_add_def map_le_def expand_fun_eq split: option.splits)
nipkow@15304
   516
nipkow@15303
   517
lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h"
nipkow@24331
   518
by (fastsimp simp add: map_le_def map_add_def dom_def)
nipkow@15303
   519
nipkow@15303
   520
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h"
nipkow@24331
   521
by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits)
nipkow@15303
   522
nipkow@3981
   523
end