src/HOL/FunDef.thy
author blanchet
Tue Nov 12 14:24:34 2013 +0100 (2013-11-12)
changeset 54407 e95831757903
parent 53603 59ef06cda7b9
permissions -rw-r--r--
ported part of function package to new 'Ctr_Sugar' abstraction
wenzelm@20324
     1
(*  Title:      HOL/FunDef.thy
wenzelm@20324
     2
    Author:     Alexander Krauss, TU Muenchen
wenzelm@22816
     3
*)
wenzelm@20324
     4
krauss@29125
     5
header {* Function Definitions and Termination Proofs *}
wenzelm@20324
     6
krauss@19564
     7
theory FunDef
blanchet@49989
     8
imports Partial_Function SAT Wellfounded
Manuel@53603
     9
keywords "function" "termination" :: thy_goal and "fun" "fun_cases" :: thy_decl
krauss@19564
    10
begin
krauss@19564
    11
krauss@29125
    12
subsection {* Definitions with default value. *}
krauss@20536
    13
krauss@20536
    14
definition
wenzelm@21404
    15
  THE_default :: "'a \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a" where
krauss@20536
    16
  "THE_default d P = (if (\<exists>!x. P x) then (THE x. P x) else d)"
krauss@20536
    17
krauss@20536
    18
lemma THE_defaultI': "\<exists>!x. P x \<Longrightarrow> P (THE_default d P)"
wenzelm@22816
    19
  by (simp add: theI' THE_default_def)
krauss@20536
    20
wenzelm@22816
    21
lemma THE_default1_equality:
wenzelm@22816
    22
    "\<lbrakk>\<exists>!x. P x; P a\<rbrakk> \<Longrightarrow> THE_default d P = a"
wenzelm@22816
    23
  by (simp add: the1_equality THE_default_def)
krauss@20536
    24
krauss@20536
    25
lemma THE_default_none:
wenzelm@22816
    26
    "\<not>(\<exists>!x. P x) \<Longrightarrow> THE_default d P = d"
wenzelm@22816
    27
  by (simp add:THE_default_def)
krauss@20536
    28
krauss@20536
    29
krauss@19564
    30
lemma fundef_ex1_existence:
wenzelm@22816
    31
  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
wenzelm@22816
    32
  assumes ex1: "\<exists>!y. G x y"
wenzelm@22816
    33
  shows "G x (f x)"
wenzelm@22816
    34
  apply (simp only: f_def)
wenzelm@22816
    35
  apply (rule THE_defaultI')
wenzelm@22816
    36
  apply (rule ex1)
wenzelm@22816
    37
  done
krauss@21051
    38
krauss@19564
    39
lemma fundef_ex1_uniqueness:
wenzelm@22816
    40
  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
wenzelm@22816
    41
  assumes ex1: "\<exists>!y. G x y"
wenzelm@22816
    42
  assumes elm: "G x (h x)"
wenzelm@22816
    43
  shows "h x = f x"
wenzelm@22816
    44
  apply (simp only: f_def)
wenzelm@22816
    45
  apply (rule THE_default1_equality [symmetric])
wenzelm@22816
    46
   apply (rule ex1)
wenzelm@22816
    47
  apply (rule elm)
wenzelm@22816
    48
  done
krauss@19564
    49
krauss@19564
    50
lemma fundef_ex1_iff:
wenzelm@22816
    51
  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
wenzelm@22816
    52
  assumes ex1: "\<exists>!y. G x y"
wenzelm@22816
    53
  shows "(G x y) = (f x = y)"
krauss@20536
    54
  apply (auto simp:ex1 f_def THE_default1_equality)
wenzelm@22816
    55
  apply (rule THE_defaultI')
wenzelm@22816
    56
  apply (rule ex1)
wenzelm@22816
    57
  done
krauss@19564
    58
krauss@20654
    59
lemma fundef_default_value:
wenzelm@22816
    60
  assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
wenzelm@22816
    61
  assumes graph: "\<And>x y. G x y \<Longrightarrow> D x"
wenzelm@22816
    62
  assumes "\<not> D x"
wenzelm@22816
    63
  shows "f x = d x"
krauss@20654
    64
proof -
krauss@21051
    65
  have "\<not>(\<exists>y. G x y)"
krauss@20654
    66
  proof
krauss@21512
    67
    assume "\<exists>y. G x y"
krauss@21512
    68
    hence "D x" using graph ..
krauss@21512
    69
    with `\<not> D x` show False ..
krauss@20654
    70
  qed
krauss@21051
    71
  hence "\<not>(\<exists>!y. G x y)" by blast
wenzelm@22816
    72
krauss@20654
    73
  thus ?thesis
krauss@20654
    74
    unfolding f_def
krauss@20654
    75
    by (rule THE_default_none)
krauss@20654
    76
qed
krauss@20654
    77
berghofe@23739
    78
definition in_rel_def[simp]:
berghofe@23739
    79
  "in_rel R x y == (x, y) \<in> R"
berghofe@23739
    80
berghofe@23739
    81
lemma wf_in_rel:
berghofe@23739
    82
  "wf R \<Longrightarrow> wfP (in_rel R)"
berghofe@23739
    83
  by (simp add: wfP_def)
berghofe@23739
    84
wenzelm@48891
    85
ML_file "Tools/Function/function_common.ML"
wenzelm@48891
    86
ML_file "Tools/Function/context_tree.ML"
wenzelm@48891
    87
ML_file "Tools/Function/function_core.ML"
wenzelm@48891
    88
ML_file "Tools/Function/sum_tree.ML"
wenzelm@48891
    89
ML_file "Tools/Function/mutual.ML"
wenzelm@48891
    90
ML_file "Tools/Function/pattern_split.ML"
wenzelm@48891
    91
ML_file "Tools/Function/relation.ML"
Manuel@53603
    92
ML_file "Tools/Function/function_elims.ML"
wenzelm@47701
    93
wenzelm@47701
    94
method_setup relation = {*
wenzelm@47701
    95
  Args.term >> (fn t => fn ctxt => SIMPLE_METHOD' (Function_Relation.relation_infer_tac ctxt t))
wenzelm@47701
    96
*} "prove termination using a user-specified wellfounded relation"
wenzelm@47701
    97
wenzelm@48891
    98
ML_file "Tools/Function/function.ML"
wenzelm@48891
    99
ML_file "Tools/Function/pat_completeness.ML"
wenzelm@47432
   100
wenzelm@47432
   101
method_setup pat_completeness = {*
wenzelm@47432
   102
  Scan.succeed (SIMPLE_METHOD' o Pat_Completeness.pat_completeness_tac)
wenzelm@47432
   103
*} "prove completeness of datatype patterns"
wenzelm@47432
   104
wenzelm@48891
   105
ML_file "Tools/Function/fun.ML"
wenzelm@48891
   106
ML_file "Tools/Function/induction_schema.ML"
krauss@19564
   107
wenzelm@47432
   108
method_setup induction_schema = {*
wenzelm@47432
   109
  Scan.succeed (RAW_METHOD o Induction_Schema.induction_schema_tac)
wenzelm@47432
   110
*} "prove an induction principle"
wenzelm@47432
   111
wenzelm@47701
   112
setup {*
krauss@33099
   113
  Function.setup
krauss@33098
   114
  #> Function_Fun.setup
krauss@25567
   115
*}
krauss@19770
   116
krauss@29125
   117
subsection {* Measure Functions *}
krauss@29125
   118
krauss@29125
   119
inductive is_measure :: "('a \<Rightarrow> nat) \<Rightarrow> bool"
krauss@29125
   120
where is_measure_trivial: "is_measure f"
krauss@29125
   121
wenzelm@48891
   122
ML_file "Tools/Function/measure_functions.ML"
krauss@29125
   123
setup MeasureFunctions.setup
krauss@29125
   124
krauss@29125
   125
lemma measure_size[measure_function]: "is_measure size"
krauss@29125
   126
by (rule is_measure_trivial)
krauss@29125
   127
krauss@29125
   128
lemma measure_fst[measure_function]: "is_measure f \<Longrightarrow> is_measure (\<lambda>p. f (fst p))"
krauss@29125
   129
by (rule is_measure_trivial)
krauss@29125
   130
lemma measure_snd[measure_function]: "is_measure f \<Longrightarrow> is_measure (\<lambda>p. f (snd p))"
krauss@29125
   131
by (rule is_measure_trivial)
krauss@29125
   132
wenzelm@48891
   133
ML_file "Tools/Function/lexicographic_order.ML"
wenzelm@47432
   134
wenzelm@47432
   135
method_setup lexicographic_order = {*
wenzelm@47432
   136
  Method.sections clasimp_modifiers >>
wenzelm@47432
   137
  (K (SIMPLE_METHOD o Lexicographic_Order.lexicographic_order_tac false))
wenzelm@47432
   138
*} "termination prover for lexicographic orderings"
wenzelm@47432
   139
wenzelm@47701
   140
setup Lexicographic_Order.setup
krauss@29125
   141
krauss@29125
   142
krauss@29125
   143
subsection {* Congruence Rules *}
krauss@29125
   144
haftmann@22838
   145
lemma let_cong [fundef_cong]:
haftmann@22838
   146
  "M = N \<Longrightarrow> (\<And>x. x = N \<Longrightarrow> f x = g x) \<Longrightarrow> Let M f = Let N g"
wenzelm@22816
   147
  unfolding Let_def by blast
krauss@22622
   148
wenzelm@22816
   149
lemmas [fundef_cong] =
haftmann@22838
   150
  if_cong image_cong INT_cong UN_cong
krauss@46526
   151
  bex_cong ball_cong imp_cong Option.map_cong Option.bind_cong
krauss@19564
   152
wenzelm@22816
   153
lemma split_cong [fundef_cong]:
haftmann@22838
   154
  "(\<And>x y. (x, y) = q \<Longrightarrow> f x y = g x y) \<Longrightarrow> p = q
wenzelm@22816
   155
    \<Longrightarrow> split f p = split g q"
wenzelm@22816
   156
  by (auto simp: split_def)
krauss@19934
   157
wenzelm@22816
   158
lemma comp_cong [fundef_cong]:
haftmann@22838
   159
  "f (g x) = f' (g' x') \<Longrightarrow> (f o g) x = (f' o g') x'"
wenzelm@22816
   160
  unfolding o_apply .
krauss@19934
   161
krauss@29125
   162
subsection {* Simp rules for termination proofs *}
krauss@26875
   163
krauss@26749
   164
lemma termination_basic_simps[termination_simp]:
wenzelm@47701
   165
  "x < (y::nat) \<Longrightarrow> x < y + z"
krauss@26749
   166
  "x < z \<Longrightarrow> x < y + z"
krauss@26875
   167
  "x \<le> y \<Longrightarrow> x \<le> y + (z::nat)"
krauss@26875
   168
  "x \<le> z \<Longrightarrow> x \<le> y + (z::nat)"
krauss@26875
   169
  "x < y \<Longrightarrow> x \<le> (y::nat)"
krauss@26749
   170
by arith+
krauss@26749
   171
krauss@26875
   172
declare le_imp_less_Suc[termination_simp]
krauss@26875
   173
krauss@26875
   174
lemma prod_size_simp[termination_simp]:
krauss@26875
   175
  "prod_size f g p = f (fst p) + g (snd p) + Suc 0"
krauss@26875
   176
by (induct p) auto
krauss@26875
   177
krauss@29125
   178
subsection {* Decomposition *}
krauss@29125
   179
wenzelm@47701
   180
lemma less_by_empty:
krauss@29125
   181
  "A = {} \<Longrightarrow> A \<subseteq> B"
krauss@29125
   182
and  union_comp_emptyL:
krauss@29125
   183
  "\<lbrakk> A O C = {}; B O C = {} \<rbrakk> \<Longrightarrow> (A \<union> B) O C = {}"
krauss@29125
   184
and union_comp_emptyR:
krauss@29125
   185
  "\<lbrakk> A O B = {}; A O C = {} \<rbrakk> \<Longrightarrow> A O (B \<union> C) = {}"
wenzelm@47701
   186
and wf_no_loop:
krauss@29125
   187
  "R O R = {} \<Longrightarrow> wf R"
krauss@29125
   188
by (auto simp add: wf_comp_self[of R])
krauss@29125
   189
krauss@29125
   190
krauss@29125
   191
subsection {* Reduction Pairs *}
krauss@29125
   192
krauss@29125
   193
definition
krauss@32235
   194
  "reduction_pair P = (wf (fst P) \<and> fst P O snd P \<subseteq> fst P)"
krauss@29125
   195
krauss@32235
   196
lemma reduction_pairI[intro]: "wf R \<Longrightarrow> R O S \<subseteq> R \<Longrightarrow> reduction_pair (R, S)"
krauss@29125
   197
unfolding reduction_pair_def by auto
krauss@29125
   198
krauss@29125
   199
lemma reduction_pair_lemma:
krauss@29125
   200
  assumes rp: "reduction_pair P"
krauss@29125
   201
  assumes "R \<subseteq> fst P"
krauss@29125
   202
  assumes "S \<subseteq> snd P"
krauss@29125
   203
  assumes "wf S"
krauss@29125
   204
  shows "wf (R \<union> S)"
krauss@29125
   205
proof -
krauss@32235
   206
  from rp `S \<subseteq> snd P` have "wf (fst P)" "fst P O S \<subseteq> fst P"
krauss@29125
   207
    unfolding reduction_pair_def by auto
wenzelm@47701
   208
  with `wf S` have "wf (fst P \<union> S)"
krauss@29125
   209
    by (auto intro: wf_union_compatible)
krauss@29125
   210
  moreover from `R \<subseteq> fst P` have "R \<union> S \<subseteq> fst P \<union> S" by auto
wenzelm@47701
   211
  ultimately show ?thesis by (rule wf_subset)
krauss@29125
   212
qed
krauss@29125
   213
krauss@29125
   214
definition
krauss@29125
   215
  "rp_inv_image = (\<lambda>(R,S) f. (inv_image R f, inv_image S f))"
krauss@29125
   216
krauss@29125
   217
lemma rp_inv_image_rp:
krauss@29125
   218
  "reduction_pair P \<Longrightarrow> reduction_pair (rp_inv_image P f)"
krauss@29125
   219
  unfolding reduction_pair_def rp_inv_image_def split_def
krauss@29125
   220
  by force
krauss@29125
   221
krauss@29125
   222
krauss@29125
   223
subsection {* Concrete orders for SCNP termination proofs *}
krauss@29125
   224
krauss@29125
   225
definition "pair_less = less_than <*lex*> less_than"
haftmann@37767
   226
definition "pair_leq = pair_less^="
krauss@29125
   227
definition "max_strict = max_ext pair_less"
haftmann@37767
   228
definition "max_weak = max_ext pair_leq \<union> {({}, {})}"
haftmann@37767
   229
definition "min_strict = min_ext pair_less"
haftmann@37767
   230
definition "min_weak = min_ext pair_leq \<union> {({}, {})}"
krauss@29125
   231
krauss@29125
   232
lemma wf_pair_less[simp]: "wf pair_less"
krauss@29125
   233
  by (auto simp: pair_less_def)
krauss@29125
   234
wenzelm@29127
   235
text {* Introduction rules for @{text pair_less}/@{text pair_leq} *}
krauss@29125
   236
lemma pair_leqI1: "a < b \<Longrightarrow> ((a, s), (b, t)) \<in> pair_leq"
krauss@29125
   237
  and pair_leqI2: "a \<le> b \<Longrightarrow> s \<le> t \<Longrightarrow> ((a, s), (b, t)) \<in> pair_leq"
krauss@29125
   238
  and pair_lessI1: "a < b  \<Longrightarrow> ((a, s), (b, t)) \<in> pair_less"
krauss@29125
   239
  and pair_lessI2: "a \<le> b \<Longrightarrow> s < t \<Longrightarrow> ((a, s), (b, t)) \<in> pair_less"
krauss@29125
   240
  unfolding pair_leq_def pair_less_def by auto
krauss@29125
   241
krauss@29125
   242
text {* Introduction rules for max *}
wenzelm@47701
   243
lemma smax_emptyI:
wenzelm@47701
   244
  "finite Y \<Longrightarrow> Y \<noteq> {} \<Longrightarrow> ({}, Y) \<in> max_strict"
wenzelm@47701
   245
  and smax_insertI:
krauss@29125
   246
  "\<lbrakk>y \<in> Y; (x, y) \<in> pair_less; (X, Y) \<in> max_strict\<rbrakk> \<Longrightarrow> (insert x X, Y) \<in> max_strict"
wenzelm@47701
   247
  and wmax_emptyI:
wenzelm@47701
   248
  "finite X \<Longrightarrow> ({}, X) \<in> max_weak"
krauss@29125
   249
  and wmax_insertI:
wenzelm@47701
   250
  "\<lbrakk>y \<in> YS; (x, y) \<in> pair_leq; (XS, YS) \<in> max_weak\<rbrakk> \<Longrightarrow> (insert x XS, YS) \<in> max_weak"
krauss@29125
   251
unfolding max_strict_def max_weak_def by (auto elim!: max_ext.cases)
krauss@29125
   252
krauss@29125
   253
text {* Introduction rules for min *}
wenzelm@47701
   254
lemma smin_emptyI:
wenzelm@47701
   255
  "X \<noteq> {} \<Longrightarrow> (X, {}) \<in> min_strict"
wenzelm@47701
   256
  and smin_insertI:
krauss@29125
   257
  "\<lbrakk>x \<in> XS; (x, y) \<in> pair_less; (XS, YS) \<in> min_strict\<rbrakk> \<Longrightarrow> (XS, insert y YS) \<in> min_strict"
wenzelm@47701
   258
  and wmin_emptyI:
wenzelm@47701
   259
  "(X, {}) \<in> min_weak"
wenzelm@47701
   260
  and wmin_insertI:
wenzelm@47701
   261
  "\<lbrakk>x \<in> XS; (x, y) \<in> pair_leq; (XS, YS) \<in> min_weak\<rbrakk> \<Longrightarrow> (XS, insert y YS) \<in> min_weak"
krauss@29125
   262
by (auto simp: min_strict_def min_weak_def min_ext_def)
krauss@29125
   263
krauss@29125
   264
text {* Reduction Pairs *}
krauss@29125
   265
wenzelm@47701
   266
lemma max_ext_compat:
krauss@32235
   267
  assumes "R O S \<subseteq> R"
krauss@32235
   268
  shows "max_ext R O (max_ext S \<union> {({},{})}) \<subseteq> max_ext R"
wenzelm@47701
   269
using assms
krauss@29125
   270
apply auto
krauss@29125
   271
apply (elim max_ext.cases)
krauss@29125
   272
apply rule
krauss@29125
   273
apply auto[3]
krauss@29125
   274
apply (drule_tac x=xa in meta_spec)
krauss@29125
   275
apply simp
krauss@29125
   276
apply (erule bexE)
krauss@29125
   277
apply (drule_tac x=xb in meta_spec)
krauss@29125
   278
by auto
krauss@29125
   279
krauss@29125
   280
lemma max_rpair_set: "reduction_pair (max_strict, max_weak)"
wenzelm@47701
   281
  unfolding max_strict_def max_weak_def
krauss@29125
   282
apply (intro reduction_pairI max_ext_wf)
krauss@29125
   283
apply simp
krauss@29125
   284
apply (rule max_ext_compat)
krauss@29125
   285
by (auto simp: pair_less_def pair_leq_def)
krauss@29125
   286
wenzelm@47701
   287
lemma min_ext_compat:
krauss@32235
   288
  assumes "R O S \<subseteq> R"
krauss@32235
   289
  shows "min_ext R O  (min_ext S \<union> {({},{})}) \<subseteq> min_ext R"
wenzelm@47701
   290
using assms
krauss@29125
   291
apply (auto simp: min_ext_def)
krauss@29125
   292
apply (drule_tac x=ya in bspec, assumption)
krauss@29125
   293
apply (erule bexE)
krauss@29125
   294
apply (drule_tac x=xc in bspec)
krauss@29125
   295
apply assumption
krauss@29125
   296
by auto
krauss@29125
   297
krauss@29125
   298
lemma min_rpair_set: "reduction_pair (min_strict, min_weak)"
wenzelm@47701
   299
  unfolding min_strict_def min_weak_def
krauss@29125
   300
apply (intro reduction_pairI min_ext_wf)
krauss@29125
   301
apply simp
krauss@29125
   302
apply (rule min_ext_compat)
krauss@29125
   303
by (auto simp: pair_less_def pair_leq_def)
krauss@29125
   304
krauss@29125
   305
krauss@29125
   306
subsection {* Tool setup *}
krauss@29125
   307
wenzelm@48891
   308
ML_file "Tools/Function/termination.ML"
wenzelm@48891
   309
ML_file "Tools/Function/scnp_solve.ML"
wenzelm@48891
   310
ML_file "Tools/Function/scnp_reconstruct.ML"
Manuel@53603
   311
ML_file "Tools/Function/fun_cases.ML"
krauss@29125
   312
blanchet@54407
   313
setup ScnpReconstruct.setup
wenzelm@30480
   314
wenzelm@30480
   315
ML_val -- "setup inactive"
wenzelm@30480
   316
{*
krauss@36521
   317
  Context.theory_map (Function_Common.set_termination_prover
krauss@36521
   318
    (ScnpReconstruct.decomp_scnp_tac [ScnpSolve.MAX, ScnpSolve.MIN, ScnpSolve.MS]))
krauss@29125
   319
*}
krauss@26875
   320
krauss@19564
   321
end