src/HOL/WF.ML
author oheimb
Sat Feb 15 17:52:31 1997 +0100 (1997-02-15)
changeset 2637 e9b203f854ae
parent 2031 03a843f0f447
child 2935 998cb95fdd43
permissions -rw-r--r--
reflecting my recent changes of the simplifier and classical reasoner
clasohm@1475
     1
(*  Title:      HOL/wf.ML
clasohm@923
     2
    ID:         $Id$
clasohm@1475
     3
    Author:     Tobias Nipkow, with minor changes by Konrad Slind
clasohm@1475
     4
    Copyright   1992  University of Cambridge/1995 TU Munich
clasohm@923
     5
clasohm@1475
     6
For WF.thy.  Wellfoundedness, induction, and  recursion
clasohm@923
     7
*)
clasohm@923
     8
clasohm@923
     9
open WF;
clasohm@923
    10
nipkow@950
    11
val H_cong = read_instantiate [("f","H")] (standard(refl RS cong RS cong));
clasohm@923
    12
val H_cong1 = refl RS H_cong;
clasohm@923
    13
clasohm@923
    14
(*Restriction to domain A.  If r is well-founded over A then wf(r)*)
clasohm@923
    15
val [prem1,prem2] = goalw WF.thy [wf_def]
paulson@1642
    16
 "[| r <= A Times A;  \
clasohm@972
    17
\    !!x P. [| ! x. (! y. (y,x) : r --> P(y)) --> P(x);  x:A |] ==> P(x) |]  \
clasohm@923
    18
\ ==>  wf(r)";
clasohm@923
    19
by (strip_tac 1);
clasohm@923
    20
by (rtac allE 1);
clasohm@923
    21
by (assume_tac 1);
berghofe@1786
    22
by (best_tac (!claset addSEs [prem1 RS subsetD RS SigmaE2] addIs [prem2]) 1);
clasohm@923
    23
qed "wfI";
clasohm@923
    24
clasohm@923
    25
val major::prems = goalw WF.thy [wf_def]
clasohm@923
    26
    "[| wf(r);          \
clasohm@972
    27
\       !!x.[| ! y. (y,x): r --> P(y) |] ==> P(x) \
clasohm@923
    28
\    |]  ==>  P(a)";
clasohm@923
    29
by (rtac (major RS spec RS mp RS spec) 1);
berghofe@1760
    30
by (fast_tac (!claset addEs prems) 1);
clasohm@923
    31
qed "wf_induct";
clasohm@923
    32
clasohm@923
    33
(*Perform induction on i, then prove the wf(r) subgoal using prems. *)
clasohm@923
    34
fun wf_ind_tac a prems i = 
clasohm@923
    35
    EVERY [res_inst_tac [("a",a)] wf_induct i,
clasohm@1465
    36
           rename_last_tac a ["1"] (i+1),
clasohm@1465
    37
           ares_tac prems i];
clasohm@923
    38
clasohm@972
    39
val prems = goal WF.thy "[| wf(r);  (a,x):r;  (x,a):r |] ==> P";
clasohm@972
    40
by (subgoal_tac "! x. (a,x):r --> (x,a):r --> P" 1);
berghofe@1760
    41
by (fast_tac (!claset addIs prems) 1);
clasohm@923
    42
by (wf_ind_tac "a" prems 1);
berghofe@1760
    43
by (Fast_tac 1);
clasohm@923
    44
qed "wf_asym";
clasohm@923
    45
clasohm@972
    46
val prems = goal WF.thy "[| wf(r);  (a,a): r |] ==> P";
clasohm@923
    47
by (rtac wf_asym 1);
clasohm@923
    48
by (REPEAT (resolve_tac prems 1));
paulson@1618
    49
qed "wf_irrefl";
clasohm@923
    50
clasohm@1475
    51
(*transitive closure of a wf relation is wf! *)
clasohm@923
    52
val [prem] = goal WF.thy "wf(r) ==> wf(r^+)";
clasohm@923
    53
by (rewtac wf_def);
clasohm@923
    54
by (strip_tac 1);
clasohm@923
    55
(*must retain the universal formula for later use!*)
clasohm@923
    56
by (rtac allE 1 THEN assume_tac 1);
clasohm@923
    57
by (etac mp 1);
clasohm@923
    58
by (res_inst_tac [("a","x")] (prem RS wf_induct) 1);
clasohm@923
    59
by (rtac (impI RS allI) 1);
clasohm@923
    60
by (etac tranclE 1);
berghofe@1760
    61
by (Fast_tac 1);
berghofe@1760
    62
by (Fast_tac 1);
clasohm@923
    63
qed "wf_trancl";
clasohm@923
    64
clasohm@923
    65
clasohm@923
    66
(** cut **)
clasohm@923
    67
clasohm@923
    68
(*This rewrite rule works upon formulae; thus it requires explicit use of
clasohm@923
    69
  H_cong to expose the equality*)
clasohm@923
    70
goalw WF.thy [cut_def]
clasohm@972
    71
    "(cut f r x = cut g r x) = (!y. (y,x):r --> f(y)=g(y))";
paulson@1552
    72
by (simp_tac (HOL_ss addsimps [expand_fun_eq]
clasohm@1475
    73
                    setloop (split_tac [expand_if])) 1);
clasohm@1475
    74
qed "cuts_eq";
clasohm@923
    75
clasohm@972
    76
goalw WF.thy [cut_def] "!!x. (x,a):r ==> (cut f r a)(x) = f(x)";
paulson@1552
    77
by (asm_simp_tac HOL_ss 1);
clasohm@923
    78
qed "cut_apply";
clasohm@923
    79
clasohm@923
    80
(*** is_recfun ***)
clasohm@923
    81
clasohm@923
    82
goalw WF.thy [is_recfun_def,cut_def]
clasohm@1475
    83
    "!!f. [| is_recfun r H a f;  ~(b,a):r |] ==> f(b) = (@z.True)";
clasohm@923
    84
by (etac ssubst 1);
paulson@1552
    85
by (asm_simp_tac HOL_ss 1);
clasohm@923
    86
qed "is_recfun_undef";
clasohm@923
    87
clasohm@923
    88
(*** NOTE! some simplifications need a different finish_tac!! ***)
clasohm@923
    89
fun indhyp_tac hyps =
clasohm@923
    90
    (cut_facts_tac hyps THEN'
clasohm@923
    91
       DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE'
clasohm@1465
    92
                        eresolve_tac [transD, mp, allE]));
oheimb@2637
    93
val wf_super_ss = HOL_ss addSolver indhyp_tac;
clasohm@923
    94
clasohm@923
    95
val prems = goalw WF.thy [is_recfun_def,cut_def]
clasohm@1475
    96
    "[| wf(r);  trans(r);  is_recfun r H a f;  is_recfun r H b g |] ==> \
clasohm@972
    97
    \ (x,a):r --> (x,b):r --> f(x)=g(x)";
clasohm@923
    98
by (cut_facts_tac prems 1);
clasohm@923
    99
by (etac wf_induct 1);
clasohm@923
   100
by (REPEAT (rtac impI 1 ORELSE etac ssubst 1));
clasohm@923
   101
by (asm_simp_tac (wf_super_ss addcongs [if_cong]) 1);
nipkow@1485
   102
qed_spec_mp "is_recfun_equal";
clasohm@923
   103
clasohm@923
   104
clasohm@923
   105
val prems as [wfr,transr,recfa,recgb,_] = goalw WF.thy [cut_def]
clasohm@923
   106
    "[| wf(r);  trans(r); \
clasohm@1475
   107
\       is_recfun r H a f;  is_recfun r H b g;  (b,a):r |] ==> \
clasohm@923
   108
\    cut f r b = g";
clasohm@923
   109
val gundef = recgb RS is_recfun_undef
clasohm@923
   110
and fisg   = recgb RS (recfa RS (transr RS (wfr RS is_recfun_equal)));
clasohm@923
   111
by (cut_facts_tac prems 1);
clasohm@923
   112
by (rtac ext 1);
clasohm@923
   113
by (asm_simp_tac (wf_super_ss addsimps [gundef,fisg]
clasohm@923
   114
                              setloop (split_tac [expand_if])) 1);
clasohm@923
   115
qed "is_recfun_cut";
clasohm@923
   116
clasohm@923
   117
(*** Main Existence Lemma -- Basic Properties of the_recfun ***)
clasohm@923
   118
clasohm@923
   119
val prems = goalw WF.thy [the_recfun_def]
clasohm@1475
   120
    "is_recfun r H a f ==> is_recfun r H a (the_recfun r H a)";
clasohm@1475
   121
by (res_inst_tac [("P", "is_recfun r H a")] selectI 1);
clasohm@923
   122
by (resolve_tac prems 1);
clasohm@923
   123
qed "is_the_recfun";
clasohm@923
   124
clasohm@923
   125
val prems = goal WF.thy
clasohm@1475
   126
 "[| wf(r);  trans(r) |] ==> is_recfun r H a (the_recfun r H a)";
clasohm@1475
   127
  by (cut_facts_tac prems 1);
clasohm@1475
   128
  by (wf_ind_tac "a" prems 1);
clasohm@1475
   129
  by (res_inst_tac [("f","cut (%y. H (the_recfun r H y) y) r a1")]
clasohm@1475
   130
                   is_the_recfun 1);
paulson@1552
   131
  by (rewtac is_recfun_def);
paulson@2031
   132
  by (stac cuts_eq 1);
clasohm@1475
   133
  by (rtac allI 1);
clasohm@1475
   134
  by (rtac impI 1);
clasohm@1475
   135
  by (res_inst_tac [("f1","H"),("x","y")](arg_cong RS fun_cong) 1);
clasohm@1475
   136
  by (subgoal_tac
clasohm@1475
   137
         "the_recfun r H y = cut(%x. H(cut(the_recfun r H y) r x) x) r y" 1);
clasohm@1475
   138
  by (etac allE 2);
clasohm@1475
   139
  by (dtac impE 2);
clasohm@1475
   140
  by (atac 2);
clasohm@1475
   141
  by (atac 3);
clasohm@1475
   142
  by (atac 2);
clasohm@1475
   143
  by (etac ssubst 1);
clasohm@1475
   144
  by (simp_tac (HOL_ss addsimps [cuts_eq]) 1);
clasohm@1475
   145
  by (rtac allI 1);
clasohm@1475
   146
  by (rtac impI 1);
clasohm@1475
   147
  by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cuts_eq]) 1);
clasohm@1475
   148
  by (res_inst_tac [("f1","H"),("x","ya")](arg_cong RS fun_cong) 1);
clasohm@1475
   149
  by (fold_tac [is_recfun_def]);
clasohm@1475
   150
  by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cuts_eq]) 1);
clasohm@923
   151
qed "unfold_the_recfun";
clasohm@923
   152
clasohm@1475
   153
val unwind1_the_recfun = rewrite_rule[is_recfun_def] unfold_the_recfun;
clasohm@923
   154
clasohm@1475
   155
(*--------------Old proof-----------------------------------------------------
clasohm@923
   156
val prems = goal WF.thy
clasohm@1475
   157
    "[| wf(r);  trans(r) |] ==> is_recfun r H a (the_recfun r H a)";
clasohm@1475
   158
by (cut_facts_tac prems 1);
clasohm@1475
   159
by (wf_ind_tac "a" prems 1);
clasohm@1475
   160
by (res_inst_tac [("f", "cut (%y. wftrec r H y) r a1")] is_the_recfun 1); 
clasohm@1475
   161
by (rewrite_goals_tac [is_recfun_def, wftrec_def]);
paulson@2031
   162
by (stac cuts_eq 1);
clasohm@1475
   163
(*Applying the substitution: must keep the quantified assumption!!*)
clasohm@1475
   164
by (EVERY1 [strip_tac, rtac H_cong1, rtac allE, atac,
clasohm@1475
   165
            etac (mp RS ssubst), atac]); 
clasohm@1475
   166
by (fold_tac [is_recfun_def]);
clasohm@1475
   167
by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cuts_eq]) 1);
clasohm@1475
   168
qed "unfold_the_recfun";
clasohm@1475
   169
---------------------------------------------------------------------------*)
clasohm@923
   170
clasohm@923
   171
(** Removal of the premise trans(r) **)
clasohm@1475
   172
val th = rewrite_rule[is_recfun_def]
clasohm@1475
   173
                     (trans_trancl RSN (2,(wf_trancl RS unfold_the_recfun)));
clasohm@923
   174
clasohm@923
   175
goalw WF.thy [wfrec_def]
clasohm@1475
   176
    "!!r. wf(r) ==> wfrec r H a = H (cut (wfrec r H) r a) a";
clasohm@1475
   177
by (rtac H_cong 1);
clasohm@1475
   178
by (rtac refl 2);
clasohm@1475
   179
by (simp_tac (HOL_ss addsimps [cuts_eq]) 1);
clasohm@1475
   180
by (rtac allI 1);
clasohm@1475
   181
by (rtac impI 1);
clasohm@1475
   182
by (simp_tac(HOL_ss addsimps [wfrec_def]) 1);
clasohm@1475
   183
by (res_inst_tac [("a1","a")] (th RS ssubst) 1);
clasohm@1475
   184
by (atac 1);
clasohm@1475
   185
by (forward_tac[wf_trancl] 1);
clasohm@1475
   186
by (forward_tac[r_into_trancl] 1);
clasohm@1475
   187
by (asm_simp_tac (HOL_ss addsimps [cut_apply]) 1);
clasohm@1475
   188
by (rtac H_cong 1);    (*expose the equality of cuts*)
clasohm@1475
   189
by (rtac refl 2);
clasohm@1475
   190
by (simp_tac (HOL_ss addsimps [cuts_eq, cut_apply, r_into_trancl]) 1);
clasohm@1475
   191
by (strip_tac 1);
nipkow@1485
   192
by (res_inst_tac [("r","r^+")] is_recfun_equal 1);
clasohm@1475
   193
by (atac 1);
clasohm@1475
   194
by (rtac trans_trancl 1);
clasohm@1475
   195
by (rtac unfold_the_recfun 1);
clasohm@1475
   196
by (atac 1);
clasohm@1475
   197
by (rtac trans_trancl 1);
clasohm@1475
   198
by (rtac unfold_the_recfun 1);
clasohm@1475
   199
by (atac 1);
clasohm@1475
   200
by (rtac trans_trancl 1);
clasohm@1475
   201
by (rtac transD 1);
clasohm@1475
   202
by (rtac trans_trancl 1);
clasohm@1475
   203
by (forw_inst_tac [("a","ya")] r_into_trancl 1);
clasohm@1475
   204
by (atac 1);
clasohm@1475
   205
by (atac 1);
clasohm@1475
   206
by (forw_inst_tac [("a","ya")] r_into_trancl 1);
clasohm@1475
   207
by (atac 1);
clasohm@1475
   208
qed "wfrec";
clasohm@1475
   209
clasohm@1475
   210
(*--------------Old proof-----------------------------------------------------
clasohm@1475
   211
goalw WF.thy [wfrec_def]
clasohm@1475
   212
    "!!r. wf(r) ==> wfrec r H a = H (cut (wfrec r H) r a) a";
clasohm@923
   213
by (etac (wf_trancl RS wftrec RS ssubst) 1);
clasohm@923
   214
by (rtac trans_trancl 1);
clasohm@923
   215
by (rtac (refl RS H_cong) 1);    (*expose the equality of cuts*)
clasohm@1475
   216
by (simp_tac (HOL_ss addsimps [cuts_eq, cut_apply, r_into_trancl]) 1);
clasohm@923
   217
qed "wfrec";
clasohm@1475
   218
---------------------------------------------------------------------------*)
clasohm@923
   219
clasohm@1475
   220
(*---------------------------------------------------------------------------
clasohm@1475
   221
 * This form avoids giant explosions in proofs.  NOTE USE OF == 
clasohm@1475
   222
 *---------------------------------------------------------------------------*)
clasohm@923
   223
val rew::prems = goal WF.thy
clasohm@1475
   224
    "[| f==wfrec r H;  wf(r) |] ==> f(a) = H (cut f r a) a";
clasohm@923
   225
by (rewtac rew);
clasohm@923
   226
by (REPEAT (resolve_tac (prems@[wfrec]) 1));
clasohm@923
   227
qed "def_wfrec";
clasohm@1475
   228