src/HOL/Probability/Probability_Mass_Function.thy
author wenzelm
Fri Jan 01 14:44:52 2016 +0100 (2016-01-01)
changeset 62026 ea3b1b0413b4
parent 61808 fc1556774cfe
child 62083 7582b39f51ed
permissions -rw-r--r--
more symbols;
hoelzl@58606
     1
(*  Title:      HOL/Probability/Probability_Mass_Function.thy
lp15@59667
     2
    Author:     Johannes Hölzl, TU München
Andreas@59023
     3
    Author:     Andreas Lochbihler, ETH Zurich
Andreas@59023
     4
*)
hoelzl@58606
     5
hoelzl@59000
     6
section \<open> Probability mass function \<close>
hoelzl@59000
     7
hoelzl@58587
     8
theory Probability_Mass_Function
hoelzl@59000
     9
imports
hoelzl@59000
    10
  Giry_Monad
hoelzl@59000
    11
  "~~/src/HOL/Library/Multiset"
hoelzl@58587
    12
begin
hoelzl@58587
    13
hoelzl@59664
    14
lemma AE_emeasure_singleton:
hoelzl@59664
    15
  assumes x: "emeasure M {x} \<noteq> 0" and ae: "AE x in M. P x" shows "P x"
hoelzl@59664
    16
proof -
hoelzl@59664
    17
  from x have x_M: "{x} \<in> sets M"
hoelzl@59664
    18
    by (auto intro: emeasure_notin_sets)
hoelzl@59664
    19
  from ae obtain N where N: "{x\<in>space M. \<not> P x} \<subseteq> N" "emeasure M N = 0" "N \<in> sets M"
hoelzl@59664
    20
    by (auto elim: AE_E)
hoelzl@59664
    21
  { assume "\<not> P x"
hoelzl@59664
    22
    with x_M[THEN sets.sets_into_space] N have "emeasure M {x} \<le> emeasure M N"
hoelzl@59664
    23
      by (intro emeasure_mono) auto
hoelzl@59664
    24
    with x N have False
hoelzl@59664
    25
      by (auto simp: emeasure_le_0_iff) }
hoelzl@59664
    26
  then show "P x" by auto
hoelzl@59664
    27
qed
hoelzl@59664
    28
hoelzl@59664
    29
lemma AE_measure_singleton: "measure M {x} \<noteq> 0 \<Longrightarrow> AE x in M. P x \<Longrightarrow> P x"
hoelzl@59664
    30
  by (metis AE_emeasure_singleton measure_def emeasure_empty measure_empty)
hoelzl@59664
    31
hoelzl@59494
    32
lemma ereal_divide': "b \<noteq> 0 \<Longrightarrow> ereal (a / b) = ereal a / ereal b"
hoelzl@59494
    33
  using ereal_divide[of a b] by simp
hoelzl@59494
    34
hoelzl@59052
    35
lemma (in finite_measure) countable_support:
hoelzl@58587
    36
  "countable {x. measure M {x} \<noteq> 0}"
hoelzl@59000
    37
proof cases
hoelzl@59000
    38
  assume "measure M (space M) = 0"
hoelzl@59000
    39
  with bounded_measure measure_le_0_iff have "{x. measure M {x} \<noteq> 0} = {}"
hoelzl@59000
    40
    by auto
hoelzl@59000
    41
  then show ?thesis
hoelzl@59000
    42
    by simp
hoelzl@59000
    43
next
hoelzl@59000
    44
  let ?M = "measure M (space M)" and ?m = "\<lambda>x. measure M {x}"
hoelzl@59000
    45
  assume "?M \<noteq> 0"
hoelzl@59000
    46
  then have *: "{x. ?m x \<noteq> 0} = (\<Union>n. {x. ?M / Suc n < ?m x})"
hoelzl@59000
    47
    using reals_Archimedean[of "?m x / ?M" for x]
hoelzl@59000
    48
    by (auto simp: field_simps not_le[symmetric] measure_nonneg divide_le_0_iff measure_le_0_iff)
hoelzl@59000
    49
  have **: "\<And>n. finite {x. ?M / Suc n < ?m x}"
hoelzl@58587
    50
  proof (rule ccontr)
hoelzl@59000
    51
    fix n assume "infinite {x. ?M / Suc n < ?m x}" (is "infinite ?X")
hoelzl@58587
    52
    then obtain X where "finite X" "card X = Suc (Suc n)" "X \<subseteq> ?X"
hoelzl@58606
    53
      by (metis infinite_arbitrarily_large)
lp15@59667
    54
    from this(3) have *: "\<And>x. x \<in> X \<Longrightarrow> ?M / Suc n \<le> ?m x"
hoelzl@59000
    55
      by auto
hoelzl@58587
    56
    { fix x assume "x \<in> X"
wenzelm@61808
    57
      from \<open>?M \<noteq> 0\<close> *[OF this] have "?m x \<noteq> 0" by (auto simp: field_simps measure_le_0_iff)
hoelzl@58587
    58
      then have "{x} \<in> sets M" by (auto dest: measure_notin_sets) }
hoelzl@58587
    59
    note singleton_sets = this
hoelzl@59000
    60
    have "?M < (\<Sum>x\<in>X. ?M / Suc n)"
wenzelm@61808
    61
      using \<open>?M \<noteq> 0\<close>
wenzelm@61808
    62
      by (simp add: \<open>card X = Suc (Suc n)\<close> of_nat_Suc field_simps less_le measure_nonneg)
hoelzl@58587
    63
    also have "\<dots> \<le> (\<Sum>x\<in>X. ?m x)"
hoelzl@58587
    64
      by (rule setsum_mono) fact
hoelzl@58587
    65
    also have "\<dots> = measure M (\<Union>x\<in>X. {x})"
wenzelm@61808
    66
      using singleton_sets \<open>finite X\<close>
hoelzl@58587
    67
      by (intro finite_measure_finite_Union[symmetric]) (auto simp: disjoint_family_on_def)
hoelzl@59000
    68
    finally have "?M < measure M (\<Union>x\<in>X. {x})" .
hoelzl@59000
    69
    moreover have "measure M (\<Union>x\<in>X. {x}) \<le> ?M"
hoelzl@59000
    70
      using singleton_sets[THEN sets.sets_into_space] by (intro finite_measure_mono) auto
hoelzl@59000
    71
    ultimately show False by simp
hoelzl@58587
    72
  qed
hoelzl@58587
    73
  show ?thesis
hoelzl@58587
    74
    unfolding * by (intro countable_UN countableI_type countable_finite[OF **])
hoelzl@58587
    75
qed
hoelzl@58587
    76
hoelzl@59000
    77
lemma (in finite_measure) AE_support_countable:
hoelzl@59000
    78
  assumes [simp]: "sets M = UNIV"
hoelzl@59000
    79
  shows "(AE x in M. measure M {x} \<noteq> 0) \<longleftrightarrow> (\<exists>S. countable S \<and> (AE x in M. x \<in> S))"
hoelzl@59000
    80
proof
hoelzl@59000
    81
  assume "\<exists>S. countable S \<and> (AE x in M. x \<in> S)"
hoelzl@59000
    82
  then obtain S where S[intro]: "countable S" and ae: "AE x in M. x \<in> S"
hoelzl@59000
    83
    by auto
lp15@59667
    84
  then have "emeasure M (\<Union>x\<in>{x\<in>S. emeasure M {x} \<noteq> 0}. {x}) =
hoelzl@59000
    85
    (\<integral>\<^sup>+ x. emeasure M {x} * indicator {x\<in>S. emeasure M {x} \<noteq> 0} x \<partial>count_space UNIV)"
hoelzl@59000
    86
    by (subst emeasure_UN_countable)
hoelzl@59000
    87
       (auto simp: disjoint_family_on_def nn_integral_restrict_space[symmetric] restrict_count_space)
hoelzl@59000
    88
  also have "\<dots> = (\<integral>\<^sup>+ x. emeasure M {x} * indicator S x \<partial>count_space UNIV)"
hoelzl@59000
    89
    by (auto intro!: nn_integral_cong split: split_indicator)
hoelzl@59000
    90
  also have "\<dots> = emeasure M (\<Union>x\<in>S. {x})"
hoelzl@59000
    91
    by (subst emeasure_UN_countable)
hoelzl@59000
    92
       (auto simp: disjoint_family_on_def nn_integral_restrict_space[symmetric] restrict_count_space)
hoelzl@59000
    93
  also have "\<dots> = emeasure M (space M)"
hoelzl@59000
    94
    using ae by (intro emeasure_eq_AE) auto
hoelzl@59000
    95
  finally have "emeasure M {x \<in> space M. x\<in>S \<and> emeasure M {x} \<noteq> 0} = emeasure M (space M)"
hoelzl@59000
    96
    by (simp add: emeasure_single_in_space cong: rev_conj_cong)
hoelzl@59000
    97
  with finite_measure_compl[of "{x \<in> space M. x\<in>S \<and> emeasure M {x} \<noteq> 0}"]
hoelzl@59000
    98
  have "AE x in M. x \<in> S \<and> emeasure M {x} \<noteq> 0"
hoelzl@59000
    99
    by (intro AE_I[OF order_refl]) (auto simp: emeasure_eq_measure set_diff_eq cong: conj_cong)
hoelzl@59000
   100
  then show "AE x in M. measure M {x} \<noteq> 0"
hoelzl@59000
   101
    by (auto simp: emeasure_eq_measure)
hoelzl@59000
   102
qed (auto intro!: exI[of _ "{x. measure M {x} \<noteq> 0}"] countable_support)
hoelzl@59000
   103
hoelzl@59664
   104
subsection \<open> PMF as measure \<close>
hoelzl@59000
   105
hoelzl@58587
   106
typedef 'a pmf = "{M :: 'a measure. prob_space M \<and> sets M = UNIV \<and> (AE x in M. measure M {x} \<noteq> 0)}"
hoelzl@58587
   107
  morphisms measure_pmf Abs_pmf
hoelzl@58606
   108
  by (intro exI[of _ "uniform_measure (count_space UNIV) {undefined}"])
hoelzl@58606
   109
     (auto intro!: prob_space_uniform_measure AE_uniform_measureI)
hoelzl@58587
   110
hoelzl@58587
   111
declare [[coercion measure_pmf]]
hoelzl@58587
   112
hoelzl@58587
   113
lemma prob_space_measure_pmf: "prob_space (measure_pmf p)"
hoelzl@58587
   114
  using pmf.measure_pmf[of p] by auto
hoelzl@58587
   115
wenzelm@61605
   116
interpretation measure_pmf: prob_space "measure_pmf M" for M
hoelzl@58587
   117
  by (rule prob_space_measure_pmf)
hoelzl@58587
   118
wenzelm@61605
   119
interpretation measure_pmf: subprob_space "measure_pmf M" for M
hoelzl@59000
   120
  by (rule prob_space_imp_subprob_space) unfold_locales
hoelzl@59000
   121
hoelzl@59048
   122
lemma subprob_space_measure_pmf: "subprob_space (measure_pmf x)"
hoelzl@59048
   123
  by unfold_locales
hoelzl@59048
   124
hoelzl@58587
   125
locale pmf_as_measure
hoelzl@58587
   126
begin
hoelzl@58587
   127
hoelzl@58587
   128
setup_lifting type_definition_pmf
hoelzl@58587
   129
hoelzl@58587
   130
end
hoelzl@58587
   131
hoelzl@58587
   132
context
hoelzl@58587
   133
begin
hoelzl@58587
   134
hoelzl@58587
   135
interpretation pmf_as_measure .
hoelzl@58587
   136
hoelzl@58587
   137
lemma sets_measure_pmf[simp]: "sets (measure_pmf p) = UNIV"
lp15@59667
   138
  by transfer blast
hoelzl@58587
   139
hoelzl@59048
   140
lemma sets_measure_pmf_count_space[measurable_cong]:
hoelzl@59048
   141
  "sets (measure_pmf M) = sets (count_space UNIV)"
hoelzl@59000
   142
  by simp
hoelzl@59000
   143
hoelzl@58587
   144
lemma space_measure_pmf[simp]: "space (measure_pmf p) = UNIV"
hoelzl@58587
   145
  using sets_eq_imp_space_eq[of "measure_pmf p" "count_space UNIV"] by simp
hoelzl@58587
   146
Andreas@61634
   147
lemma measure_pmf_UNIV [simp]: "measure (measure_pmf p) UNIV = 1"
Andreas@61634
   148
using measure_pmf.prob_space[of p] by simp
Andreas@61634
   149
hoelzl@59048
   150
lemma measure_pmf_in_subprob_algebra[measurable (raw)]: "measure_pmf x \<in> space (subprob_algebra (count_space UNIV))"
hoelzl@59048
   151
  by (simp add: space_subprob_algebra subprob_space_measure_pmf)
hoelzl@59048
   152
hoelzl@58587
   153
lemma measurable_pmf_measure1[simp]: "measurable (M :: 'a pmf) N = UNIV \<rightarrow> space N"
hoelzl@58587
   154
  by (auto simp: measurable_def)
hoelzl@58587
   155
hoelzl@58587
   156
lemma measurable_pmf_measure2[simp]: "measurable N (M :: 'a pmf) = measurable N (count_space UNIV)"
hoelzl@58587
   157
  by (intro measurable_cong_sets) simp_all
hoelzl@58587
   158
hoelzl@59664
   159
lemma measurable_pair_restrict_pmf2:
hoelzl@59664
   160
  assumes "countable A"
hoelzl@59664
   161
  assumes [measurable]: "\<And>y. y \<in> A \<Longrightarrow> (\<lambda>x. f (x, y)) \<in> measurable M L"
hoelzl@59664
   162
  shows "f \<in> measurable (M \<Otimes>\<^sub>M restrict_space (measure_pmf N) A) L" (is "f \<in> measurable ?M _")
hoelzl@59664
   163
proof -
hoelzl@59664
   164
  have [measurable_cong]: "sets (restrict_space (count_space UNIV) A) = sets (count_space A)"
hoelzl@59664
   165
    by (simp add: restrict_count_space)
hoelzl@58587
   166
hoelzl@59664
   167
  show ?thesis
hoelzl@59664
   168
    by (intro measurable_compose_countable'[where f="\<lambda>a b. f (fst b, a)" and g=snd and I=A,
haftmann@61424
   169
                                            unfolded prod.collapse] assms)
hoelzl@59664
   170
        measurable
hoelzl@59664
   171
qed
hoelzl@58587
   172
hoelzl@59664
   173
lemma measurable_pair_restrict_pmf1:
hoelzl@59664
   174
  assumes "countable A"
hoelzl@59664
   175
  assumes [measurable]: "\<And>x. x \<in> A \<Longrightarrow> (\<lambda>y. f (x, y)) \<in> measurable N L"
hoelzl@59664
   176
  shows "f \<in> measurable (restrict_space (measure_pmf M) A \<Otimes>\<^sub>M N) L"
hoelzl@59664
   177
proof -
hoelzl@59664
   178
  have [measurable_cong]: "sets (restrict_space (count_space UNIV) A) = sets (count_space A)"
hoelzl@59664
   179
    by (simp add: restrict_count_space)
hoelzl@59000
   180
hoelzl@59664
   181
  show ?thesis
hoelzl@59664
   182
    by (intro measurable_compose_countable'[where f="\<lambda>a b. f (a, snd b)" and g=fst and I=A,
haftmann@61424
   183
                                            unfolded prod.collapse] assms)
hoelzl@59664
   184
        measurable
hoelzl@59664
   185
qed
hoelzl@59664
   186
hoelzl@59664
   187
lift_definition pmf :: "'a pmf \<Rightarrow> 'a \<Rightarrow> real" is "\<lambda>M x. measure M {x}" .
hoelzl@59664
   188
hoelzl@59664
   189
lift_definition set_pmf :: "'a pmf \<Rightarrow> 'a set" is "\<lambda>M. {x. measure M {x} \<noteq> 0}" .
hoelzl@59664
   190
declare [[coercion set_pmf]]
hoelzl@58587
   191
hoelzl@58587
   192
lemma AE_measure_pmf: "AE x in (M::'a pmf). x \<in> M"
hoelzl@58587
   193
  by transfer simp
hoelzl@58587
   194
hoelzl@58587
   195
lemma emeasure_pmf_single_eq_zero_iff:
hoelzl@58587
   196
  fixes M :: "'a pmf"
hoelzl@58587
   197
  shows "emeasure M {y} = 0 \<longleftrightarrow> y \<notin> M"
hoelzl@58587
   198
  by transfer (simp add: finite_measure.emeasure_eq_measure[OF prob_space.finite_measure])
hoelzl@58587
   199
hoelzl@58587
   200
lemma AE_measure_pmf_iff: "(AE x in measure_pmf M. P x) \<longleftrightarrow> (\<forall>y\<in>M. P y)"
hoelzl@59664
   201
  using AE_measure_singleton[of M] AE_measure_pmf[of M]
hoelzl@59664
   202
  by (auto simp: set_pmf.rep_eq)
hoelzl@59664
   203
Andreas@61634
   204
lemma AE_pmfI: "(\<And>y. y \<in> set_pmf M \<Longrightarrow> P y) \<Longrightarrow> almost_everywhere (measure_pmf M) P"
Andreas@61634
   205
by(simp add: AE_measure_pmf_iff)
Andreas@61634
   206
hoelzl@59664
   207
lemma countable_set_pmf [simp]: "countable (set_pmf p)"
hoelzl@59664
   208
  by transfer (metis prob_space.finite_measure finite_measure.countable_support)
hoelzl@59664
   209
hoelzl@59664
   210
lemma pmf_positive: "x \<in> set_pmf p \<Longrightarrow> 0 < pmf p x"
hoelzl@59664
   211
  by transfer (simp add: less_le measure_nonneg)
hoelzl@59664
   212
hoelzl@59664
   213
lemma pmf_nonneg: "0 \<le> pmf p x"
hoelzl@59664
   214
  by transfer (simp add: measure_nonneg)
hoelzl@59664
   215
hoelzl@59664
   216
lemma pmf_le_1: "pmf p x \<le> 1"
hoelzl@59664
   217
  by (simp add: pmf.rep_eq)
hoelzl@58587
   218
hoelzl@58587
   219
lemma set_pmf_not_empty: "set_pmf M \<noteq> {}"
hoelzl@58587
   220
  using AE_measure_pmf[of M] by (intro notI) simp
hoelzl@58587
   221
hoelzl@58587
   222
lemma set_pmf_iff: "x \<in> set_pmf M \<longleftrightarrow> pmf M x \<noteq> 0"
hoelzl@58587
   223
  by transfer simp
hoelzl@58587
   224
hoelzl@59664
   225
lemma set_pmf_eq: "set_pmf M = {x. pmf M x \<noteq> 0}"
hoelzl@59664
   226
  by (auto simp: set_pmf_iff)
hoelzl@59664
   227
hoelzl@59664
   228
lemma emeasure_pmf_single:
hoelzl@59664
   229
  fixes M :: "'a pmf"
hoelzl@59664
   230
  shows "emeasure M {x} = pmf M x"
hoelzl@59664
   231
  by transfer (simp add: finite_measure.emeasure_eq_measure[OF prob_space.finite_measure])
hoelzl@59664
   232
Andreas@60068
   233
lemma measure_pmf_single: "measure (measure_pmf M) {x} = pmf M x"
Andreas@60068
   234
using emeasure_pmf_single[of M x] by(simp add: measure_pmf.emeasure_eq_measure)
Andreas@60068
   235
hoelzl@59000
   236
lemma emeasure_measure_pmf_finite: "finite S \<Longrightarrow> emeasure (measure_pmf M) S = (\<Sum>s\<in>S. pmf M s)"
hoelzl@59000
   237
  by (subst emeasure_eq_setsum_singleton) (auto simp: emeasure_pmf_single)
hoelzl@59000
   238
Andreas@59023
   239
lemma measure_measure_pmf_finite: "finite S \<Longrightarrow> measure (measure_pmf M) S = setsum (pmf M) S"
hoelzl@59425
   240
  using emeasure_measure_pmf_finite[of S M] by(simp add: measure_pmf.emeasure_eq_measure)
Andreas@59023
   241
hoelzl@59000
   242
lemma nn_integral_measure_pmf_support:
hoelzl@59000
   243
  fixes f :: "'a \<Rightarrow> ereal"
hoelzl@59000
   244
  assumes f: "finite A" and nn: "\<And>x. x \<in> A \<Longrightarrow> 0 \<le> f x" "\<And>x. x \<in> set_pmf M \<Longrightarrow> x \<notin> A \<Longrightarrow> f x = 0"
hoelzl@59000
   245
  shows "(\<integral>\<^sup>+x. f x \<partial>measure_pmf M) = (\<Sum>x\<in>A. f x * pmf M x)"
hoelzl@59000
   246
proof -
hoelzl@59000
   247
  have "(\<integral>\<^sup>+x. f x \<partial>M) = (\<integral>\<^sup>+x. f x * indicator A x \<partial>M)"
hoelzl@59000
   248
    using nn by (intro nn_integral_cong_AE) (auto simp: AE_measure_pmf_iff split: split_indicator)
hoelzl@59000
   249
  also have "\<dots> = (\<Sum>x\<in>A. f x * emeasure M {x})"
hoelzl@59000
   250
    using assms by (intro nn_integral_indicator_finite) auto
hoelzl@59000
   251
  finally show ?thesis
hoelzl@59000
   252
    by (simp add: emeasure_measure_pmf_finite)
hoelzl@59000
   253
qed
hoelzl@59000
   254
hoelzl@59000
   255
lemma nn_integral_measure_pmf_finite:
hoelzl@59000
   256
  fixes f :: "'a \<Rightarrow> ereal"
hoelzl@59000
   257
  assumes f: "finite (set_pmf M)" and nn: "\<And>x. x \<in> set_pmf M \<Longrightarrow> 0 \<le> f x"
hoelzl@59000
   258
  shows "(\<integral>\<^sup>+x. f x \<partial>measure_pmf M) = (\<Sum>x\<in>set_pmf M. f x * pmf M x)"
hoelzl@59000
   259
  using assms by (intro nn_integral_measure_pmf_support) auto
hoelzl@59000
   260
lemma integrable_measure_pmf_finite:
hoelzl@59000
   261
  fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
hoelzl@59000
   262
  shows "finite (set_pmf M) \<Longrightarrow> integrable M f"
hoelzl@59000
   263
  by (auto intro!: integrableI_bounded simp: nn_integral_measure_pmf_finite)
hoelzl@59000
   264
hoelzl@59000
   265
lemma integral_measure_pmf:
hoelzl@59000
   266
  assumes [simp]: "finite A" and "\<And>a. a \<in> set_pmf M \<Longrightarrow> f a \<noteq> 0 \<Longrightarrow> a \<in> A"
hoelzl@59000
   267
  shows "(\<integral>x. f x \<partial>measure_pmf M) = (\<Sum>a\<in>A. f a * pmf M a)"
hoelzl@59000
   268
proof -
hoelzl@59000
   269
  have "(\<integral>x. f x \<partial>measure_pmf M) = (\<integral>x. f x * indicator A x \<partial>measure_pmf M)"
hoelzl@59000
   270
    using assms(2) by (intro integral_cong_AE) (auto split: split_indicator simp: AE_measure_pmf_iff)
hoelzl@59000
   271
  also have "\<dots> = (\<Sum>a\<in>A. f a * pmf M a)"
hoelzl@59000
   272
    by (subst integral_indicator_finite_real) (auto simp: measure_def emeasure_measure_pmf_finite)
hoelzl@59000
   273
  finally show ?thesis .
hoelzl@59000
   274
qed
hoelzl@59000
   275
hoelzl@59000
   276
lemma integrable_pmf: "integrable (count_space X) (pmf M)"
hoelzl@59000
   277
proof -
hoelzl@59000
   278
  have " (\<integral>\<^sup>+ x. pmf M x \<partial>count_space X) = (\<integral>\<^sup>+ x. pmf M x \<partial>count_space (M \<inter> X))"
hoelzl@59000
   279
    by (auto simp add: nn_integral_count_space_indicator set_pmf_iff intro!: nn_integral_cong split: split_indicator)
hoelzl@59000
   280
  then have "integrable (count_space X) (pmf M) = integrable (count_space (M \<inter> X)) (pmf M)"
hoelzl@59000
   281
    by (simp add: integrable_iff_bounded pmf_nonneg)
hoelzl@59000
   282
  then show ?thesis
Andreas@59023
   283
    by (simp add: pmf.rep_eq measure_pmf.integrable_measure disjoint_family_on_def)
hoelzl@59000
   284
qed
hoelzl@59000
   285
hoelzl@59000
   286
lemma integral_pmf: "(\<integral>x. pmf M x \<partial>count_space X) = measure M X"
hoelzl@59000
   287
proof -
hoelzl@59000
   288
  have "(\<integral>x. pmf M x \<partial>count_space X) = (\<integral>\<^sup>+x. pmf M x \<partial>count_space X)"
hoelzl@59000
   289
    by (simp add: pmf_nonneg integrable_pmf nn_integral_eq_integral)
hoelzl@59000
   290
  also have "\<dots> = (\<integral>\<^sup>+x. emeasure M {x} \<partial>count_space (X \<inter> M))"
hoelzl@59000
   291
    by (auto intro!: nn_integral_cong_AE split: split_indicator
hoelzl@59000
   292
             simp: pmf.rep_eq measure_pmf.emeasure_eq_measure nn_integral_count_space_indicator
hoelzl@59000
   293
                   AE_count_space set_pmf_iff)
hoelzl@59000
   294
  also have "\<dots> = emeasure M (X \<inter> M)"
hoelzl@59000
   295
    by (rule emeasure_countable_singleton[symmetric]) (auto intro: countable_set_pmf)
hoelzl@59000
   296
  also have "\<dots> = emeasure M X"
hoelzl@59000
   297
    by (auto intro!: emeasure_eq_AE simp: AE_measure_pmf_iff)
hoelzl@59000
   298
  finally show ?thesis
hoelzl@59000
   299
    by (simp add: measure_pmf.emeasure_eq_measure)
hoelzl@59000
   300
qed
hoelzl@59000
   301
hoelzl@59000
   302
lemma integral_pmf_restrict:
hoelzl@59000
   303
  "(f::'a \<Rightarrow> 'b::{banach, second_countable_topology}) \<in> borel_measurable (count_space UNIV) \<Longrightarrow>
hoelzl@59000
   304
    (\<integral>x. f x \<partial>measure_pmf M) = (\<integral>x. f x \<partial>restrict_space M M)"
hoelzl@59000
   305
  by (auto intro!: integral_cong_AE simp add: integral_restrict_space AE_measure_pmf_iff)
hoelzl@59000
   306
hoelzl@58587
   307
lemma emeasure_pmf: "emeasure (M::'a pmf) M = 1"
hoelzl@58587
   308
proof -
hoelzl@58587
   309
  have "emeasure (M::'a pmf) M = emeasure (M::'a pmf) (space M)"
hoelzl@58587
   310
    by (intro emeasure_eq_AE) (simp_all add: AE_measure_pmf)
hoelzl@58587
   311
  then show ?thesis
hoelzl@58587
   312
    using measure_pmf.emeasure_space_1 by simp
hoelzl@58587
   313
qed
hoelzl@58587
   314
Andreas@59490
   315
lemma emeasure_pmf_UNIV [simp]: "emeasure (measure_pmf M) UNIV = 1"
Andreas@59490
   316
using measure_pmf.emeasure_space_1[of M] by simp
Andreas@59490
   317
Andreas@59023
   318
lemma in_null_sets_measure_pmfI:
Andreas@59023
   319
  "A \<inter> set_pmf p = {} \<Longrightarrow> A \<in> null_sets (measure_pmf p)"
Andreas@59023
   320
using emeasure_eq_0_AE[where ?P="\<lambda>x. x \<in> A" and M="measure_pmf p"]
Andreas@59023
   321
by(auto simp add: null_sets_def AE_measure_pmf_iff)
Andreas@59023
   322
hoelzl@59664
   323
lemma measure_subprob: "measure_pmf M \<in> space (subprob_algebra (count_space UNIV))"
hoelzl@59664
   324
  by (simp add: space_subprob_algebra subprob_space_measure_pmf)
hoelzl@59664
   325
hoelzl@59664
   326
subsection \<open> Monad Interpretation \<close>
hoelzl@59664
   327
hoelzl@59664
   328
lemma measurable_measure_pmf[measurable]:
hoelzl@59664
   329
  "(\<lambda>x. measure_pmf (M x)) \<in> measurable (count_space UNIV) (subprob_algebra (count_space UNIV))"
hoelzl@59664
   330
  by (auto simp: space_subprob_algebra intro!: prob_space_imp_subprob_space) unfold_locales
hoelzl@59664
   331
hoelzl@59664
   332
lemma bind_measure_pmf_cong:
hoelzl@59664
   333
  assumes "\<And>x. A x \<in> space (subprob_algebra N)" "\<And>x. B x \<in> space (subprob_algebra N)"
hoelzl@59664
   334
  assumes "\<And>i. i \<in> set_pmf x \<Longrightarrow> A i = B i"
hoelzl@59664
   335
  shows "bind (measure_pmf x) A = bind (measure_pmf x) B"
hoelzl@59664
   336
proof (rule measure_eqI)
wenzelm@62026
   337
  show "sets (measure_pmf x \<bind> A) = sets (measure_pmf x \<bind> B)"
hoelzl@59664
   338
    using assms by (subst (1 2) sets_bind) (auto simp: space_subprob_algebra)
hoelzl@59664
   339
next
wenzelm@62026
   340
  fix X assume "X \<in> sets (measure_pmf x \<bind> A)"
hoelzl@59664
   341
  then have X: "X \<in> sets N"
hoelzl@59664
   342
    using assms by (subst (asm) sets_bind) (auto simp: space_subprob_algebra)
wenzelm@62026
   343
  show "emeasure (measure_pmf x \<bind> A) X = emeasure (measure_pmf x \<bind> B) X"
hoelzl@59664
   344
    using assms
hoelzl@59664
   345
    by (subst (1 2) emeasure_bind[where N=N, OF _ _ X])
hoelzl@59664
   346
       (auto intro!: nn_integral_cong_AE simp: AE_measure_pmf_iff)
hoelzl@59664
   347
qed
hoelzl@59664
   348
hoelzl@59664
   349
lift_definition bind_pmf :: "'a pmf \<Rightarrow> ('a \<Rightarrow> 'b pmf ) \<Rightarrow> 'b pmf" is bind
hoelzl@59664
   350
proof (clarify, intro conjI)
hoelzl@59664
   351
  fix f :: "'a measure" and g :: "'a \<Rightarrow> 'b measure"
hoelzl@59664
   352
  assume "prob_space f"
hoelzl@59664
   353
  then interpret f: prob_space f .
hoelzl@59664
   354
  assume "sets f = UNIV" and ae_f: "AE x in f. measure f {x} \<noteq> 0"
hoelzl@59664
   355
  then have s_f[simp]: "sets f = sets (count_space UNIV)"
hoelzl@59664
   356
    by simp
hoelzl@59664
   357
  assume g: "\<And>x. prob_space (g x) \<and> sets (g x) = UNIV \<and> (AE y in g x. measure (g x) {y} \<noteq> 0)"
hoelzl@59664
   358
  then have g: "\<And>x. prob_space (g x)" and s_g[simp]: "\<And>x. sets (g x) = sets (count_space UNIV)"
hoelzl@59664
   359
    and ae_g: "\<And>x. AE y in g x. measure (g x) {y} \<noteq> 0"
hoelzl@59664
   360
    by auto
hoelzl@59664
   361
hoelzl@59664
   362
  have [measurable]: "g \<in> measurable f (subprob_algebra (count_space UNIV))"
hoelzl@59664
   363
    by (auto simp: measurable_def space_subprob_algebra prob_space_imp_subprob_space g)
lp15@59667
   364
wenzelm@62026
   365
  show "prob_space (f \<bind> g)"
hoelzl@59664
   366
    using g by (intro f.prob_space_bind[where S="count_space UNIV"]) auto
wenzelm@62026
   367
  then interpret fg: prob_space "f \<bind> g" .
wenzelm@62026
   368
  show [simp]: "sets (f \<bind> g) = UNIV"
hoelzl@59664
   369
    using sets_eq_imp_space_eq[OF s_f]
hoelzl@59664
   370
    by (subst sets_bind[where N="count_space UNIV"]) auto
wenzelm@62026
   371
  show "AE x in f \<bind> g. measure (f \<bind> g) {x} \<noteq> 0"
hoelzl@59664
   372
    apply (simp add: fg.prob_eq_0 AE_bind[where B="count_space UNIV"])
hoelzl@59664
   373
    using ae_f
hoelzl@59664
   374
    apply eventually_elim
hoelzl@59664
   375
    using ae_g
hoelzl@59664
   376
    apply eventually_elim
hoelzl@59664
   377
    apply (auto dest: AE_measure_singleton)
hoelzl@59664
   378
    done
hoelzl@59664
   379
qed
hoelzl@59664
   380
hoelzl@59664
   381
lemma ereal_pmf_bind: "pmf (bind_pmf N f) i = (\<integral>\<^sup>+x. pmf (f x) i \<partial>measure_pmf N)"
hoelzl@59664
   382
  unfolding pmf.rep_eq bind_pmf.rep_eq
hoelzl@59664
   383
  by (auto simp: measure_pmf.measure_bind[where N="count_space UNIV"] measure_subprob measure_nonneg
hoelzl@59664
   384
           intro!: nn_integral_eq_integral[symmetric] measure_pmf.integrable_const_bound[where B=1])
hoelzl@59664
   385
hoelzl@59664
   386
lemma pmf_bind: "pmf (bind_pmf N f) i = (\<integral>x. pmf (f x) i \<partial>measure_pmf N)"
hoelzl@59664
   387
  using ereal_pmf_bind[of N f i]
hoelzl@59664
   388
  by (subst (asm) nn_integral_eq_integral)
hoelzl@59664
   389
     (auto simp: pmf_nonneg pmf_le_1
hoelzl@59664
   390
           intro!: nn_integral_eq_integral[symmetric] measure_pmf.integrable_const_bound[where B=1])
hoelzl@59664
   391
hoelzl@59664
   392
lemma bind_pmf_const[simp]: "bind_pmf M (\<lambda>x. c) = c"
hoelzl@59664
   393
  by transfer (simp add: bind_const' prob_space_imp_subprob_space)
hoelzl@59664
   394
hoelzl@59665
   395
lemma set_bind_pmf[simp]: "set_pmf (bind_pmf M N) = (\<Union>M\<in>set_pmf M. set_pmf (N M))"
lp15@59667
   396
  unfolding set_pmf_eq ereal_eq_0(1)[symmetric] ereal_pmf_bind
hoelzl@59664
   397
  by (auto simp add: nn_integral_0_iff_AE AE_measure_pmf_iff set_pmf_eq not_le less_le pmf_nonneg)
hoelzl@59664
   398
hoelzl@59664
   399
lemma bind_pmf_cong:
hoelzl@59664
   400
  assumes "p = q"
hoelzl@59664
   401
  shows "(\<And>x. x \<in> set_pmf q \<Longrightarrow> f x = g x) \<Longrightarrow> bind_pmf p f = bind_pmf q g"
wenzelm@61808
   402
  unfolding \<open>p = q\<close>[symmetric] measure_pmf_inject[symmetric] bind_pmf.rep_eq
hoelzl@59664
   403
  by (auto simp: AE_measure_pmf_iff Pi_iff space_subprob_algebra subprob_space_measure_pmf
hoelzl@59664
   404
                 sets_bind[where N="count_space UNIV"] emeasure_bind[where N="count_space UNIV"]
hoelzl@59664
   405
           intro!: nn_integral_cong_AE measure_eqI)
hoelzl@59664
   406
hoelzl@59664
   407
lemma bind_pmf_cong_simp:
hoelzl@59664
   408
  "p = q \<Longrightarrow> (\<And>x. x \<in> set_pmf q =simp=> f x = g x) \<Longrightarrow> bind_pmf p f = bind_pmf q g"
hoelzl@59664
   409
  by (simp add: simp_implies_def cong: bind_pmf_cong)
hoelzl@59664
   410
wenzelm@62026
   411
lemma measure_pmf_bind: "measure_pmf (bind_pmf M f) = (measure_pmf M \<bind> (\<lambda>x. measure_pmf (f x)))"
hoelzl@59664
   412
  by transfer simp
hoelzl@59664
   413
hoelzl@59664
   414
lemma nn_integral_bind_pmf[simp]: "(\<integral>\<^sup>+x. f x \<partial>bind_pmf M N) = (\<integral>\<^sup>+x. \<integral>\<^sup>+y. f y \<partial>N x \<partial>M)"
hoelzl@59664
   415
  using measurable_measure_pmf[of N]
hoelzl@59664
   416
  unfolding measure_pmf_bind
hoelzl@59664
   417
  apply (subst (1 3) nn_integral_max_0[symmetric])
hoelzl@59664
   418
  apply (intro nn_integral_bind[where B="count_space UNIV"])
hoelzl@59664
   419
  apply auto
hoelzl@59664
   420
  done
hoelzl@59664
   421
hoelzl@59664
   422
lemma emeasure_bind_pmf[simp]: "emeasure (bind_pmf M N) X = (\<integral>\<^sup>+x. emeasure (N x) X \<partial>M)"
hoelzl@59664
   423
  using measurable_measure_pmf[of N]
hoelzl@59664
   424
  unfolding measure_pmf_bind
hoelzl@59664
   425
  by (subst emeasure_bind[where N="count_space UNIV"]) auto
lp15@59667
   426
hoelzl@59664
   427
lift_definition return_pmf :: "'a \<Rightarrow> 'a pmf" is "return (count_space UNIV)"
hoelzl@59664
   428
  by (auto intro!: prob_space_return simp: AE_return measure_return)
hoelzl@59664
   429
hoelzl@59664
   430
lemma bind_return_pmf: "bind_pmf (return_pmf x) f = f x"
hoelzl@59664
   431
  by transfer
hoelzl@59664
   432
     (auto intro!: prob_space_imp_subprob_space bind_return[where N="count_space UNIV"]
hoelzl@59664
   433
           simp: space_subprob_algebra)
hoelzl@59664
   434
hoelzl@59665
   435
lemma set_return_pmf[simp]: "set_pmf (return_pmf x) = {x}"
hoelzl@59664
   436
  by transfer (auto simp add: measure_return split: split_indicator)
hoelzl@59664
   437
hoelzl@59664
   438
lemma bind_return_pmf': "bind_pmf N return_pmf = N"
hoelzl@59664
   439
proof (transfer, clarify)
wenzelm@62026
   440
  fix N :: "'a measure" assume "sets N = UNIV" then show "N \<bind> return (count_space UNIV) = N"
hoelzl@59664
   441
    by (subst return_sets_cong[where N=N]) (simp_all add: bind_return')
hoelzl@59664
   442
qed
hoelzl@59664
   443
hoelzl@59664
   444
lemma bind_assoc_pmf: "bind_pmf (bind_pmf A B) C = bind_pmf A (\<lambda>x. bind_pmf (B x) C)"
hoelzl@59664
   445
  by transfer
hoelzl@59664
   446
     (auto intro!: bind_assoc[where N="count_space UNIV" and R="count_space UNIV"]
hoelzl@59664
   447
           simp: measurable_def space_subprob_algebra prob_space_imp_subprob_space)
hoelzl@59664
   448
hoelzl@59664
   449
definition "map_pmf f M = bind_pmf M (\<lambda>x. return_pmf (f x))"
hoelzl@59664
   450
hoelzl@59664
   451
lemma map_bind_pmf: "map_pmf f (bind_pmf M g) = bind_pmf M (\<lambda>x. map_pmf f (g x))"
hoelzl@59664
   452
  by (simp add: map_pmf_def bind_assoc_pmf)
hoelzl@59664
   453
hoelzl@59664
   454
lemma bind_map_pmf: "bind_pmf (map_pmf f M) g = bind_pmf M (\<lambda>x. g (f x))"
hoelzl@59664
   455
  by (simp add: map_pmf_def bind_assoc_pmf bind_return_pmf)
hoelzl@59664
   456
hoelzl@59664
   457
lemma map_pmf_transfer[transfer_rule]:
hoelzl@59664
   458
  "rel_fun op = (rel_fun cr_pmf cr_pmf) (\<lambda>f M. distr M (count_space UNIV) f) map_pmf"
hoelzl@59664
   459
proof -
hoelzl@59664
   460
  have "rel_fun op = (rel_fun pmf_as_measure.cr_pmf pmf_as_measure.cr_pmf)
wenzelm@62026
   461
     (\<lambda>f M. M \<bind> (return (count_space UNIV) o f)) map_pmf"
lp15@59667
   462
    unfolding map_pmf_def[abs_def] comp_def by transfer_prover
hoelzl@59664
   463
  then show ?thesis
hoelzl@59664
   464
    by (force simp: rel_fun_def cr_pmf_def bind_return_distr)
hoelzl@59664
   465
qed
hoelzl@59664
   466
hoelzl@59664
   467
lemma map_pmf_rep_eq:
hoelzl@59664
   468
  "measure_pmf (map_pmf f M) = distr (measure_pmf M) (count_space UNIV) f"
hoelzl@59664
   469
  unfolding map_pmf_def bind_pmf.rep_eq comp_def return_pmf.rep_eq
hoelzl@59664
   470
  using bind_return_distr[of M f "count_space UNIV"] by (simp add: comp_def)
hoelzl@59664
   471
hoelzl@58587
   472
lemma map_pmf_id[simp]: "map_pmf id = id"
hoelzl@58587
   473
  by (rule, transfer) (auto simp: emeasure_distr measurable_def intro!: measure_eqI)
hoelzl@58587
   474
hoelzl@59053
   475
lemma map_pmf_ident[simp]: "map_pmf (\<lambda>x. x) = (\<lambda>x. x)"
hoelzl@59053
   476
  using map_pmf_id unfolding id_def .
hoelzl@59053
   477
hoelzl@58587
   478
lemma map_pmf_compose: "map_pmf (f \<circ> g) = map_pmf f \<circ> map_pmf g"
lp15@59667
   479
  by (rule, transfer) (simp add: distr_distr[symmetric, where N="count_space UNIV"] measurable_def)
hoelzl@58587
   480
hoelzl@59000
   481
lemma map_pmf_comp: "map_pmf f (map_pmf g M) = map_pmf (\<lambda>x. f (g x)) M"
hoelzl@59000
   482
  using map_pmf_compose[of f g] by (simp add: comp_def)
hoelzl@59000
   483
hoelzl@59664
   484
lemma map_pmf_cong: "p = q \<Longrightarrow> (\<And>x. x \<in> set_pmf q \<Longrightarrow> f x = g x) \<Longrightarrow> map_pmf f p = map_pmf g q"
hoelzl@59664
   485
  unfolding map_pmf_def by (rule bind_pmf_cong) auto
hoelzl@59664
   486
hoelzl@59664
   487
lemma pmf_set_map: "set_pmf \<circ> map_pmf f = op ` f \<circ> set_pmf"
hoelzl@59665
   488
  by (auto simp add: comp_def fun_eq_iff map_pmf_def)
hoelzl@59664
   489
hoelzl@59665
   490
lemma set_map_pmf[simp]: "set_pmf (map_pmf f M) = f`set_pmf M"
hoelzl@59664
   491
  using pmf_set_map[of f] by (auto simp: comp_def fun_eq_iff)
hoelzl@58587
   492
hoelzl@59002
   493
lemma emeasure_map_pmf[simp]: "emeasure (map_pmf f M) X = emeasure M (f -` X)"
hoelzl@59664
   494
  unfolding map_pmf_rep_eq by (subst emeasure_distr) auto
hoelzl@59002
   495
Andreas@61634
   496
lemma measure_map_pmf[simp]: "measure (map_pmf f M) X = measure M (f -` X)"
Andreas@61634
   497
using emeasure_map_pmf[of f M X] by(simp add: measure_pmf.emeasure_eq_measure)
Andreas@61634
   498
hoelzl@59002
   499
lemma nn_integral_map_pmf[simp]: "(\<integral>\<^sup>+x. f x \<partial>map_pmf g M) = (\<integral>\<^sup>+x. f (g x) \<partial>M)"
hoelzl@59664
   500
  unfolding map_pmf_rep_eq by (intro nn_integral_distr) auto
hoelzl@59002
   501
Andreas@59023
   502
lemma ereal_pmf_map: "pmf (map_pmf f p) x = (\<integral>\<^sup>+ y. indicator (f -` {x}) y \<partial>measure_pmf p)"
hoelzl@59664
   503
proof (transfer fixing: f x)
Andreas@59023
   504
  fix p :: "'b measure"
Andreas@59023
   505
  presume "prob_space p"
Andreas@59023
   506
  then interpret prob_space p .
Andreas@59023
   507
  presume "sets p = UNIV"
Andreas@59023
   508
  then show "ereal (measure (distr p (count_space UNIV) f) {x}) = integral\<^sup>N p (indicator (f -` {x}))"
Andreas@59023
   509
    by(simp add: measure_distr measurable_def emeasure_eq_measure)
Andreas@59023
   510
qed simp_all
Andreas@59023
   511
Andreas@59023
   512
lemma nn_integral_pmf: "(\<integral>\<^sup>+ x. pmf p x \<partial>count_space A) = emeasure (measure_pmf p) A"
Andreas@59023
   513
proof -
Andreas@59023
   514
  have "(\<integral>\<^sup>+ x. pmf p x \<partial>count_space A) = (\<integral>\<^sup>+ x. pmf p x \<partial>count_space (A \<inter> set_pmf p))"
Andreas@59023
   515
    by(auto simp add: nn_integral_count_space_indicator indicator_def set_pmf_iff intro: nn_integral_cong)
Andreas@59023
   516
  also have "\<dots> = emeasure (measure_pmf p) (\<Union>x\<in>A \<inter> set_pmf p. {x})"
Andreas@59023
   517
    by(subst emeasure_UN_countable)(auto simp add: emeasure_pmf_single disjoint_family_on_def)
Andreas@59023
   518
  also have "\<dots> = emeasure (measure_pmf p) ((\<Union>x\<in>A \<inter> set_pmf p. {x}) \<union> {x. x \<in> A \<and> x \<notin> set_pmf p})"
Andreas@59023
   519
    by(rule emeasure_Un_null_set[symmetric])(auto intro: in_null_sets_measure_pmfI)
Andreas@59023
   520
  also have "\<dots> = emeasure (measure_pmf p) A"
Andreas@59023
   521
    by(auto intro: arg_cong2[where f=emeasure])
Andreas@59023
   522
  finally show ?thesis .
Andreas@59023
   523
qed
Andreas@59023
   524
Andreas@60068
   525
lemma map_return_pmf [simp]: "map_pmf f (return_pmf x) = return_pmf (f x)"
hoelzl@59664
   526
  by transfer (simp add: distr_return)
hoelzl@59664
   527
hoelzl@59664
   528
lemma map_pmf_const[simp]: "map_pmf (\<lambda>_. c) M = return_pmf c"
hoelzl@59664
   529
  by transfer (auto simp: prob_space.distr_const)
hoelzl@59664
   530
Andreas@60068
   531
lemma pmf_return [simp]: "pmf (return_pmf x) y = indicator {y} x"
hoelzl@59664
   532
  by transfer (simp add: measure_return)
hoelzl@59664
   533
hoelzl@59664
   534
lemma nn_integral_return_pmf[simp]: "0 \<le> f x \<Longrightarrow> (\<integral>\<^sup>+x. f x \<partial>return_pmf x) = f x"
hoelzl@59664
   535
  unfolding return_pmf.rep_eq by (intro nn_integral_return) auto
hoelzl@59664
   536
hoelzl@59664
   537
lemma emeasure_return_pmf[simp]: "emeasure (return_pmf x) X = indicator X x"
hoelzl@59664
   538
  unfolding return_pmf.rep_eq by (intro emeasure_return) auto
hoelzl@59664
   539
hoelzl@59664
   540
lemma return_pmf_inj[simp]: "return_pmf x = return_pmf y \<longleftrightarrow> x = y"
hoelzl@59664
   541
  by (metis insertI1 set_return_pmf singletonD)
hoelzl@59664
   542
hoelzl@59665
   543
lemma map_pmf_eq_return_pmf_iff:
hoelzl@59665
   544
  "map_pmf f p = return_pmf x \<longleftrightarrow> (\<forall>y \<in> set_pmf p. f y = x)"
hoelzl@59665
   545
proof
hoelzl@59665
   546
  assume "map_pmf f p = return_pmf x"
hoelzl@59665
   547
  then have "set_pmf (map_pmf f p) = set_pmf (return_pmf x)" by simp
hoelzl@59665
   548
  then show "\<forall>y \<in> set_pmf p. f y = x" by auto
hoelzl@59665
   549
next
hoelzl@59665
   550
  assume "\<forall>y \<in> set_pmf p. f y = x"
hoelzl@59665
   551
  then show "map_pmf f p = return_pmf x"
hoelzl@59665
   552
    unfolding map_pmf_const[symmetric, of _ p] by (intro map_pmf_cong) auto
hoelzl@59665
   553
qed
hoelzl@59665
   554
hoelzl@59664
   555
definition "pair_pmf A B = bind_pmf A (\<lambda>x. bind_pmf B (\<lambda>y. return_pmf (x, y)))"
hoelzl@59664
   556
hoelzl@59664
   557
lemma pmf_pair: "pmf (pair_pmf M N) (a, b) = pmf M a * pmf N b"
hoelzl@59664
   558
  unfolding pair_pmf_def pmf_bind pmf_return
hoelzl@59664
   559
  apply (subst integral_measure_pmf[where A="{b}"])
hoelzl@59664
   560
  apply (auto simp: indicator_eq_0_iff)
hoelzl@59664
   561
  apply (subst integral_measure_pmf[where A="{a}"])
hoelzl@59664
   562
  apply (auto simp: indicator_eq_0_iff setsum_nonneg_eq_0_iff pmf_nonneg)
hoelzl@59664
   563
  done
hoelzl@59664
   564
hoelzl@59665
   565
lemma set_pair_pmf[simp]: "set_pmf (pair_pmf A B) = set_pmf A \<times> set_pmf B"
hoelzl@59664
   566
  unfolding pair_pmf_def set_bind_pmf set_return_pmf by auto
hoelzl@59664
   567
hoelzl@59664
   568
lemma measure_pmf_in_subprob_space[measurable (raw)]:
hoelzl@59664
   569
  "measure_pmf M \<in> space (subprob_algebra (count_space UNIV))"
hoelzl@59664
   570
  by (simp add: space_subprob_algebra) intro_locales
hoelzl@59664
   571
hoelzl@59664
   572
lemma nn_integral_pair_pmf': "(\<integral>\<^sup>+x. f x \<partial>pair_pmf A B) = (\<integral>\<^sup>+a. \<integral>\<^sup>+b. f (a, b) \<partial>B \<partial>A)"
hoelzl@59664
   573
proof -
hoelzl@59664
   574
  have "(\<integral>\<^sup>+x. f x \<partial>pair_pmf A B) = (\<integral>\<^sup>+x. max 0 (f x) * indicator (A \<times> B) x \<partial>pair_pmf A B)"
hoelzl@59664
   575
    by (subst nn_integral_max_0[symmetric])
hoelzl@59665
   576
       (auto simp: AE_measure_pmf_iff intro!: nn_integral_cong_AE)
hoelzl@59664
   577
  also have "\<dots> = (\<integral>\<^sup>+a. \<integral>\<^sup>+b. max 0 (f (a, b)) * indicator (A \<times> B) (a, b) \<partial>B \<partial>A)"
hoelzl@59664
   578
    by (simp add: pair_pmf_def)
hoelzl@59664
   579
  also have "\<dots> = (\<integral>\<^sup>+a. \<integral>\<^sup>+b. max 0 (f (a, b)) \<partial>B \<partial>A)"
hoelzl@59664
   580
    by (auto intro!: nn_integral_cong_AE simp: AE_measure_pmf_iff)
hoelzl@59664
   581
  finally show ?thesis
hoelzl@59664
   582
    unfolding nn_integral_max_0 .
hoelzl@59664
   583
qed
hoelzl@59664
   584
hoelzl@59664
   585
lemma bind_pair_pmf:
hoelzl@59664
   586
  assumes M[measurable]: "M \<in> measurable (count_space UNIV \<Otimes>\<^sub>M count_space UNIV) (subprob_algebra N)"
wenzelm@62026
   587
  shows "measure_pmf (pair_pmf A B) \<bind> M = (measure_pmf A \<bind> (\<lambda>x. measure_pmf B \<bind> (\<lambda>y. M (x, y))))"
hoelzl@59664
   588
    (is "?L = ?R")
hoelzl@59664
   589
proof (rule measure_eqI)
hoelzl@59664
   590
  have M'[measurable]: "M \<in> measurable (pair_pmf A B) (subprob_algebra N)"
hoelzl@59664
   591
    using M[THEN measurable_space] by (simp_all add: space_pair_measure)
hoelzl@59664
   592
hoelzl@59664
   593
  note measurable_bind[where N="count_space UNIV", measurable]
hoelzl@59664
   594
  note measure_pmf_in_subprob_space[simp]
hoelzl@59664
   595
hoelzl@59664
   596
  have sets_eq_N: "sets ?L = N"
hoelzl@59664
   597
    by (subst sets_bind[OF sets_kernel[OF M']]) auto
hoelzl@59664
   598
  show "sets ?L = sets ?R"
hoelzl@59664
   599
    using measurable_space[OF M]
hoelzl@59664
   600
    by (simp add: sets_eq_N space_pair_measure space_subprob_algebra)
hoelzl@59664
   601
  fix X assume "X \<in> sets ?L"
hoelzl@59664
   602
  then have X[measurable]: "X \<in> sets N"
hoelzl@59664
   603
    unfolding sets_eq_N .
hoelzl@59664
   604
  then show "emeasure ?L X = emeasure ?R X"
hoelzl@59664
   605
    apply (simp add: emeasure_bind[OF _ M' X])
hoelzl@59664
   606
    apply (simp add: nn_integral_bind[where B="count_space UNIV"] pair_pmf_def measure_pmf_bind[of A]
Andreas@60068
   607
                     nn_integral_measure_pmf_finite emeasure_nonneg one_ereal_def[symmetric])
hoelzl@59664
   608
    apply (subst emeasure_bind[OF _ _ X])
hoelzl@59664
   609
    apply measurable
hoelzl@59664
   610
    apply (subst emeasure_bind[OF _ _ X])
hoelzl@59664
   611
    apply measurable
hoelzl@59664
   612
    done
hoelzl@59664
   613
qed
hoelzl@59664
   614
hoelzl@59664
   615
lemma map_fst_pair_pmf: "map_pmf fst (pair_pmf A B) = A"
hoelzl@59664
   616
  by (simp add: pair_pmf_def map_pmf_def bind_assoc_pmf bind_return_pmf bind_return_pmf')
hoelzl@59664
   617
hoelzl@59664
   618
lemma map_snd_pair_pmf: "map_pmf snd (pair_pmf A B) = B"
hoelzl@59664
   619
  by (simp add: pair_pmf_def map_pmf_def bind_assoc_pmf bind_return_pmf bind_return_pmf')
hoelzl@59664
   620
hoelzl@59664
   621
lemma nn_integral_pmf':
hoelzl@59664
   622
  "inj_on f A \<Longrightarrow> (\<integral>\<^sup>+x. pmf p (f x) \<partial>count_space A) = emeasure p (f ` A)"
hoelzl@59664
   623
  by (subst nn_integral_bij_count_space[where g=f and B="f`A"])
hoelzl@59664
   624
     (auto simp: bij_betw_def nn_integral_pmf)
hoelzl@59664
   625
hoelzl@59664
   626
lemma pmf_le_0_iff[simp]: "pmf M p \<le> 0 \<longleftrightarrow> pmf M p = 0"
hoelzl@59664
   627
  using pmf_nonneg[of M p] by simp
hoelzl@59664
   628
hoelzl@59664
   629
lemma min_pmf_0[simp]: "min (pmf M p) 0 = 0" "min 0 (pmf M p) = 0"
hoelzl@59664
   630
  using pmf_nonneg[of M p] by simp_all
hoelzl@59664
   631
hoelzl@59664
   632
lemma pmf_eq_0_set_pmf: "pmf M p = 0 \<longleftrightarrow> p \<notin> set_pmf M"
hoelzl@59664
   633
  unfolding set_pmf_iff by simp
hoelzl@59664
   634
hoelzl@59664
   635
lemma pmf_map_inj: "inj_on f (set_pmf M) \<Longrightarrow> x \<in> set_pmf M \<Longrightarrow> pmf (map_pmf f M) (f x) = pmf M x"
hoelzl@59664
   636
  by (auto simp: pmf.rep_eq map_pmf_rep_eq measure_distr AE_measure_pmf_iff inj_onD
hoelzl@59664
   637
           intro!: measure_pmf.finite_measure_eq_AE)
hoelzl@59664
   638
Andreas@60068
   639
lemma pmf_map_inj': "inj f \<Longrightarrow> pmf (map_pmf f M) (f x) = pmf M x"
Andreas@60068
   640
apply(cases "x \<in> set_pmf M")
Andreas@60068
   641
 apply(simp add: pmf_map_inj[OF subset_inj_on])
Andreas@60068
   642
apply(simp add: pmf_eq_0_set_pmf[symmetric])
Andreas@60068
   643
apply(auto simp add: pmf_eq_0_set_pmf dest: injD)
Andreas@60068
   644
done
Andreas@60068
   645
Andreas@60068
   646
lemma pmf_map_outside: "x \<notin> f ` set_pmf M \<Longrightarrow> pmf (map_pmf f M) x = 0"
Andreas@60068
   647
unfolding pmf_eq_0_set_pmf by simp
Andreas@60068
   648
hoelzl@59664
   649
subsection \<open> PMFs as function \<close>
hoelzl@59000
   650
hoelzl@58587
   651
context
hoelzl@58587
   652
  fixes f :: "'a \<Rightarrow> real"
hoelzl@58587
   653
  assumes nonneg: "\<And>x. 0 \<le> f x"
hoelzl@58587
   654
  assumes prob: "(\<integral>\<^sup>+x. f x \<partial>count_space UNIV) = 1"
hoelzl@58587
   655
begin
hoelzl@58587
   656
hoelzl@58587
   657
lift_definition embed_pmf :: "'a pmf" is "density (count_space UNIV) (ereal \<circ> f)"
hoelzl@58587
   658
proof (intro conjI)
hoelzl@58587
   659
  have *[simp]: "\<And>x y. ereal (f y) * indicator {x} y = ereal (f x) * indicator {x} y"
hoelzl@58587
   660
    by (simp split: split_indicator)
hoelzl@58587
   661
  show "AE x in density (count_space UNIV) (ereal \<circ> f).
hoelzl@58587
   662
    measure (density (count_space UNIV) (ereal \<circ> f)) {x} \<noteq> 0"
hoelzl@59092
   663
    by (simp add: AE_density nonneg measure_def emeasure_density max_def)
hoelzl@58587
   664
  show "prob_space (density (count_space UNIV) (ereal \<circ> f))"
wenzelm@61169
   665
    by standard (simp add: emeasure_density prob)
hoelzl@58587
   666
qed simp
hoelzl@58587
   667
hoelzl@58587
   668
lemma pmf_embed_pmf: "pmf embed_pmf x = f x"
hoelzl@58587
   669
proof transfer
hoelzl@58587
   670
  have *[simp]: "\<And>x y. ereal (f y) * indicator {x} y = ereal (f x) * indicator {x} y"
hoelzl@58587
   671
    by (simp split: split_indicator)
hoelzl@58587
   672
  fix x show "measure (density (count_space UNIV) (ereal \<circ> f)) {x} = f x"
hoelzl@59092
   673
    by transfer (simp add: measure_def emeasure_density nonneg max_def)
hoelzl@58587
   674
qed
hoelzl@58587
   675
Andreas@60068
   676
lemma set_embed_pmf: "set_pmf embed_pmf = {x. f x \<noteq> 0}"
Andreas@60068
   677
by(auto simp add: set_pmf_eq assms pmf_embed_pmf)
Andreas@60068
   678
hoelzl@58587
   679
end
hoelzl@58587
   680
hoelzl@58587
   681
lemma embed_pmf_transfer:
hoelzl@58730
   682
  "rel_fun (eq_onp (\<lambda>f. (\<forall>x. 0 \<le> f x) \<and> (\<integral>\<^sup>+x. ereal (f x) \<partial>count_space UNIV) = 1)) pmf_as_measure.cr_pmf (\<lambda>f. density (count_space UNIV) (ereal \<circ> f)) embed_pmf"
hoelzl@58587
   683
  by (auto simp: rel_fun_def eq_onp_def embed_pmf.transfer)
hoelzl@58587
   684
hoelzl@59000
   685
lemma measure_pmf_eq_density: "measure_pmf p = density (count_space UNIV) (pmf p)"
hoelzl@59000
   686
proof (transfer, elim conjE)
hoelzl@59000
   687
  fix M :: "'a measure" assume [simp]: "sets M = UNIV" and ae: "AE x in M. measure M {x} \<noteq> 0"
hoelzl@59000
   688
  assume "prob_space M" then interpret prob_space M .
hoelzl@59000
   689
  show "M = density (count_space UNIV) (\<lambda>x. ereal (measure M {x}))"
hoelzl@59000
   690
  proof (rule measure_eqI)
hoelzl@59000
   691
    fix A :: "'a set"
lp15@59667
   692
    have "(\<integral>\<^sup>+ x. ereal (measure M {x}) * indicator A x \<partial>count_space UNIV) =
hoelzl@59000
   693
      (\<integral>\<^sup>+ x. emeasure M {x} * indicator (A \<inter> {x. measure M {x} \<noteq> 0}) x \<partial>count_space UNIV)"
hoelzl@59000
   694
      by (auto intro!: nn_integral_cong simp: emeasure_eq_measure split: split_indicator)
hoelzl@59000
   695
    also have "\<dots> = (\<integral>\<^sup>+ x. emeasure M {x} \<partial>count_space (A \<inter> {x. measure M {x} \<noteq> 0}))"
hoelzl@59000
   696
      by (subst nn_integral_restrict_space[symmetric]) (auto simp: restrict_count_space)
hoelzl@59000
   697
    also have "\<dots> = emeasure M (\<Union>x\<in>(A \<inter> {x. measure M {x} \<noteq> 0}). {x})"
hoelzl@59000
   698
      by (intro emeasure_UN_countable[symmetric] countable_Int2 countable_support)
hoelzl@59000
   699
         (auto simp: disjoint_family_on_def)
hoelzl@59000
   700
    also have "\<dots> = emeasure M A"
hoelzl@59000
   701
      using ae by (intro emeasure_eq_AE) auto
hoelzl@59000
   702
    finally show " emeasure M A = emeasure (density (count_space UNIV) (\<lambda>x. ereal (measure M {x}))) A"
hoelzl@59000
   703
      using emeasure_space_1 by (simp add: emeasure_density)
hoelzl@59000
   704
  qed simp
hoelzl@59000
   705
qed
hoelzl@59000
   706
hoelzl@58587
   707
lemma td_pmf_embed_pmf:
hoelzl@58587
   708
  "type_definition pmf embed_pmf {f::'a \<Rightarrow> real. (\<forall>x. 0 \<le> f x) \<and> (\<integral>\<^sup>+x. ereal (f x) \<partial>count_space UNIV) = 1}"
hoelzl@58587
   709
  unfolding type_definition_def
hoelzl@58587
   710
proof safe
hoelzl@58587
   711
  fix p :: "'a pmf"
hoelzl@58587
   712
  have "(\<integral>\<^sup>+ x. 1 \<partial>measure_pmf p) = 1"
hoelzl@58587
   713
    using measure_pmf.emeasure_space_1[of p] by simp
hoelzl@58587
   714
  then show *: "(\<integral>\<^sup>+ x. ereal (pmf p x) \<partial>count_space UNIV) = 1"
hoelzl@58587
   715
    by (simp add: measure_pmf_eq_density nn_integral_density pmf_nonneg del: nn_integral_const)
hoelzl@58587
   716
hoelzl@58587
   717
  show "embed_pmf (pmf p) = p"
hoelzl@58587
   718
    by (intro measure_pmf_inject[THEN iffD1])
hoelzl@58587
   719
       (simp add: * embed_pmf.rep_eq pmf_nonneg measure_pmf_eq_density[of p] comp_def)
hoelzl@58587
   720
next
hoelzl@58587
   721
  fix f :: "'a \<Rightarrow> real" assume "\<forall>x. 0 \<le> f x" "(\<integral>\<^sup>+x. f x \<partial>count_space UNIV) = 1"
hoelzl@58587
   722
  then show "pmf (embed_pmf f) = f"
hoelzl@58587
   723
    by (auto intro!: pmf_embed_pmf)
hoelzl@58587
   724
qed (rule pmf_nonneg)
hoelzl@58587
   725
hoelzl@58587
   726
end
hoelzl@58587
   727
Andreas@60068
   728
lemma nn_integral_measure_pmf: "(\<integral>\<^sup>+ x. f x \<partial>measure_pmf p) = \<integral>\<^sup>+ x. ereal (pmf p x) * f x \<partial>count_space UNIV"
Andreas@60068
   729
by(simp add: measure_pmf_eq_density nn_integral_density pmf_nonneg)
Andreas@60068
   730
hoelzl@58587
   731
locale pmf_as_function
hoelzl@58587
   732
begin
hoelzl@58587
   733
hoelzl@58587
   734
setup_lifting td_pmf_embed_pmf
hoelzl@58587
   735
lp15@59667
   736
lemma set_pmf_transfer[transfer_rule]:
hoelzl@58730
   737
  assumes "bi_total A"
lp15@59667
   738
  shows "rel_fun (pcr_pmf A) (rel_set A) (\<lambda>f. {x. f x \<noteq> 0}) set_pmf"
wenzelm@61808
   739
  using \<open>bi_total A\<close>
hoelzl@58730
   740
  by (auto simp: pcr_pmf_def cr_pmf_def rel_fun_def rel_set_def bi_total_def Bex_def set_pmf_iff)
hoelzl@58730
   741
     metis+
hoelzl@58730
   742
hoelzl@59000
   743
end
hoelzl@59000
   744
hoelzl@59000
   745
context
hoelzl@59000
   746
begin
hoelzl@59000
   747
hoelzl@59000
   748
interpretation pmf_as_function .
hoelzl@59000
   749
hoelzl@59000
   750
lemma pmf_eqI: "(\<And>i. pmf M i = pmf N i) \<Longrightarrow> M = N"
hoelzl@59000
   751
  by transfer auto
hoelzl@59000
   752
hoelzl@59000
   753
lemma pmf_eq_iff: "M = N \<longleftrightarrow> (\<forall>i. pmf M i = pmf N i)"
hoelzl@59000
   754
  by (auto intro: pmf_eqI)
hoelzl@59000
   755
hoelzl@59664
   756
lemma bind_commute_pmf: "bind_pmf A (\<lambda>x. bind_pmf B (C x)) = bind_pmf B (\<lambda>y. bind_pmf A (\<lambda>x. C x y))"
hoelzl@59664
   757
  unfolding pmf_eq_iff pmf_bind
hoelzl@59664
   758
proof
hoelzl@59664
   759
  fix i
hoelzl@59664
   760
  interpret B: prob_space "restrict_space B B"
hoelzl@59664
   761
    by (intro prob_space_restrict_space measure_pmf.emeasure_eq_1_AE)
hoelzl@59664
   762
       (auto simp: AE_measure_pmf_iff)
hoelzl@59664
   763
  interpret A: prob_space "restrict_space A A"
hoelzl@59664
   764
    by (intro prob_space_restrict_space measure_pmf.emeasure_eq_1_AE)
hoelzl@59664
   765
       (auto simp: AE_measure_pmf_iff)
hoelzl@59664
   766
hoelzl@59664
   767
  interpret AB: pair_prob_space "restrict_space A A" "restrict_space B B"
hoelzl@59664
   768
    by unfold_locales
hoelzl@59664
   769
hoelzl@59664
   770
  have "(\<integral> x. \<integral> y. pmf (C x y) i \<partial>B \<partial>A) = (\<integral> x. (\<integral> y. pmf (C x y) i \<partial>restrict_space B B) \<partial>A)"
hoelzl@59664
   771
    by (rule integral_cong) (auto intro!: integral_pmf_restrict)
hoelzl@59664
   772
  also have "\<dots> = (\<integral> x. (\<integral> y. pmf (C x y) i \<partial>restrict_space B B) \<partial>restrict_space A A)"
hoelzl@59664
   773
    by (intro integral_pmf_restrict B.borel_measurable_lebesgue_integral measurable_pair_restrict_pmf2
hoelzl@59664
   774
              countable_set_pmf borel_measurable_count_space)
hoelzl@59664
   775
  also have "\<dots> = (\<integral> y. \<integral> x. pmf (C x y) i \<partial>restrict_space A A \<partial>restrict_space B B)"
hoelzl@59664
   776
    by (rule AB.Fubini_integral[symmetric])
hoelzl@59664
   777
       (auto intro!: AB.integrable_const_bound[where B=1] measurable_pair_restrict_pmf2
hoelzl@59664
   778
             simp: pmf_nonneg pmf_le_1 measurable_restrict_space1)
hoelzl@59664
   779
  also have "\<dots> = (\<integral> y. \<integral> x. pmf (C x y) i \<partial>restrict_space A A \<partial>B)"
hoelzl@59664
   780
    by (intro integral_pmf_restrict[symmetric] A.borel_measurable_lebesgue_integral measurable_pair_restrict_pmf2
hoelzl@59664
   781
              countable_set_pmf borel_measurable_count_space)
hoelzl@59664
   782
  also have "\<dots> = (\<integral> y. \<integral> x. pmf (C x y) i \<partial>A \<partial>B)"
hoelzl@59664
   783
    by (rule integral_cong) (auto intro!: integral_pmf_restrict[symmetric])
hoelzl@59664
   784
  finally show "(\<integral> x. \<integral> y. pmf (C x y) i \<partial>B \<partial>A) = (\<integral> y. \<integral> x. pmf (C x y) i \<partial>A \<partial>B)" .
hoelzl@59664
   785
qed
hoelzl@59664
   786
hoelzl@59664
   787
lemma pair_map_pmf1: "pair_pmf (map_pmf f A) B = map_pmf (apfst f) (pair_pmf A B)"
hoelzl@59664
   788
proof (safe intro!: pmf_eqI)
hoelzl@59664
   789
  fix a :: "'a" and b :: "'b"
hoelzl@59664
   790
  have [simp]: "\<And>c d. indicator (apfst f -` {(a, b)}) (c, d) = indicator (f -` {a}) c * (indicator {b} d::ereal)"
hoelzl@59664
   791
    by (auto split: split_indicator)
hoelzl@59664
   792
hoelzl@59664
   793
  have "ereal (pmf (pair_pmf (map_pmf f A) B) (a, b)) =
hoelzl@59664
   794
         ereal (pmf (map_pmf (apfst f) (pair_pmf A B)) (a, b))"
hoelzl@59664
   795
    unfolding pmf_pair ereal_pmf_map
hoelzl@59664
   796
    by (simp add: nn_integral_pair_pmf' max_def emeasure_pmf_single nn_integral_multc pmf_nonneg
hoelzl@59664
   797
                  emeasure_map_pmf[symmetric] del: emeasure_map_pmf)
hoelzl@59664
   798
  then show "pmf (pair_pmf (map_pmf f A) B) (a, b) = pmf (map_pmf (apfst f) (pair_pmf A B)) (a, b)"
hoelzl@59664
   799
    by simp
hoelzl@59664
   800
qed
hoelzl@59664
   801
hoelzl@59664
   802
lemma pair_map_pmf2: "pair_pmf A (map_pmf f B) = map_pmf (apsnd f) (pair_pmf A B)"
hoelzl@59664
   803
proof (safe intro!: pmf_eqI)
hoelzl@59664
   804
  fix a :: "'a" and b :: "'b"
hoelzl@59664
   805
  have [simp]: "\<And>c d. indicator (apsnd f -` {(a, b)}) (c, d) = indicator {a} c * (indicator (f -` {b}) d::ereal)"
hoelzl@59664
   806
    by (auto split: split_indicator)
hoelzl@59664
   807
hoelzl@59664
   808
  have "ereal (pmf (pair_pmf A (map_pmf f B)) (a, b)) =
hoelzl@59664
   809
         ereal (pmf (map_pmf (apsnd f) (pair_pmf A B)) (a, b))"
hoelzl@59664
   810
    unfolding pmf_pair ereal_pmf_map
hoelzl@59664
   811
    by (simp add: nn_integral_pair_pmf' max_def emeasure_pmf_single nn_integral_cmult nn_integral_multc pmf_nonneg
hoelzl@59664
   812
                  emeasure_map_pmf[symmetric] del: emeasure_map_pmf)
hoelzl@59664
   813
  then show "pmf (pair_pmf A (map_pmf f B)) (a, b) = pmf (map_pmf (apsnd f) (pair_pmf A B)) (a, b)"
hoelzl@59664
   814
    by simp
hoelzl@59664
   815
qed
hoelzl@59664
   816
hoelzl@59664
   817
lemma map_pair: "map_pmf (\<lambda>(a, b). (f a, g b)) (pair_pmf A B) = pair_pmf (map_pmf f A) (map_pmf g B)"
hoelzl@59664
   818
  by (simp add: pair_map_pmf2 pair_map_pmf1 map_pmf_comp split_beta')
hoelzl@59664
   819
hoelzl@59000
   820
end
hoelzl@59000
   821
Andreas@61634
   822
lemma pair_return_pmf1: "pair_pmf (return_pmf x) y = map_pmf (Pair x) y"
Andreas@61634
   823
by(simp add: pair_pmf_def bind_return_pmf map_pmf_def)
Andreas@61634
   824
Andreas@61634
   825
lemma pair_return_pmf2: "pair_pmf x (return_pmf y) = map_pmf (\<lambda>x. (x, y)) x"
Andreas@61634
   826
by(simp add: pair_pmf_def bind_return_pmf map_pmf_def)
Andreas@61634
   827
Andreas@61634
   828
lemma pair_pair_pmf: "pair_pmf (pair_pmf u v) w = map_pmf (\<lambda>(x, (y, z)). ((x, y), z)) (pair_pmf u (pair_pmf v w))"
Andreas@61634
   829
by(simp add: pair_pmf_def bind_return_pmf map_pmf_def bind_assoc_pmf)
Andreas@61634
   830
Andreas@61634
   831
lemma pair_commute_pmf: "pair_pmf x y = map_pmf (\<lambda>(x, y). (y, x)) (pair_pmf y x)"
Andreas@61634
   832
unfolding pair_pmf_def by(subst bind_commute_pmf)(simp add: map_pmf_def bind_assoc_pmf bind_return_pmf)
Andreas@61634
   833
Andreas@61634
   834
lemma set_pmf_subset_singleton: "set_pmf p \<subseteq> {x} \<longleftrightarrow> p = return_pmf x"
Andreas@61634
   835
proof(intro iffI pmf_eqI)
Andreas@61634
   836
  fix i
Andreas@61634
   837
  assume x: "set_pmf p \<subseteq> {x}"
Andreas@61634
   838
  hence *: "set_pmf p = {x}" using set_pmf_not_empty[of p] by auto
Andreas@61634
   839
  have "ereal (pmf p x) = \<integral>\<^sup>+ i. indicator {x} i \<partial>p" by(simp add: emeasure_pmf_single)
Andreas@61634
   840
  also have "\<dots> = \<integral>\<^sup>+ i. 1 \<partial>p" by(rule nn_integral_cong_AE)(simp add: AE_measure_pmf_iff * )
Andreas@61634
   841
  also have "\<dots> = 1" by simp
Andreas@61634
   842
  finally show "pmf p i = pmf (return_pmf x) i" using x
Andreas@61634
   843
    by(auto split: split_indicator simp add: pmf_eq_0_set_pmf)
Andreas@61634
   844
qed auto
Andreas@61634
   845
Andreas@61634
   846
lemma bind_eq_return_pmf:
Andreas@61634
   847
  "bind_pmf p f = return_pmf x \<longleftrightarrow> (\<forall>y\<in>set_pmf p. f y = return_pmf x)"
Andreas@61634
   848
  (is "?lhs \<longleftrightarrow> ?rhs")
Andreas@61634
   849
proof(intro iffI strip)
Andreas@61634
   850
  fix y
Andreas@61634
   851
  assume y: "y \<in> set_pmf p"
Andreas@61634
   852
  assume "?lhs"
Andreas@61634
   853
  hence "set_pmf (bind_pmf p f) = {x}" by simp
Andreas@61634
   854
  hence "(\<Union>y\<in>set_pmf p. set_pmf (f y)) = {x}" by simp
Andreas@61634
   855
  hence "set_pmf (f y) \<subseteq> {x}" using y by auto
Andreas@61634
   856
  thus "f y = return_pmf x" by(simp add: set_pmf_subset_singleton)
Andreas@61634
   857
next
Andreas@61634
   858
  assume *: ?rhs
Andreas@61634
   859
  show ?lhs
Andreas@61634
   860
  proof(rule pmf_eqI)
Andreas@61634
   861
    fix i
Andreas@61634
   862
    have "ereal (pmf (bind_pmf p f) i) = \<integral>\<^sup>+ y. ereal (pmf (f y) i) \<partial>p" by(simp add: ereal_pmf_bind)
Andreas@61634
   863
    also have "\<dots> = \<integral>\<^sup>+ y. ereal (pmf (return_pmf x) i) \<partial>p"
Andreas@61634
   864
      by(rule nn_integral_cong_AE)(simp add: AE_measure_pmf_iff * )
Andreas@61634
   865
    also have "\<dots> = ereal (pmf (return_pmf x) i)" by simp
Andreas@61634
   866
    finally show "pmf (bind_pmf p f) i = pmf (return_pmf x) i" by simp
Andreas@61634
   867
  qed
Andreas@61634
   868
qed
Andreas@61634
   869
Andreas@61634
   870
lemma pmf_False_conv_True: "pmf p False = 1 - pmf p True"
Andreas@61634
   871
proof -
Andreas@61634
   872
  have "pmf p False + pmf p True = measure p {False} + measure p {True}"
Andreas@61634
   873
    by(simp add: measure_pmf_single)
Andreas@61634
   874
  also have "\<dots> = measure p ({False} \<union> {True})"
Andreas@61634
   875
    by(subst measure_pmf.finite_measure_Union) simp_all
Andreas@61634
   876
  also have "{False} \<union> {True} = space p" by auto
Andreas@61634
   877
  finally show ?thesis by simp
Andreas@61634
   878
qed
Andreas@61634
   879
Andreas@61634
   880
lemma pmf_True_conv_False: "pmf p True = 1 - pmf p False"
Andreas@61634
   881
by(simp add: pmf_False_conv_True)
Andreas@61634
   882
hoelzl@59664
   883
subsection \<open> Conditional Probabilities \<close>
hoelzl@59664
   884
hoelzl@59670
   885
lemma measure_pmf_zero_iff: "measure (measure_pmf p) s = 0 \<longleftrightarrow> set_pmf p \<inter> s = {}"
hoelzl@59670
   886
  by (subst measure_pmf.prob_eq_0) (auto simp: AE_measure_pmf_iff)
hoelzl@59670
   887
hoelzl@59664
   888
context
hoelzl@59664
   889
  fixes p :: "'a pmf" and s :: "'a set"
hoelzl@59664
   890
  assumes not_empty: "set_pmf p \<inter> s \<noteq> {}"
hoelzl@59664
   891
begin
hoelzl@59664
   892
hoelzl@59664
   893
interpretation pmf_as_measure .
hoelzl@59664
   894
hoelzl@59664
   895
lemma emeasure_measure_pmf_not_zero: "emeasure (measure_pmf p) s \<noteq> 0"
hoelzl@59664
   896
proof
hoelzl@59664
   897
  assume "emeasure (measure_pmf p) s = 0"
hoelzl@59664
   898
  then have "AE x in measure_pmf p. x \<notin> s"
hoelzl@59664
   899
    by (rule AE_I[rotated]) auto
hoelzl@59664
   900
  with not_empty show False
hoelzl@59664
   901
    by (auto simp: AE_measure_pmf_iff)
hoelzl@59664
   902
qed
hoelzl@59664
   903
hoelzl@59664
   904
lemma measure_measure_pmf_not_zero: "measure (measure_pmf p) s \<noteq> 0"
hoelzl@59664
   905
  using emeasure_measure_pmf_not_zero unfolding measure_pmf.emeasure_eq_measure by simp
hoelzl@59664
   906
hoelzl@59664
   907
lift_definition cond_pmf :: "'a pmf" is
hoelzl@59664
   908
  "uniform_measure (measure_pmf p) s"
hoelzl@59664
   909
proof (intro conjI)
hoelzl@59664
   910
  show "prob_space (uniform_measure (measure_pmf p) s)"
hoelzl@59664
   911
    by (intro prob_space_uniform_measure) (auto simp: emeasure_measure_pmf_not_zero)
hoelzl@59664
   912
  show "AE x in uniform_measure (measure_pmf p) s. measure (uniform_measure (measure_pmf p) s) {x} \<noteq> 0"
hoelzl@59664
   913
    by (simp add: emeasure_measure_pmf_not_zero measure_measure_pmf_not_zero AE_uniform_measure
hoelzl@59664
   914
                  AE_measure_pmf_iff set_pmf.rep_eq)
hoelzl@59664
   915
qed simp
hoelzl@59664
   916
hoelzl@59664
   917
lemma pmf_cond: "pmf cond_pmf x = (if x \<in> s then pmf p x / measure p s else 0)"
hoelzl@59664
   918
  by transfer (simp add: emeasure_measure_pmf_not_zero pmf.rep_eq)
hoelzl@59664
   919
hoelzl@59665
   920
lemma set_cond_pmf[simp]: "set_pmf cond_pmf = set_pmf p \<inter> s"
hoelzl@59664
   921
  by (auto simp add: set_pmf_iff pmf_cond measure_measure_pmf_not_zero split: split_if_asm)
hoelzl@59664
   922
hoelzl@59664
   923
end
hoelzl@59664
   924
hoelzl@59664
   925
lemma cond_map_pmf:
hoelzl@59664
   926
  assumes "set_pmf p \<inter> f -` s \<noteq> {}"
hoelzl@59664
   927
  shows "cond_pmf (map_pmf f p) s = map_pmf f (cond_pmf p (f -` s))"
hoelzl@59664
   928
proof -
hoelzl@59664
   929
  have *: "set_pmf (map_pmf f p) \<inter> s \<noteq> {}"
hoelzl@59665
   930
    using assms by auto
hoelzl@59664
   931
  { fix x
hoelzl@59664
   932
    have "ereal (pmf (map_pmf f (cond_pmf p (f -` s))) x) =
hoelzl@59664
   933
      emeasure p (f -` s \<inter> f -` {x}) / emeasure p (f -` s)"
hoelzl@59664
   934
      unfolding ereal_pmf_map cond_pmf.rep_eq[OF assms] by (simp add: nn_integral_uniform_measure)
hoelzl@59664
   935
    also have "f -` s \<inter> f -` {x} = (if x \<in> s then f -` {x} else {})"
hoelzl@59664
   936
      by auto
hoelzl@59664
   937
    also have "emeasure p (if x \<in> s then f -` {x} else {}) / emeasure p (f -` s) =
hoelzl@59664
   938
      ereal (pmf (cond_pmf (map_pmf f p) s) x)"
hoelzl@59664
   939
      using measure_measure_pmf_not_zero[OF *]
hoelzl@59664
   940
      by (simp add: pmf_cond[OF *] ereal_divide' ereal_pmf_map measure_pmf.emeasure_eq_measure[symmetric]
hoelzl@59664
   941
               del: ereal_divide)
hoelzl@59664
   942
    finally have "ereal (pmf (cond_pmf (map_pmf f p) s) x) = ereal (pmf (map_pmf f (cond_pmf p (f -` s))) x)"
hoelzl@59664
   943
      by simp }
hoelzl@59664
   944
  then show ?thesis
hoelzl@59664
   945
    by (intro pmf_eqI) simp
hoelzl@59664
   946
qed
hoelzl@59664
   947
hoelzl@59664
   948
lemma bind_cond_pmf_cancel:
hoelzl@59670
   949
  assumes [simp]: "\<And>x. x \<in> set_pmf p \<Longrightarrow> set_pmf q \<inter> {y. R x y} \<noteq> {}"
hoelzl@59670
   950
  assumes [simp]: "\<And>y. y \<in> set_pmf q \<Longrightarrow> set_pmf p \<inter> {x. R x y} \<noteq> {}"
hoelzl@59670
   951
  assumes [simp]: "\<And>x y. x \<in> set_pmf p \<Longrightarrow> y \<in> set_pmf q \<Longrightarrow> R x y \<Longrightarrow> measure q {y. R x y} = measure p {x. R x y}"
hoelzl@59670
   952
  shows "bind_pmf p (\<lambda>x. cond_pmf q {y. R x y}) = q"
hoelzl@59664
   953
proof (rule pmf_eqI)
hoelzl@59670
   954
  fix i
hoelzl@59670
   955
  have "ereal (pmf (bind_pmf p (\<lambda>x. cond_pmf q {y. R x y})) i) =
hoelzl@59670
   956
    (\<integral>\<^sup>+x. ereal (pmf q i / measure p {x. R x i}) * ereal (indicator {x. R x i} x) \<partial>p)"
hoelzl@59670
   957
    by (auto simp add: ereal_pmf_bind AE_measure_pmf_iff pmf_cond pmf_eq_0_set_pmf intro!: nn_integral_cong_AE)
hoelzl@59670
   958
  also have "\<dots> = (pmf q i * measure p {x. R x i}) / measure p {x. R x i}"
hoelzl@59670
   959
    by (simp add: pmf_nonneg measure_nonneg zero_ereal_def[symmetric] ereal_indicator
hoelzl@59670
   960
                  nn_integral_cmult measure_pmf.emeasure_eq_measure)
hoelzl@59670
   961
  also have "\<dots> = pmf q i"
hoelzl@59670
   962
    by (cases "pmf q i = 0") (simp_all add: pmf_eq_0_set_pmf measure_measure_pmf_not_zero)
hoelzl@59670
   963
  finally show "pmf (bind_pmf p (\<lambda>x. cond_pmf q {y. R x y})) i = pmf q i"
hoelzl@59670
   964
    by simp
hoelzl@59664
   965
qed
hoelzl@59664
   966
hoelzl@59664
   967
subsection \<open> Relator \<close>
hoelzl@59664
   968
hoelzl@59664
   969
inductive rel_pmf :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a pmf \<Rightarrow> 'b pmf \<Rightarrow> bool"
hoelzl@59664
   970
for R p q
hoelzl@59664
   971
where
lp15@59667
   972
  "\<lbrakk> \<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> R x y;
hoelzl@59664
   973
     map_pmf fst pq = p; map_pmf snd pq = q \<rbrakk>
hoelzl@59664
   974
  \<Longrightarrow> rel_pmf R p q"
hoelzl@59664
   975
hoelzl@59681
   976
lemma rel_pmfI:
hoelzl@59681
   977
  assumes R: "rel_set R (set_pmf p) (set_pmf q)"
hoelzl@59681
   978
  assumes eq: "\<And>x y. x \<in> set_pmf p \<Longrightarrow> y \<in> set_pmf q \<Longrightarrow> R x y \<Longrightarrow>
hoelzl@59681
   979
    measure p {x. R x y} = measure q {y. R x y}"
hoelzl@59681
   980
  shows "rel_pmf R p q"
hoelzl@59681
   981
proof
hoelzl@59681
   982
  let ?pq = "bind_pmf p (\<lambda>x. bind_pmf (cond_pmf q {y. R x y}) (\<lambda>y. return_pmf (x, y)))"
hoelzl@59681
   983
  have "\<And>x. x \<in> set_pmf p \<Longrightarrow> set_pmf q \<inter> {y. R x y} \<noteq> {}"
hoelzl@59681
   984
    using R by (auto simp: rel_set_def)
hoelzl@59681
   985
  then show "\<And>x y. (x, y) \<in> set_pmf ?pq \<Longrightarrow> R x y"
hoelzl@59681
   986
    by auto
hoelzl@59681
   987
  show "map_pmf fst ?pq = p"
Andreas@60068
   988
    by (simp add: map_bind_pmf bind_return_pmf')
hoelzl@59681
   989
hoelzl@59681
   990
  show "map_pmf snd ?pq = q"
hoelzl@59681
   991
    using R eq
Andreas@60068
   992
    apply (simp add: bind_cond_pmf_cancel map_bind_pmf bind_return_pmf')
hoelzl@59681
   993
    apply (rule bind_cond_pmf_cancel)
hoelzl@59681
   994
    apply (auto simp: rel_set_def)
hoelzl@59681
   995
    done
hoelzl@59681
   996
qed
hoelzl@59681
   997
hoelzl@59681
   998
lemma rel_pmf_imp_rel_set: "rel_pmf R p q \<Longrightarrow> rel_set R (set_pmf p) (set_pmf q)"
hoelzl@59681
   999
  by (force simp add: rel_pmf.simps rel_set_def)
hoelzl@59681
  1000
hoelzl@59681
  1001
lemma rel_pmfD_measure:
hoelzl@59681
  1002
  assumes rel_R: "rel_pmf R p q" and R: "\<And>a b. R a b \<Longrightarrow> R a y \<longleftrightarrow> R x b"
hoelzl@59681
  1003
  assumes "x \<in> set_pmf p" "y \<in> set_pmf q"
hoelzl@59681
  1004
  shows "measure p {x. R x y} = measure q {y. R x y}"
hoelzl@59681
  1005
proof -
hoelzl@59681
  1006
  from rel_R obtain pq where pq: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> R x y"
hoelzl@59681
  1007
    and eq: "p = map_pmf fst pq" "q = map_pmf snd pq"
hoelzl@59681
  1008
    by (auto elim: rel_pmf.cases)
hoelzl@59681
  1009
  have "measure p {x. R x y} = measure pq {x. R (fst x) y}"
hoelzl@59681
  1010
    by (simp add: eq map_pmf_rep_eq measure_distr)
hoelzl@59681
  1011
  also have "\<dots> = measure pq {y. R x (snd y)}"
hoelzl@59681
  1012
    by (intro measure_pmf.finite_measure_eq_AE)
hoelzl@59681
  1013
       (auto simp: AE_measure_pmf_iff R dest!: pq)
hoelzl@59681
  1014
  also have "\<dots> = measure q {y. R x y}"
hoelzl@59681
  1015
    by (simp add: eq map_pmf_rep_eq measure_distr)
hoelzl@59681
  1016
  finally show "measure p {x. R x y} = measure q {y. R x y}" .
hoelzl@59681
  1017
qed
hoelzl@59681
  1018
Andreas@61634
  1019
lemma rel_pmf_measureD:
Andreas@61634
  1020
  assumes "rel_pmf R p q"
Andreas@61634
  1021
  shows "measure (measure_pmf p) A \<le> measure (measure_pmf q) {y. \<exists>x\<in>A. R x y}" (is "?lhs \<le> ?rhs")
Andreas@61634
  1022
using assms
Andreas@61634
  1023
proof cases
Andreas@61634
  1024
  fix pq
Andreas@61634
  1025
  assume R: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> R x y"
Andreas@61634
  1026
    and p[symmetric]: "map_pmf fst pq = p"
Andreas@61634
  1027
    and q[symmetric]: "map_pmf snd pq = q"
Andreas@61634
  1028
  have "?lhs = measure (measure_pmf pq) (fst -` A)" by(simp add: p)
Andreas@61634
  1029
  also have "\<dots> \<le> measure (measure_pmf pq) {y. \<exists>x\<in>A. R x (snd y)}"
Andreas@61634
  1030
    by(rule measure_pmf.finite_measure_mono_AE)(auto 4 3 simp add: AE_measure_pmf_iff dest: R)
Andreas@61634
  1031
  also have "\<dots> = ?rhs" by(simp add: q)
Andreas@61634
  1032
  finally show ?thesis .
Andreas@61634
  1033
qed
Andreas@61634
  1034
hoelzl@59681
  1035
lemma rel_pmf_iff_measure:
hoelzl@59681
  1036
  assumes "symp R" "transp R"
hoelzl@59681
  1037
  shows "rel_pmf R p q \<longleftrightarrow>
hoelzl@59681
  1038
    rel_set R (set_pmf p) (set_pmf q) \<and>
hoelzl@59681
  1039
    (\<forall>x\<in>set_pmf p. \<forall>y\<in>set_pmf q. R x y \<longrightarrow> measure p {x. R x y} = measure q {y. R x y})"
hoelzl@59681
  1040
  by (safe intro!: rel_pmf_imp_rel_set rel_pmfI)
hoelzl@59681
  1041
     (auto intro!: rel_pmfD_measure dest: sympD[OF \<open>symp R\<close>] transpD[OF \<open>transp R\<close>])
hoelzl@59681
  1042
hoelzl@59681
  1043
lemma quotient_rel_set_disjoint:
hoelzl@59681
  1044
  "equivp R \<Longrightarrow> C \<in> UNIV // {(x, y). R x y} \<Longrightarrow> rel_set R A B \<Longrightarrow> A \<inter> C = {} \<longleftrightarrow> B \<inter> C = {}"
lp15@61609
  1045
  using in_quotient_imp_closed[of UNIV "{(x, y). R x y}" C]
hoelzl@59681
  1046
  by (auto 0 0 simp: equivp_equiv rel_set_def set_eq_iff elim: equivpE)
hoelzl@59681
  1047
     (blast dest: equivp_symp)+
hoelzl@59681
  1048
hoelzl@59681
  1049
lemma quotientD: "equiv X R \<Longrightarrow> A \<in> X // R \<Longrightarrow> x \<in> A \<Longrightarrow> A = R `` {x}"
hoelzl@59681
  1050
  by (metis Image_singleton_iff equiv_class_eq_iff quotientE)
hoelzl@59681
  1051
hoelzl@59681
  1052
lemma rel_pmf_iff_equivp:
hoelzl@59681
  1053
  assumes "equivp R"
hoelzl@59681
  1054
  shows "rel_pmf R p q \<longleftrightarrow> (\<forall>C\<in>UNIV // {(x, y). R x y}. measure p C = measure q C)"
hoelzl@59681
  1055
    (is "_ \<longleftrightarrow>   (\<forall>C\<in>_//?R. _)")
hoelzl@59681
  1056
proof (subst rel_pmf_iff_measure, safe)
hoelzl@59681
  1057
  show "symp R" "transp R"
hoelzl@59681
  1058
    using assms by (auto simp: equivp_reflp_symp_transp)
hoelzl@59681
  1059
next
hoelzl@59681
  1060
  fix C assume C: "C \<in> UNIV // ?R" and R: "rel_set R (set_pmf p) (set_pmf q)"
hoelzl@59681
  1061
  assume eq: "\<forall>x\<in>set_pmf p. \<forall>y\<in>set_pmf q. R x y \<longrightarrow> measure p {x. R x y} = measure q {y. R x y}"
lp15@61609
  1062
hoelzl@59681
  1063
  show "measure p C = measure q C"
hoelzl@59681
  1064
  proof cases
hoelzl@59681
  1065
    assume "p \<inter> C = {}"
lp15@61609
  1066
    moreover then have "q \<inter> C = {}"
hoelzl@59681
  1067
      using quotient_rel_set_disjoint[OF assms C R] by simp
hoelzl@59681
  1068
    ultimately show ?thesis
hoelzl@59681
  1069
      unfolding measure_pmf_zero_iff[symmetric] by simp
hoelzl@59681
  1070
  next
hoelzl@59681
  1071
    assume "p \<inter> C \<noteq> {}"
lp15@61609
  1072
    moreover then have "q \<inter> C \<noteq> {}"
hoelzl@59681
  1073
      using quotient_rel_set_disjoint[OF assms C R] by simp
hoelzl@59681
  1074
    ultimately obtain x y where in_set: "x \<in> set_pmf p" "y \<in> set_pmf q" and in_C: "x \<in> C" "y \<in> C"
hoelzl@59681
  1075
      by auto
hoelzl@59681
  1076
    then have "R x y"
hoelzl@59681
  1077
      using in_quotient_imp_in_rel[of UNIV ?R C x y] C assms
hoelzl@59681
  1078
      by (simp add: equivp_equiv)
hoelzl@59681
  1079
    with in_set eq have "measure p {x. R x y} = measure q {y. R x y}"
hoelzl@59681
  1080
      by auto
hoelzl@59681
  1081
    moreover have "{y. R x y} = C"
wenzelm@61808
  1082
      using assms \<open>x \<in> C\<close> C quotientD[of UNIV ?R C x] by (simp add: equivp_equiv)
hoelzl@59681
  1083
    moreover have "{x. R x y} = C"
wenzelm@61808
  1084
      using assms \<open>y \<in> C\<close> C quotientD[of UNIV "?R" C y] sympD[of R]
hoelzl@59681
  1085
      by (auto simp add: equivp_equiv elim: equivpE)
hoelzl@59681
  1086
    ultimately show ?thesis
hoelzl@59681
  1087
      by auto
hoelzl@59681
  1088
  qed
hoelzl@59681
  1089
next
hoelzl@59681
  1090
  assume eq: "\<forall>C\<in>UNIV // ?R. measure p C = measure q C"
hoelzl@59681
  1091
  show "rel_set R (set_pmf p) (set_pmf q)"
hoelzl@59681
  1092
    unfolding rel_set_def
hoelzl@59681
  1093
  proof safe
hoelzl@59681
  1094
    fix x assume x: "x \<in> set_pmf p"
hoelzl@59681
  1095
    have "{y. R x y} \<in> UNIV // ?R"
hoelzl@59681
  1096
      by (auto simp: quotient_def)
hoelzl@59681
  1097
    with eq have *: "measure q {y. R x y} = measure p {y. R x y}"
hoelzl@59681
  1098
      by auto
hoelzl@59681
  1099
    have "measure q {y. R x y} \<noteq> 0"
hoelzl@59681
  1100
      using x assms unfolding * by (auto simp: measure_pmf_zero_iff set_eq_iff dest: equivp_reflp)
hoelzl@59681
  1101
    then show "\<exists>y\<in>set_pmf q. R x y"
hoelzl@59681
  1102
      unfolding measure_pmf_zero_iff by auto
hoelzl@59681
  1103
  next
hoelzl@59681
  1104
    fix y assume y: "y \<in> set_pmf q"
hoelzl@59681
  1105
    have "{x. R x y} \<in> UNIV // ?R"
hoelzl@59681
  1106
      using assms by (auto simp: quotient_def dest: equivp_symp)
hoelzl@59681
  1107
    with eq have *: "measure p {x. R x y} = measure q {x. R x y}"
hoelzl@59681
  1108
      by auto
hoelzl@59681
  1109
    have "measure p {x. R x y} \<noteq> 0"
hoelzl@59681
  1110
      using y assms unfolding * by (auto simp: measure_pmf_zero_iff set_eq_iff dest: equivp_reflp)
hoelzl@59681
  1111
    then show "\<exists>x\<in>set_pmf p. R x y"
hoelzl@59681
  1112
      unfolding measure_pmf_zero_iff by auto
hoelzl@59681
  1113
  qed
hoelzl@59681
  1114
hoelzl@59681
  1115
  fix x y assume "x \<in> set_pmf p" "y \<in> set_pmf q" "R x y"
hoelzl@59681
  1116
  have "{y. R x y} \<in> UNIV // ?R" "{x. R x y} = {y. R x y}"
wenzelm@61808
  1117
    using assms \<open>R x y\<close> by (auto simp: quotient_def dest: equivp_symp equivp_transp)
hoelzl@59681
  1118
  with eq show "measure p {x. R x y} = measure q {y. R x y}"
hoelzl@59681
  1119
    by auto
hoelzl@59681
  1120
qed
hoelzl@59681
  1121
hoelzl@59664
  1122
bnf pmf: "'a pmf" map: map_pmf sets: set_pmf bd : "natLeq" rel: rel_pmf
hoelzl@59664
  1123
proof -
hoelzl@59664
  1124
  show "map_pmf id = id" by (rule map_pmf_id)
lp15@59667
  1125
  show "\<And>f g. map_pmf (f \<circ> g) = map_pmf f \<circ> map_pmf g" by (rule map_pmf_compose)
hoelzl@59664
  1126
  show "\<And>f g::'a \<Rightarrow> 'b. \<And>p. (\<And>x. x \<in> set_pmf p \<Longrightarrow> f x = g x) \<Longrightarrow> map_pmf f p = map_pmf g p"
hoelzl@59664
  1127
    by (intro map_pmf_cong refl)
hoelzl@59664
  1128
hoelzl@59664
  1129
  show "\<And>f::'a \<Rightarrow> 'b. set_pmf \<circ> map_pmf f = op ` f \<circ> set_pmf"
hoelzl@59664
  1130
    by (rule pmf_set_map)
hoelzl@59664
  1131
wenzelm@60595
  1132
  show "(card_of (set_pmf p), natLeq) \<in> ordLeq" for p :: "'s pmf"
wenzelm@60595
  1133
  proof -
hoelzl@59664
  1134
    have "(card_of (set_pmf p), card_of (UNIV :: nat set)) \<in> ordLeq"
hoelzl@59664
  1135
      by (rule card_of_ordLeqI[where f="to_nat_on (set_pmf p)"])
hoelzl@59664
  1136
         (auto intro: countable_set_pmf)
hoelzl@59664
  1137
    also have "(card_of (UNIV :: nat set), natLeq) \<in> ordLeq"
hoelzl@59664
  1138
      by (metis Field_natLeq card_of_least natLeq_Well_order)
wenzelm@60595
  1139
    finally show ?thesis .
wenzelm@60595
  1140
  qed
hoelzl@59664
  1141
hoelzl@59664
  1142
  show "\<And>R. rel_pmf R =
hoelzl@59664
  1143
         (BNF_Def.Grp {x. set_pmf x \<subseteq> {(x, y). R x y}} (map_pmf fst))\<inverse>\<inverse> OO
hoelzl@59664
  1144
         BNF_Def.Grp {x. set_pmf x \<subseteq> {(x, y). R x y}} (map_pmf snd)"
hoelzl@59664
  1145
     by (auto simp add: fun_eq_iff BNF_Def.Grp_def OO_def rel_pmf.simps)
hoelzl@59664
  1146
wenzelm@60595
  1147
  show "rel_pmf R OO rel_pmf S \<le> rel_pmf (R OO S)"
wenzelm@60595
  1148
    for R :: "'a \<Rightarrow> 'b \<Rightarrow> bool" and S :: "'b \<Rightarrow> 'c \<Rightarrow> bool"
wenzelm@60595
  1149
  proof -
wenzelm@60595
  1150
    { fix p q r
wenzelm@60595
  1151
      assume pq: "rel_pmf R p q"
wenzelm@60595
  1152
        and qr:"rel_pmf S q r"
wenzelm@60595
  1153
      from pq obtain pq where pq: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> R x y"
wenzelm@60595
  1154
        and p: "p = map_pmf fst pq" and q: "q = map_pmf snd pq" by cases auto
wenzelm@60595
  1155
      from qr obtain qr where qr: "\<And>y z. (y, z) \<in> set_pmf qr \<Longrightarrow> S y z"
wenzelm@60595
  1156
        and q': "q = map_pmf fst qr" and r: "r = map_pmf snd qr" by cases auto
lp15@61609
  1157
wenzelm@60595
  1158
      def pr \<equiv> "bind_pmf pq (\<lambda>xy. bind_pmf (cond_pmf qr {yz. fst yz = snd xy}) (\<lambda>yz. return_pmf (fst xy, snd yz)))"
wenzelm@60595
  1159
      have pr_welldefined: "\<And>y. y \<in> q \<Longrightarrow> qr \<inter> {yz. fst yz = y} \<noteq> {}"
wenzelm@60595
  1160
        by (force simp: q')
lp15@61609
  1161
wenzelm@60595
  1162
      have "rel_pmf (R OO S) p r"
wenzelm@60595
  1163
      proof (rule rel_pmf.intros)
wenzelm@60595
  1164
        fix x z assume "(x, z) \<in> pr"
wenzelm@60595
  1165
        then have "\<exists>y. (x, y) \<in> pq \<and> (y, z) \<in> qr"
wenzelm@60595
  1166
          by (auto simp: q pr_welldefined pr_def split_beta)
wenzelm@60595
  1167
        with pq qr show "(R OO S) x z"
wenzelm@60595
  1168
          by blast
wenzelm@60595
  1169
      next
wenzelm@60595
  1170
        have "map_pmf snd pr = map_pmf snd (bind_pmf q (\<lambda>y. cond_pmf qr {yz. fst yz = y}))"
wenzelm@60595
  1171
          by (simp add: pr_def q split_beta bind_map_pmf map_pmf_def[symmetric] map_bind_pmf map_pmf_comp)
wenzelm@60595
  1172
        then show "map_pmf snd pr = r"
wenzelm@60595
  1173
          unfolding r q' bind_map_pmf by (subst (asm) bind_cond_pmf_cancel) (auto simp: eq_commute)
wenzelm@60595
  1174
      qed (simp add: pr_def map_bind_pmf split_beta map_pmf_def[symmetric] p map_pmf_comp)
wenzelm@60595
  1175
    }
wenzelm@60595
  1176
    then show ?thesis
wenzelm@60595
  1177
      by(auto simp add: le_fun_def)
wenzelm@60595
  1178
  qed
hoelzl@59664
  1179
qed (fact natLeq_card_order natLeq_cinfinite)+
hoelzl@59664
  1180
Andreas@61634
  1181
lemma map_pmf_idI: "(\<And>x. x \<in> set_pmf p \<Longrightarrow> f x = x) \<Longrightarrow> map_pmf f p = p"
Andreas@61634
  1182
by(simp cong: pmf.map_cong)
Andreas@61634
  1183
hoelzl@59665
  1184
lemma rel_pmf_conj[simp]:
hoelzl@59665
  1185
  "rel_pmf (\<lambda>x y. P \<and> Q x y) x y \<longleftrightarrow> P \<and> rel_pmf Q x y"
hoelzl@59665
  1186
  "rel_pmf (\<lambda>x y. Q x y \<and> P) x y \<longleftrightarrow> P \<and> rel_pmf Q x y"
hoelzl@59665
  1187
  using set_pmf_not_empty by (fastforce simp: pmf.in_rel subset_eq)+
hoelzl@59665
  1188
hoelzl@59665
  1189
lemma rel_pmf_top[simp]: "rel_pmf top = top"
hoelzl@59665
  1190
  by (auto simp: pmf.in_rel[abs_def] fun_eq_iff map_fst_pair_pmf map_snd_pair_pmf
hoelzl@59665
  1191
           intro: exI[of _ "pair_pmf x y" for x y])
hoelzl@59665
  1192
hoelzl@59664
  1193
lemma rel_pmf_return_pmf1: "rel_pmf R (return_pmf x) M \<longleftrightarrow> (\<forall>a\<in>M. R x a)"
hoelzl@59664
  1194
proof safe
hoelzl@59664
  1195
  fix a assume "a \<in> M" "rel_pmf R (return_pmf x) M"
hoelzl@59664
  1196
  then obtain pq where *: "\<And>a b. (a, b) \<in> set_pmf pq \<Longrightarrow> R a b"
hoelzl@59664
  1197
    and eq: "return_pmf x = map_pmf fst pq" "M = map_pmf snd pq"
hoelzl@59664
  1198
    by (force elim: rel_pmf.cases)
hoelzl@59664
  1199
  moreover have "set_pmf (return_pmf x) = {x}"
hoelzl@59665
  1200
    by simp
wenzelm@61808
  1201
  with \<open>a \<in> M\<close> have "(x, a) \<in> pq"
hoelzl@59665
  1202
    by (force simp: eq)
hoelzl@59664
  1203
  with * show "R x a"
hoelzl@59664
  1204
    by auto
hoelzl@59664
  1205
qed (auto intro!: rel_pmf.intros[where pq="pair_pmf (return_pmf x) M"]
hoelzl@59665
  1206
          simp: map_fst_pair_pmf map_snd_pair_pmf)
hoelzl@59664
  1207
hoelzl@59664
  1208
lemma rel_pmf_return_pmf2: "rel_pmf R M (return_pmf x) \<longleftrightarrow> (\<forall>a\<in>M. R a x)"
hoelzl@59664
  1209
  by (subst pmf.rel_flip[symmetric]) (simp add: rel_pmf_return_pmf1)
hoelzl@59664
  1210
hoelzl@59664
  1211
lemma rel_return_pmf[simp]: "rel_pmf R (return_pmf x1) (return_pmf x2) = R x1 x2"
hoelzl@59664
  1212
  unfolding rel_pmf_return_pmf2 set_return_pmf by simp
hoelzl@59664
  1213
hoelzl@59664
  1214
lemma rel_pmf_False[simp]: "rel_pmf (\<lambda>x y. False) x y = False"
hoelzl@59664
  1215
  unfolding pmf.in_rel fun_eq_iff using set_pmf_not_empty by fastforce
hoelzl@59664
  1216
hoelzl@59664
  1217
lemma rel_pmf_rel_prod:
hoelzl@59664
  1218
  "rel_pmf (rel_prod R S) (pair_pmf A A') (pair_pmf B B') \<longleftrightarrow> rel_pmf R A B \<and> rel_pmf S A' B'"
hoelzl@59664
  1219
proof safe
hoelzl@59664
  1220
  assume "rel_pmf (rel_prod R S) (pair_pmf A A') (pair_pmf B B')"
hoelzl@59664
  1221
  then obtain pq where pq: "\<And>a b c d. ((a, c), (b, d)) \<in> set_pmf pq \<Longrightarrow> R a b \<and> S c d"
hoelzl@59664
  1222
    and eq: "map_pmf fst pq = pair_pmf A A'" "map_pmf snd pq = pair_pmf B B'"
hoelzl@59664
  1223
    by (force elim: rel_pmf.cases)
hoelzl@59664
  1224
  show "rel_pmf R A B"
hoelzl@59664
  1225
  proof (rule rel_pmf.intros)
hoelzl@59664
  1226
    let ?f = "\<lambda>(a, b). (fst a, fst b)"
hoelzl@59664
  1227
    have [simp]: "(\<lambda>x. fst (?f x)) = fst o fst" "(\<lambda>x. snd (?f x)) = fst o snd"
hoelzl@59664
  1228
      by auto
hoelzl@59664
  1229
hoelzl@59664
  1230
    show "map_pmf fst (map_pmf ?f pq) = A"
hoelzl@59664
  1231
      by (simp add: map_pmf_comp pmf.map_comp[symmetric] eq map_fst_pair_pmf)
hoelzl@59664
  1232
    show "map_pmf snd (map_pmf ?f pq) = B"
hoelzl@59664
  1233
      by (simp add: map_pmf_comp pmf.map_comp[symmetric] eq map_fst_pair_pmf)
hoelzl@59664
  1234
hoelzl@59664
  1235
    fix a b assume "(a, b) \<in> set_pmf (map_pmf ?f pq)"
hoelzl@59664
  1236
    then obtain c d where "((a, c), (b, d)) \<in> set_pmf pq"
hoelzl@59665
  1237
      by auto
hoelzl@59664
  1238
    from pq[OF this] show "R a b" ..
hoelzl@59664
  1239
  qed
hoelzl@59664
  1240
  show "rel_pmf S A' B'"
hoelzl@59664
  1241
  proof (rule rel_pmf.intros)
hoelzl@59664
  1242
    let ?f = "\<lambda>(a, b). (snd a, snd b)"
hoelzl@59664
  1243
    have [simp]: "(\<lambda>x. fst (?f x)) = snd o fst" "(\<lambda>x. snd (?f x)) = snd o snd"
hoelzl@59664
  1244
      by auto
hoelzl@59664
  1245
hoelzl@59664
  1246
    show "map_pmf fst (map_pmf ?f pq) = A'"
hoelzl@59664
  1247
      by (simp add: map_pmf_comp pmf.map_comp[symmetric] eq map_snd_pair_pmf)
hoelzl@59664
  1248
    show "map_pmf snd (map_pmf ?f pq) = B'"
hoelzl@59664
  1249
      by (simp add: map_pmf_comp pmf.map_comp[symmetric] eq map_snd_pair_pmf)
hoelzl@59664
  1250
hoelzl@59664
  1251
    fix c d assume "(c, d) \<in> set_pmf (map_pmf ?f pq)"
hoelzl@59664
  1252
    then obtain a b where "((a, c), (b, d)) \<in> set_pmf pq"
hoelzl@59665
  1253
      by auto
hoelzl@59664
  1254
    from pq[OF this] show "S c d" ..
hoelzl@59664
  1255
  qed
hoelzl@59664
  1256
next
hoelzl@59664
  1257
  assume "rel_pmf R A B" "rel_pmf S A' B'"
hoelzl@59664
  1258
  then obtain Rpq Spq
hoelzl@59664
  1259
    where Rpq: "\<And>a b. (a, b) \<in> set_pmf Rpq \<Longrightarrow> R a b"
hoelzl@59664
  1260
        "map_pmf fst Rpq = A" "map_pmf snd Rpq = B"
hoelzl@59664
  1261
      and Spq: "\<And>a b. (a, b) \<in> set_pmf Spq \<Longrightarrow> S a b"
hoelzl@59664
  1262
        "map_pmf fst Spq = A'" "map_pmf snd Spq = B'"
hoelzl@59664
  1263
    by (force elim: rel_pmf.cases)
hoelzl@59664
  1264
hoelzl@59664
  1265
  let ?f = "(\<lambda>((a, c), (b, d)). ((a, b), (c, d)))"
hoelzl@59664
  1266
  let ?pq = "map_pmf ?f (pair_pmf Rpq Spq)"
hoelzl@59664
  1267
  have [simp]: "(\<lambda>x. fst (?f x)) = (\<lambda>(a, b). (fst a, fst b))" "(\<lambda>x. snd (?f x)) = (\<lambda>(a, b). (snd a, snd b))"
hoelzl@59664
  1268
    by auto
hoelzl@59664
  1269
hoelzl@59664
  1270
  show "rel_pmf (rel_prod R S) (pair_pmf A A') (pair_pmf B B')"
hoelzl@59664
  1271
    by (rule rel_pmf.intros[where pq="?pq"])
hoelzl@59665
  1272
       (auto simp: map_snd_pair_pmf map_fst_pair_pmf map_pmf_comp Rpq Spq
hoelzl@59664
  1273
                   map_pair)
hoelzl@59664
  1274
qed
hoelzl@59664
  1275
lp15@59667
  1276
lemma rel_pmf_reflI:
hoelzl@59664
  1277
  assumes "\<And>x. x \<in> set_pmf p \<Longrightarrow> P x x"
hoelzl@59664
  1278
  shows "rel_pmf P p p"
hoelzl@59665
  1279
  by (rule rel_pmf.intros[where pq="map_pmf (\<lambda>x. (x, x)) p"])
hoelzl@59665
  1280
     (auto simp add: pmf.map_comp o_def assms)
hoelzl@59664
  1281
Andreas@61634
  1282
lemma rel_pmf_bij_betw:
Andreas@61634
  1283
  assumes f: "bij_betw f (set_pmf p) (set_pmf q)"
Andreas@61634
  1284
  and eq: "\<And>x. x \<in> set_pmf p \<Longrightarrow> pmf p x = pmf q (f x)"
Andreas@61634
  1285
  shows "rel_pmf (\<lambda>x y. f x = y) p q"
Andreas@61634
  1286
proof(rule rel_pmf.intros)
Andreas@61634
  1287
  let ?pq = "map_pmf (\<lambda>x. (x, f x)) p"
Andreas@61634
  1288
  show "map_pmf fst ?pq = p" by(simp add: pmf.map_comp o_def)
Andreas@61634
  1289
Andreas@61634
  1290
  have "map_pmf f p = q"
Andreas@61634
  1291
  proof(rule pmf_eqI)
Andreas@61634
  1292
    fix i
Andreas@61634
  1293
    show "pmf (map_pmf f p) i = pmf q i"
Andreas@61634
  1294
    proof(cases "i \<in> set_pmf q")
Andreas@61634
  1295
      case True
Andreas@61634
  1296
      with f obtain j where "i = f j" "j \<in> set_pmf p"
Andreas@61634
  1297
        by(auto simp add: bij_betw_def image_iff)
Andreas@61634
  1298
      thus ?thesis using f by(simp add: bij_betw_def pmf_map_inj eq)
Andreas@61634
  1299
    next
Andreas@61634
  1300
      case False thus ?thesis
Andreas@61634
  1301
        by(subst pmf_map_outside)(auto simp add: set_pmf_iff eq[symmetric])
Andreas@61634
  1302
    qed
Andreas@61634
  1303
  qed
Andreas@61634
  1304
  then show "map_pmf snd ?pq = q" by(simp add: pmf.map_comp o_def)
Andreas@61634
  1305
qed auto
Andreas@61634
  1306
hoelzl@59664
  1307
context
hoelzl@59664
  1308
begin
hoelzl@59664
  1309
hoelzl@59664
  1310
interpretation pmf_as_measure .
hoelzl@59664
  1311
hoelzl@59664
  1312
definition "join_pmf M = bind_pmf M (\<lambda>x. x)"
hoelzl@59664
  1313
hoelzl@59664
  1314
lemma bind_eq_join_pmf: "bind_pmf M f = join_pmf (map_pmf f M)"
hoelzl@59664
  1315
  unfolding join_pmf_def bind_map_pmf ..
hoelzl@59664
  1316
hoelzl@59664
  1317
lemma join_eq_bind_pmf: "join_pmf M = bind_pmf M id"
hoelzl@59664
  1318
  by (simp add: join_pmf_def id_def)
hoelzl@59664
  1319
hoelzl@59664
  1320
lemma pmf_join: "pmf (join_pmf N) i = (\<integral>M. pmf M i \<partial>measure_pmf N)"
hoelzl@59664
  1321
  unfolding join_pmf_def pmf_bind ..
hoelzl@59664
  1322
hoelzl@59664
  1323
lemma ereal_pmf_join: "ereal (pmf (join_pmf N) i) = (\<integral>\<^sup>+M. pmf M i \<partial>measure_pmf N)"
hoelzl@59664
  1324
  unfolding join_pmf_def ereal_pmf_bind ..
hoelzl@59664
  1325
hoelzl@59665
  1326
lemma set_pmf_join_pmf[simp]: "set_pmf (join_pmf f) = (\<Union>p\<in>set_pmf f. set_pmf p)"
hoelzl@59665
  1327
  by (simp add: join_pmf_def)
hoelzl@59664
  1328
hoelzl@59664
  1329
lemma join_return_pmf: "join_pmf (return_pmf M) = M"
hoelzl@59664
  1330
  by (simp add: integral_return pmf_eq_iff pmf_join return_pmf.rep_eq)
hoelzl@59664
  1331
hoelzl@59664
  1332
lemma map_join_pmf: "map_pmf f (join_pmf AA) = join_pmf (map_pmf (map_pmf f) AA)"
hoelzl@59664
  1333
  by (simp add: join_pmf_def map_pmf_def bind_assoc_pmf bind_return_pmf)
hoelzl@59664
  1334
hoelzl@59664
  1335
lemma join_map_return_pmf: "join_pmf (map_pmf return_pmf A) = A"
hoelzl@59664
  1336
  by (simp add: join_pmf_def map_pmf_def bind_assoc_pmf bind_return_pmf bind_return_pmf')
hoelzl@59664
  1337
hoelzl@59664
  1338
end
hoelzl@59664
  1339
hoelzl@59664
  1340
lemma rel_pmf_joinI:
hoelzl@59664
  1341
  assumes "rel_pmf (rel_pmf P) p q"
hoelzl@59664
  1342
  shows "rel_pmf P (join_pmf p) (join_pmf q)"
hoelzl@59664
  1343
proof -
hoelzl@59664
  1344
  from assms obtain pq where p: "p = map_pmf fst pq"
hoelzl@59664
  1345
    and q: "q = map_pmf snd pq"
hoelzl@59664
  1346
    and P: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> rel_pmf P x y"
hoelzl@59664
  1347
    by cases auto
lp15@59667
  1348
  from P obtain PQ
hoelzl@59664
  1349
    where PQ: "\<And>x y a b. \<lbrakk> (x, y) \<in> set_pmf pq; (a, b) \<in> set_pmf (PQ x y) \<rbrakk> \<Longrightarrow> P a b"
hoelzl@59664
  1350
    and x: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> map_pmf fst (PQ x y) = x"
hoelzl@59664
  1351
    and y: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> map_pmf snd (PQ x y) = y"
hoelzl@59664
  1352
    by(metis rel_pmf.simps)
hoelzl@59664
  1353
hoelzl@59664
  1354
  let ?r = "bind_pmf pq (\<lambda>(x, y). PQ x y)"
hoelzl@59665
  1355
  have "\<And>a b. (a, b) \<in> set_pmf ?r \<Longrightarrow> P a b" by (auto intro: PQ)
hoelzl@59664
  1356
  moreover have "map_pmf fst ?r = join_pmf p" "map_pmf snd ?r = join_pmf q"
hoelzl@59664
  1357
    by (simp_all add: p q x y join_pmf_def map_bind_pmf bind_map_pmf split_def cong: bind_pmf_cong)
hoelzl@59664
  1358
  ultimately show ?thesis ..
hoelzl@59664
  1359
qed
hoelzl@59664
  1360
hoelzl@59664
  1361
lemma rel_pmf_bindI:
hoelzl@59664
  1362
  assumes pq: "rel_pmf R p q"
hoelzl@59664
  1363
  and fg: "\<And>x y. R x y \<Longrightarrow> rel_pmf P (f x) (g y)"
hoelzl@59664
  1364
  shows "rel_pmf P (bind_pmf p f) (bind_pmf q g)"
hoelzl@59664
  1365
  unfolding bind_eq_join_pmf
hoelzl@59664
  1366
  by (rule rel_pmf_joinI)
hoelzl@59664
  1367
     (auto simp add: pmf.rel_map intro: pmf.rel_mono[THEN le_funD, THEN le_funD, THEN le_boolD, THEN mp, OF _ pq] fg)
hoelzl@59664
  1368
wenzelm@61808
  1369
text \<open>
hoelzl@59664
  1370
  Proof that @{const rel_pmf} preserves orders.
lp15@59667
  1371
  Antisymmetry proof follows Thm. 1 in N. Saheb-Djahromi, Cpo's of measures for nondeterminism,
lp15@59667
  1372
  Theoretical Computer Science 12(1):19--37, 1980,
hoelzl@59664
  1373
  @{url "http://dx.doi.org/10.1016/0304-3975(80)90003-1"}
wenzelm@61808
  1374
\<close>
hoelzl@59664
  1375
lp15@59667
  1376
lemma
hoelzl@59664
  1377
  assumes *: "rel_pmf R p q"
hoelzl@59664
  1378
  and refl: "reflp R" and trans: "transp R"
hoelzl@59664
  1379
  shows measure_Ici: "measure p {y. R x y} \<le> measure q {y. R x y}" (is ?thesis1)
hoelzl@59664
  1380
  and measure_Ioi: "measure p {y. R x y \<and> \<not> R y x} \<le> measure q {y. R x y \<and> \<not> R y x}" (is ?thesis2)
hoelzl@59664
  1381
proof -
hoelzl@59664
  1382
  from * obtain pq
hoelzl@59664
  1383
    where pq: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> R x y"
hoelzl@59664
  1384
    and p: "p = map_pmf fst pq"
hoelzl@59664
  1385
    and q: "q = map_pmf snd pq"
hoelzl@59664
  1386
    by cases auto
hoelzl@59664
  1387
  show ?thesis1 ?thesis2 unfolding p q map_pmf_rep_eq using refl trans
hoelzl@59664
  1388
    by(auto 4 3 simp add: measure_distr reflpD AE_measure_pmf_iff intro!: measure_pmf.finite_measure_mono_AE dest!: pq elim: transpE)
hoelzl@59664
  1389
qed
hoelzl@59664
  1390
hoelzl@59664
  1391
lemma rel_pmf_inf:
hoelzl@59664
  1392
  fixes p q :: "'a pmf"
hoelzl@59664
  1393
  assumes 1: "rel_pmf R p q"
hoelzl@59664
  1394
  assumes 2: "rel_pmf R q p"
hoelzl@59664
  1395
  and refl: "reflp R" and trans: "transp R"
hoelzl@59664
  1396
  shows "rel_pmf (inf R R\<inverse>\<inverse>) p q"
hoelzl@59681
  1397
proof (subst rel_pmf_iff_equivp, safe)
hoelzl@59681
  1398
  show "equivp (inf R R\<inverse>\<inverse>)"
hoelzl@59681
  1399
    using trans refl by (auto simp: equivp_reflp_symp_transp intro: sympI transpI reflpI dest: transpD reflpD)
lp15@61609
  1400
hoelzl@59681
  1401
  fix C assume "C \<in> UNIV // {(x, y). inf R R\<inverse>\<inverse> x y}"
hoelzl@59681
  1402
  then obtain x where C: "C = {y. R x y \<and> R y x}"
hoelzl@59681
  1403
    by (auto elim: quotientE)
hoelzl@59681
  1404
hoelzl@59670
  1405
  let ?R = "\<lambda>x y. R x y \<and> R y x"
hoelzl@59670
  1406
  let ?\<mu>R = "\<lambda>y. measure q {x. ?R x y}"
hoelzl@59681
  1407
  have "measure p {y. ?R x y} = measure p ({y. R x y} - {y. R x y \<and> \<not> R y x})"
hoelzl@59681
  1408
    by(auto intro!: arg_cong[where f="measure p"])
hoelzl@59681
  1409
  also have "\<dots> = measure p {y. R x y} - measure p {y. R x y \<and> \<not> R y x}"
hoelzl@59681
  1410
    by (rule measure_pmf.finite_measure_Diff) auto
hoelzl@59681
  1411
  also have "measure p {y. R x y \<and> \<not> R y x} = measure q {y. R x y \<and> \<not> R y x}"
hoelzl@59681
  1412
    using 1 2 refl trans by(auto intro!: Orderings.antisym measure_Ioi)
hoelzl@59681
  1413
  also have "measure p {y. R x y} = measure q {y. R x y}"
hoelzl@59681
  1414
    using 1 2 refl trans by(auto intro!: Orderings.antisym measure_Ici)
hoelzl@59681
  1415
  also have "measure q {y. R x y} - measure q {y. R x y \<and> \<not> R y x} =
hoelzl@59681
  1416
    measure q ({y. R x y} - {y. R x y \<and> \<not> R y x})"
hoelzl@59681
  1417
    by(rule measure_pmf.finite_measure_Diff[symmetric]) auto
hoelzl@59681
  1418
  also have "\<dots> = ?\<mu>R x"
hoelzl@59681
  1419
    by(auto intro!: arg_cong[where f="measure q"])
hoelzl@59681
  1420
  finally show "measure p C = measure q C"
hoelzl@59681
  1421
    by (simp add: C conj_commute)
hoelzl@59664
  1422
qed
hoelzl@59664
  1423
hoelzl@59664
  1424
lemma rel_pmf_antisym:
hoelzl@59664
  1425
  fixes p q :: "'a pmf"
hoelzl@59664
  1426
  assumes 1: "rel_pmf R p q"
hoelzl@59664
  1427
  assumes 2: "rel_pmf R q p"
hoelzl@59664
  1428
  and refl: "reflp R" and trans: "transp R" and antisym: "antisymP R"
hoelzl@59664
  1429
  shows "p = q"
hoelzl@59664
  1430
proof -
hoelzl@59664
  1431
  from 1 2 refl trans have "rel_pmf (inf R R\<inverse>\<inverse>) p q" by(rule rel_pmf_inf)
hoelzl@59664
  1432
  also have "inf R R\<inverse>\<inverse> = op ="
hoelzl@59665
  1433
    using refl antisym by (auto intro!: ext simp add: reflpD dest: antisymD)
hoelzl@59664
  1434
  finally show ?thesis unfolding pmf.rel_eq .
hoelzl@59664
  1435
qed
hoelzl@59664
  1436
hoelzl@59664
  1437
lemma reflp_rel_pmf: "reflp R \<Longrightarrow> reflp (rel_pmf R)"
hoelzl@59664
  1438
by(blast intro: reflpI rel_pmf_reflI reflpD)
hoelzl@59664
  1439
hoelzl@59664
  1440
lemma antisymP_rel_pmf:
hoelzl@59664
  1441
  "\<lbrakk> reflp R; transp R; antisymP R \<rbrakk>
hoelzl@59664
  1442
  \<Longrightarrow> antisymP (rel_pmf R)"
hoelzl@59664
  1443
by(rule antisymI)(blast intro: rel_pmf_antisym)
hoelzl@59664
  1444
hoelzl@59664
  1445
lemma transp_rel_pmf:
hoelzl@59664
  1446
  assumes "transp R"
hoelzl@59664
  1447
  shows "transp (rel_pmf R)"
hoelzl@59664
  1448
proof (rule transpI)
hoelzl@59664
  1449
  fix x y z
hoelzl@59664
  1450
  assume "rel_pmf R x y" and "rel_pmf R y z"
hoelzl@59664
  1451
  hence "rel_pmf (R OO R) x z" by (simp add: pmf.rel_compp relcompp.relcompI)
hoelzl@59664
  1452
  thus "rel_pmf R x z"
hoelzl@59664
  1453
    using assms by (metis (no_types) pmf.rel_mono rev_predicate2D transp_relcompp_less_eq)
hoelzl@59664
  1454
qed
hoelzl@59664
  1455
hoelzl@59664
  1456
subsection \<open> Distributions \<close>
hoelzl@59664
  1457
hoelzl@59000
  1458
context
hoelzl@59000
  1459
begin
hoelzl@59000
  1460
hoelzl@59000
  1461
interpretation pmf_as_function .
hoelzl@59000
  1462
hoelzl@59093
  1463
subsubsection \<open> Bernoulli Distribution \<close>
hoelzl@59093
  1464
hoelzl@59000
  1465
lift_definition bernoulli_pmf :: "real \<Rightarrow> bool pmf" is
hoelzl@59000
  1466
  "\<lambda>p b. ((\<lambda>p. if b then p else 1 - p) \<circ> min 1 \<circ> max 0) p"
hoelzl@59000
  1467
  by (auto simp: nn_integral_count_space_finite[where A="{False, True}"] UNIV_bool
hoelzl@59000
  1468
           split: split_max split_min)
hoelzl@59000
  1469
hoelzl@59000
  1470
lemma pmf_bernoulli_True[simp]: "0 \<le> p \<Longrightarrow> p \<le> 1 \<Longrightarrow> pmf (bernoulli_pmf p) True = p"
hoelzl@59000
  1471
  by transfer simp
hoelzl@59000
  1472
hoelzl@59000
  1473
lemma pmf_bernoulli_False[simp]: "0 \<le> p \<Longrightarrow> p \<le> 1 \<Longrightarrow> pmf (bernoulli_pmf p) False = 1 - p"
hoelzl@59000
  1474
  by transfer simp
hoelzl@59000
  1475
hoelzl@59000
  1476
lemma set_pmf_bernoulli: "0 < p \<Longrightarrow> p < 1 \<Longrightarrow> set_pmf (bernoulli_pmf p) = UNIV"
hoelzl@59000
  1477
  by (auto simp add: set_pmf_iff UNIV_bool)
hoelzl@59000
  1478
lp15@59667
  1479
lemma nn_integral_bernoulli_pmf[simp]:
hoelzl@59002
  1480
  assumes [simp]: "0 \<le> p" "p \<le> 1" "\<And>x. 0 \<le> f x"
hoelzl@59002
  1481
  shows "(\<integral>\<^sup>+x. f x \<partial>bernoulli_pmf p) = f True * p + f False * (1 - p)"
hoelzl@59002
  1482
  by (subst nn_integral_measure_pmf_support[of UNIV])
hoelzl@59002
  1483
     (auto simp: UNIV_bool field_simps)
hoelzl@59002
  1484
lp15@59667
  1485
lemma integral_bernoulli_pmf[simp]:
hoelzl@59002
  1486
  assumes [simp]: "0 \<le> p" "p \<le> 1"
hoelzl@59002
  1487
  shows "(\<integral>x. f x \<partial>bernoulli_pmf p) = f True * p + f False * (1 - p)"
hoelzl@59002
  1488
  by (subst integral_measure_pmf[of UNIV]) (auto simp: UNIV_bool)
hoelzl@59002
  1489
Andreas@59525
  1490
lemma pmf_bernoulli_half [simp]: "pmf (bernoulli_pmf (1 / 2)) x = 1 / 2"
Andreas@59525
  1491
by(cases x) simp_all
Andreas@59525
  1492
Andreas@59525
  1493
lemma measure_pmf_bernoulli_half: "measure_pmf (bernoulli_pmf (1 / 2)) = uniform_count_measure UNIV"
Andreas@59525
  1494
by(rule measure_eqI)(simp_all add: nn_integral_pmf[symmetric] emeasure_uniform_count_measure nn_integral_count_space_finite sets_uniform_count_measure)
Andreas@59525
  1495
hoelzl@59093
  1496
subsubsection \<open> Geometric Distribution \<close>
hoelzl@59093
  1497
hoelzl@60602
  1498
context
hoelzl@60602
  1499
  fixes p :: real assumes p[arith]: "0 < p" "p \<le> 1"
hoelzl@60602
  1500
begin
hoelzl@60602
  1501
hoelzl@60602
  1502
lift_definition geometric_pmf :: "nat pmf" is "\<lambda>n. (1 - p)^n * p"
hoelzl@59000
  1503
proof
hoelzl@60602
  1504
  have "(\<Sum>i. ereal (p * (1 - p) ^ i)) = ereal (p * (1 / (1 - (1 - p))))"
hoelzl@60602
  1505
    by (intro sums_suminf_ereal sums_mult geometric_sums) auto
hoelzl@60602
  1506
  then show "(\<integral>\<^sup>+ x. ereal ((1 - p)^x * p) \<partial>count_space UNIV) = 1"
hoelzl@59000
  1507
    by (simp add: nn_integral_count_space_nat field_simps)
hoelzl@59000
  1508
qed simp
hoelzl@59000
  1509
hoelzl@60602
  1510
lemma pmf_geometric[simp]: "pmf geometric_pmf n = (1 - p)^n * p"
hoelzl@59000
  1511
  by transfer rule
hoelzl@59000
  1512
hoelzl@60602
  1513
end
hoelzl@60602
  1514
hoelzl@60602
  1515
lemma set_pmf_geometric: "0 < p \<Longrightarrow> p < 1 \<Longrightarrow> set_pmf (geometric_pmf p) = UNIV"
lp15@61609
  1516
  by (auto simp: set_pmf_iff)
hoelzl@59000
  1517
hoelzl@59093
  1518
subsubsection \<open> Uniform Multiset Distribution \<close>
hoelzl@59093
  1519
hoelzl@59000
  1520
context
hoelzl@59000
  1521
  fixes M :: "'a multiset" assumes M_not_empty: "M \<noteq> {#}"
hoelzl@59000
  1522
begin
hoelzl@59000
  1523
hoelzl@59000
  1524
lift_definition pmf_of_multiset :: "'a pmf" is "\<lambda>x. count M x / size M"
hoelzl@59000
  1525
proof
lp15@59667
  1526
  show "(\<integral>\<^sup>+ x. ereal (real (count M x) / real (size M)) \<partial>count_space UNIV) = 1"
hoelzl@59000
  1527
    using M_not_empty
hoelzl@59000
  1528
    by (simp add: zero_less_divide_iff nn_integral_count_space nonempty_has_size
hoelzl@59000
  1529
                  setsum_divide_distrib[symmetric])
hoelzl@59000
  1530
       (auto simp: size_multiset_overloaded_eq intro!: setsum.cong)
hoelzl@59000
  1531
qed simp
hoelzl@59000
  1532
hoelzl@59000
  1533
lemma pmf_of_multiset[simp]: "pmf pmf_of_multiset x = count M x / size M"
hoelzl@59000
  1534
  by transfer rule
hoelzl@59000
  1535
nipkow@60495
  1536
lemma set_pmf_of_multiset[simp]: "set_pmf pmf_of_multiset = set_mset M"
hoelzl@59000
  1537
  by (auto simp: set_pmf_iff)
hoelzl@59000
  1538
hoelzl@59000
  1539
end
hoelzl@59000
  1540
hoelzl@59093
  1541
subsubsection \<open> Uniform Distribution \<close>
hoelzl@59093
  1542
hoelzl@59000
  1543
context
hoelzl@59000
  1544
  fixes S :: "'a set" assumes S_not_empty: "S \<noteq> {}" and S_finite: "finite S"
hoelzl@59000
  1545
begin
hoelzl@59000
  1546
hoelzl@59000
  1547
lift_definition pmf_of_set :: "'a pmf" is "\<lambda>x. indicator S x / card S"
hoelzl@59000
  1548
proof
lp15@59667
  1549
  show "(\<integral>\<^sup>+ x. ereal (indicator S x / real (card S)) \<partial>count_space UNIV) = 1"
hoelzl@59000
  1550
    using S_not_empty S_finite by (subst nn_integral_count_space'[of S]) auto
hoelzl@59000
  1551
qed simp
hoelzl@59000
  1552
hoelzl@59000
  1553
lemma pmf_of_set[simp]: "pmf pmf_of_set x = indicator S x / card S"
hoelzl@59000
  1554
  by transfer rule
hoelzl@59000
  1555
hoelzl@59000
  1556
lemma set_pmf_of_set[simp]: "set_pmf pmf_of_set = S"
hoelzl@59000
  1557
  using S_finite S_not_empty by (auto simp: set_pmf_iff)
hoelzl@59000
  1558
Andreas@61634
  1559
lemma emeasure_pmf_of_set_space[simp]: "emeasure pmf_of_set S = 1"
hoelzl@59002
  1560
  by (rule measure_pmf.emeasure_eq_1_AE) (auto simp: AE_measure_pmf_iff)
hoelzl@59002
  1561
lp15@61609
  1562
lemma nn_integral_pmf_of_set':
Andreas@60068
  1563
  "(\<And>x. x \<in> S \<Longrightarrow> f x \<ge> 0) \<Longrightarrow> nn_integral (measure_pmf pmf_of_set) f = setsum f S / card S"
Andreas@60068
  1564
apply(subst nn_integral_measure_pmf_finite, simp_all add: S_finite)
Andreas@60068
  1565
apply(simp add: setsum_ereal_left_distrib[symmetric])
Andreas@60068
  1566
apply(subst ereal_divide', simp add: S_not_empty S_finite)
Andreas@60068
  1567
apply(simp add: ereal_times_divide_eq one_ereal_def[symmetric])
Andreas@60068
  1568
done
Andreas@60068
  1569
lp15@61609
  1570
lemma nn_integral_pmf_of_set:
Andreas@60068
  1571
  "nn_integral (measure_pmf pmf_of_set) f = setsum (max 0 \<circ> f) S / card S"
Andreas@60068
  1572
apply(subst nn_integral_max_0[symmetric])
Andreas@60068
  1573
apply(subst nn_integral_pmf_of_set')
Andreas@60068
  1574
apply simp_all
Andreas@60068
  1575
done
Andreas@60068
  1576
Andreas@60068
  1577
lemma integral_pmf_of_set:
Andreas@60068
  1578
  "integral\<^sup>L (measure_pmf pmf_of_set) f = setsum f S / card S"
Andreas@60068
  1579
apply(simp add: real_lebesgue_integral_def integrable_measure_pmf_finite nn_integral_pmf_of_set S_finite)
Andreas@60068
  1580
apply(subst real_of_ereal_minus')
Andreas@60068
  1581
 apply(simp add: ereal_max_0 S_finite del: ereal_max)
Andreas@60068
  1582
apply(simp add: ereal_max_0 S_finite S_not_empty del: ereal_max)
Andreas@60068
  1583
apply(simp add: field_simps S_finite S_not_empty)
Andreas@60068
  1584
apply(subst setsum.distrib[symmetric])
Andreas@60068
  1585
apply(rule setsum.cong; simp_all)
Andreas@60068
  1586
done
Andreas@60068
  1587
Andreas@61634
  1588
lemma emeasure_pmf_of_set:
Andreas@61634
  1589
  "emeasure (measure_pmf pmf_of_set) A = card (S \<inter> A) / card S"
Andreas@61634
  1590
apply(subst nn_integral_indicator[symmetric], simp)
Andreas@61634
  1591
apply(subst nn_integral_pmf_of_set)
Andreas@61634
  1592
apply(simp add: o_def max_def ereal_indicator[symmetric] S_not_empty S_finite real_of_nat_indicator[symmetric] of_nat_setsum[symmetric] setsum_indicator_eq_card del: of_nat_setsum)
Andreas@61634
  1593
done
Andreas@61634
  1594
hoelzl@59000
  1595
end
hoelzl@59000
  1596
Andreas@60068
  1597
lemma pmf_of_set_singleton: "pmf_of_set {x} = return_pmf x"
Andreas@60068
  1598
by(rule pmf_eqI)(simp add: indicator_def)
Andreas@60068
  1599
lp15@61609
  1600
lemma map_pmf_of_set_inj:
Andreas@60068
  1601
  assumes f: "inj_on f A"
Andreas@60068
  1602
  and [simp]: "A \<noteq> {}" "finite A"
Andreas@60068
  1603
  shows "map_pmf f (pmf_of_set A) = pmf_of_set (f ` A)" (is "?lhs = ?rhs")
Andreas@60068
  1604
proof(rule pmf_eqI)
Andreas@60068
  1605
  fix i
Andreas@60068
  1606
  show "pmf ?lhs i = pmf ?rhs i"
Andreas@60068
  1607
  proof(cases "i \<in> f ` A")
Andreas@60068
  1608
    case True
Andreas@60068
  1609
    then obtain i' where "i = f i'" "i' \<in> A" by auto
Andreas@60068
  1610
    thus ?thesis using f by(simp add: card_image pmf_map_inj)
Andreas@60068
  1611
  next
Andreas@60068
  1612
    case False
Andreas@60068
  1613
    hence "pmf ?lhs i = 0" by(simp add: pmf_eq_0_set_pmf set_map_pmf)
Andreas@60068
  1614
    moreover have "pmf ?rhs i = 0" using False by simp
Andreas@60068
  1615
    ultimately show ?thesis by simp
Andreas@60068
  1616
  qed
Andreas@60068
  1617
qed
Andreas@60068
  1618
Andreas@60068
  1619
lemma bernoulli_pmf_half_conv_pmf_of_set: "bernoulli_pmf (1 / 2) = pmf_of_set UNIV"
Andreas@60068
  1620
by(rule pmf_eqI) simp_all
Andreas@60068
  1621
Andreas@61634
  1622
Andreas@61634
  1623
Andreas@61634
  1624
lemma measure_pmf_of_set:
Andreas@61634
  1625
  assumes "S \<noteq> {}" "finite S"
Andreas@61634
  1626
  shows "measure (measure_pmf (pmf_of_set S)) A = card (S \<inter> A) / card S"
Andreas@61634
  1627
using emeasure_pmf_of_set[OF assms, of A]
Andreas@61634
  1628
unfolding measure_pmf.emeasure_eq_measure by simp
Andreas@61634
  1629
hoelzl@59093
  1630
subsubsection \<open> Poisson Distribution \<close>
hoelzl@59093
  1631
hoelzl@59093
  1632
context
hoelzl@59093
  1633
  fixes rate :: real assumes rate_pos: "0 < rate"
hoelzl@59093
  1634
begin
hoelzl@59093
  1635
hoelzl@59093
  1636
lift_definition poisson_pmf :: "nat pmf" is "\<lambda>k. rate ^ k / fact k * exp (-rate)"
lp15@59730
  1637
proof  (* by Manuel Eberl *)
hoelzl@59093
  1638
  have summable: "summable (\<lambda>x::nat. rate ^ x / fact x)" using summable_exp
haftmann@59557
  1639
    by (simp add: field_simps divide_inverse [symmetric])
hoelzl@59093
  1640
  have "(\<integral>\<^sup>+(x::nat). rate ^ x / fact x * exp (-rate) \<partial>count_space UNIV) =
hoelzl@59093
  1641
          exp (-rate) * (\<integral>\<^sup>+(x::nat). rate ^ x / fact x \<partial>count_space UNIV)"
hoelzl@59093
  1642
    by (simp add: field_simps nn_integral_cmult[symmetric])
hoelzl@59093
  1643
  also from rate_pos have "(\<integral>\<^sup>+(x::nat). rate ^ x / fact x \<partial>count_space UNIV) = (\<Sum>x. rate ^ x / fact x)"
hoelzl@59093
  1644
    by (simp_all add: nn_integral_count_space_nat suminf_ereal summable suminf_ereal_finite)
hoelzl@59093
  1645
  also have "... = exp rate" unfolding exp_def
lp15@59730
  1646
    by (simp add: field_simps divide_inverse [symmetric])
hoelzl@59093
  1647
  also have "ereal (exp (-rate)) * ereal (exp rate) = 1"
hoelzl@59093
  1648
    by (simp add: mult_exp_exp)
lp15@59730
  1649
  finally show "(\<integral>\<^sup>+ x. ereal (rate ^ x / (fact x) * exp (- rate)) \<partial>count_space UNIV) = 1" .
hoelzl@59093
  1650
qed (simp add: rate_pos[THEN less_imp_le])
hoelzl@59093
  1651
hoelzl@59093
  1652
lemma pmf_poisson[simp]: "pmf poisson_pmf k = rate ^ k / fact k * exp (-rate)"
hoelzl@59093
  1653
  by transfer rule
hoelzl@59093
  1654
hoelzl@59093
  1655
lemma set_pmf_poisson[simp]: "set_pmf poisson_pmf = UNIV"
hoelzl@59093
  1656
  using rate_pos by (auto simp: set_pmf_iff)
hoelzl@59093
  1657
hoelzl@59000
  1658
end
hoelzl@59000
  1659
hoelzl@59093
  1660
subsubsection \<open> Binomial Distribution \<close>
hoelzl@59093
  1661
hoelzl@59093
  1662
context
hoelzl@59093
  1663
  fixes n :: nat and p :: real assumes p_nonneg: "0 \<le> p" and p_le_1: "p \<le> 1"
hoelzl@59093
  1664
begin
hoelzl@59093
  1665
hoelzl@59093
  1666
lift_definition binomial_pmf :: "nat pmf" is "\<lambda>k. (n choose k) * p^k * (1 - p)^(n - k)"
hoelzl@59093
  1667
proof
hoelzl@59093
  1668
  have "(\<integral>\<^sup>+k. ereal (real (n choose k) * p ^ k * (1 - p) ^ (n - k)) \<partial>count_space UNIV) =
hoelzl@59093
  1669
    ereal (\<Sum>k\<le>n. real (n choose k) * p ^ k * (1 - p) ^ (n - k))"
hoelzl@59093
  1670
    using p_le_1 p_nonneg by (subst nn_integral_count_space') auto
hoelzl@59093
  1671
  also have "(\<Sum>k\<le>n. real (n choose k) * p ^ k * (1 - p) ^ (n - k)) = (p + (1 - p)) ^ n"
lp15@61609
  1672
    by (subst binomial_ring) (simp add: atLeast0AtMost)
hoelzl@59093
  1673
  finally show "(\<integral>\<^sup>+ x. ereal (real (n choose x) * p ^ x * (1 - p) ^ (n - x)) \<partial>count_space UNIV) = 1"
hoelzl@59093
  1674
    by simp
hoelzl@59093
  1675
qed (insert p_nonneg p_le_1, simp)
hoelzl@59093
  1676
hoelzl@59093
  1677
lemma pmf_binomial[simp]: "pmf binomial_pmf k = (n choose k) * p^k * (1 - p)^(n - k)"
hoelzl@59093
  1678
  by transfer rule
hoelzl@59093
  1679
hoelzl@59093
  1680
lemma set_pmf_binomial_eq: "set_pmf binomial_pmf = (if p = 0 then {0} else if p = 1 then {n} else {.. n})"
hoelzl@59093
  1681
  using p_nonneg p_le_1 unfolding set_eq_iff set_pmf_iff pmf_binomial by (auto simp: set_pmf_iff)
hoelzl@59093
  1682
hoelzl@59093
  1683
end
hoelzl@59093
  1684
hoelzl@59093
  1685
end
hoelzl@59093
  1686
hoelzl@59093
  1687
lemma set_pmf_binomial_0[simp]: "set_pmf (binomial_pmf n 0) = {0}"
hoelzl@59093
  1688
  by (simp add: set_pmf_binomial_eq)
hoelzl@59093
  1689
hoelzl@59093
  1690
lemma set_pmf_binomial_1[simp]: "set_pmf (binomial_pmf n 1) = {n}"
hoelzl@59093
  1691
  by (simp add: set_pmf_binomial_eq)
hoelzl@59093
  1692
hoelzl@59093
  1693
lemma set_pmf_binomial[simp]: "0 < p \<Longrightarrow> p < 1 \<Longrightarrow> set_pmf (binomial_pmf n p) = {..n}"
hoelzl@59093
  1694
  by (simp add: set_pmf_binomial_eq)
hoelzl@59093
  1695
Andreas@61634
  1696
context begin interpretation lifting_syntax .
Andreas@61634
  1697
Andreas@61634
  1698
lemma bind_pmf_parametric [transfer_rule]:
Andreas@61634
  1699
  "(rel_pmf A ===> (A ===> rel_pmf B) ===> rel_pmf B) bind_pmf bind_pmf"
Andreas@61634
  1700
by(blast intro: rel_pmf_bindI dest: rel_funD)
Andreas@61634
  1701
Andreas@61634
  1702
lemma return_pmf_parametric [transfer_rule]: "(A ===> rel_pmf A) return_pmf return_pmf"
Andreas@61634
  1703
by(rule rel_funI) simp
Andreas@61634
  1704
hoelzl@59000
  1705
end
Andreas@61634
  1706
Andreas@61634
  1707
end