src/Pure/thm.ML
author wenzelm
Fri Oct 28 22:28:04 2005 +0200 (2005-10-28)
changeset 18035 eaae44affc9e
parent 17868 5a12b1b5990f
child 18127 9f03d8a9a81b
permissions -rw-r--r--
added cgoal_of;
simplified lift_rule: take goal cterm instead of goal state thm, use Logic.lift_abs/all;
wenzelm@250
     1
(*  Title:      Pure/thm.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@250
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
lcp@229
     4
    Copyright   1994  University of Cambridge
lcp@229
     5
wenzelm@16425
     6
The very core of Isabelle's Meta Logic: certified types and terms,
wenzelm@16425
     7
meta theorems, meta rules (including lifting and resolution).
clasohm@0
     8
*)
clasohm@0
     9
wenzelm@6089
    10
signature BASIC_THM =
paulson@1503
    11
  sig
wenzelm@1160
    12
  (*certified types*)
wenzelm@387
    13
  type ctyp
wenzelm@16656
    14
  val rep_ctyp: ctyp ->
wenzelm@16656
    15
   {thy: theory,
wenzelm@16656
    16
    sign: theory,       (*obsolete*)
wenzelm@16656
    17
    T: typ,
wenzelm@16656
    18
    sorts: sort list}
wenzelm@16425
    19
  val theory_of_ctyp: ctyp -> theory
wenzelm@16425
    20
  val typ_of: ctyp -> typ
wenzelm@16425
    21
  val ctyp_of: theory -> typ -> ctyp
wenzelm@16425
    22
  val read_ctyp: theory -> string -> ctyp
wenzelm@1160
    23
wenzelm@1160
    24
  (*certified terms*)
wenzelm@1160
    25
  type cterm
clasohm@1493
    26
  exception CTERM of string
wenzelm@16601
    27
  val rep_cterm: cterm ->
wenzelm@16656
    28
   {thy: theory,
wenzelm@16656
    29
    sign: theory,       (*obsolete*)
wenzelm@16656
    30
    t: term,
wenzelm@16656
    31
    T: typ,
wenzelm@16656
    32
    maxidx: int,
wenzelm@16656
    33
    sorts: sort list}
wenzelm@16601
    34
  val crep_cterm: cterm ->
wenzelm@16601
    35
    {thy: theory, sign: theory, t: term, T: ctyp, maxidx: int, sorts: sort list}
wenzelm@16425
    36
  val theory_of_cterm: cterm -> theory
wenzelm@16425
    37
  val sign_of_cterm: cterm -> theory    (*obsolete*)
wenzelm@16425
    38
  val term_of: cterm -> term
wenzelm@16425
    39
  val cterm_of: theory -> term -> cterm
wenzelm@16425
    40
  val ctyp_of_term: cterm -> ctyp
wenzelm@16425
    41
  val read_cterm: theory -> string * typ -> cterm
wenzelm@16425
    42
  val adjust_maxidx: cterm -> cterm
wenzelm@16425
    43
  val read_def_cterm:
wenzelm@16425
    44
    theory * (indexname -> typ option) * (indexname -> sort option) ->
wenzelm@1160
    45
    string list -> bool -> string * typ -> cterm * (indexname * typ) list
wenzelm@16425
    46
  val read_def_cterms:
wenzelm@16425
    47
    theory * (indexname -> typ option) * (indexname -> sort option) ->
nipkow@4281
    48
    string list -> bool -> (string * typ)list
nipkow@4281
    49
    -> cterm list * (indexname * typ)list
wenzelm@1160
    50
wenzelm@16425
    51
  type tag              (* = string * string list *)
paulson@1529
    52
wenzelm@1160
    53
  (*meta theorems*)
wenzelm@1160
    54
  type thm
wenzelm@16425
    55
  val rep_thm: thm ->
wenzelm@16656
    56
   {thy: theory,
wenzelm@16656
    57
    sign: theory,       (*obsolete*)
wenzelm@16425
    58
    der: bool * Proofterm.proof,
wenzelm@16425
    59
    maxidx: int,
wenzelm@16425
    60
    shyps: sort list,
wenzelm@16425
    61
    hyps: term list,
wenzelm@16425
    62
    tpairs: (term * term) list,
wenzelm@16425
    63
    prop: term}
wenzelm@16425
    64
  val crep_thm: thm ->
wenzelm@16656
    65
   {thy: theory,
wenzelm@16656
    66
    sign: theory,       (*obsolete*)
wenzelm@16425
    67
    der: bool * Proofterm.proof,
wenzelm@16425
    68
    maxidx: int,
wenzelm@16425
    69
    shyps: sort list,
wenzelm@16425
    70
    hyps: cterm list,
wenzelm@16425
    71
    tpairs: (cterm * cterm) list,
wenzelm@16425
    72
    prop: cterm}
wenzelm@6089
    73
  exception THM of string * int * thm list
wenzelm@16425
    74
  type 'a attribute     (* = 'a * thm -> 'a * thm *)
wenzelm@16425
    75
  val eq_thm: thm * thm -> bool
wenzelm@16425
    76
  val eq_thms: thm list * thm list -> bool
wenzelm@16425
    77
  val theory_of_thm: thm -> theory
wenzelm@16425
    78
  val sign_of_thm: thm -> theory    (*obsolete*)
wenzelm@16425
    79
  val prop_of: thm -> term
wenzelm@16425
    80
  val proof_of: thm -> Proofterm.proof
wenzelm@16425
    81
  val tpairs_of: thm -> (term * term) list
wenzelm@16656
    82
  val concl_of: thm -> term
wenzelm@16425
    83
  val prems_of: thm -> term list
wenzelm@16425
    84
  val nprems_of: thm -> int
wenzelm@16425
    85
  val cprop_of: thm -> cterm
wenzelm@18035
    86
  val cgoal_of: thm -> int -> cterm
wenzelm@16656
    87
  val transfer: theory -> thm -> thm
wenzelm@16945
    88
  val weaken: cterm -> thm -> thm
wenzelm@16425
    89
  val extra_shyps: thm -> sort list
wenzelm@16425
    90
  val strip_shyps: thm -> thm
wenzelm@16425
    91
  val get_axiom_i: theory -> string -> thm
wenzelm@16425
    92
  val get_axiom: theory -> xstring -> thm
wenzelm@16425
    93
  val def_name: string -> string
wenzelm@16425
    94
  val get_def: theory -> xstring -> thm
wenzelm@16425
    95
  val axioms_of: theory -> (string * thm) list
wenzelm@1160
    96
wenzelm@1160
    97
  (*meta rules*)
wenzelm@16425
    98
  val assume: cterm -> thm
wenzelm@16425
    99
  val implies_intr: cterm -> thm -> thm
wenzelm@16425
   100
  val implies_elim: thm -> thm -> thm
wenzelm@16425
   101
  val forall_intr: cterm -> thm -> thm
wenzelm@16425
   102
  val forall_elim: cterm -> thm -> thm
wenzelm@16425
   103
  val reflexive: cterm -> thm
wenzelm@16425
   104
  val symmetric: thm -> thm
wenzelm@16425
   105
  val transitive: thm -> thm -> thm
wenzelm@16425
   106
  val beta_conversion: bool -> cterm -> thm
wenzelm@16425
   107
  val eta_conversion: cterm -> thm
wenzelm@16425
   108
  val abstract_rule: string -> cterm -> thm -> thm
wenzelm@16425
   109
  val combination: thm -> thm -> thm
wenzelm@16425
   110
  val equal_intr: thm -> thm -> thm
wenzelm@16425
   111
  val equal_elim: thm -> thm -> thm
wenzelm@16425
   112
  val flexflex_rule: thm -> thm Seq.seq
wenzelm@16425
   113
  val instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@16425
   114
  val trivial: cterm -> thm
wenzelm@16425
   115
  val class_triv: theory -> class -> thm
wenzelm@16425
   116
  val varifyT: thm -> thm
wenzelm@16425
   117
  val varifyT': (string * sort) list -> thm -> thm * ((string * sort) * indexname) list
wenzelm@16425
   118
  val freezeT: thm -> thm
wenzelm@16425
   119
  val dest_state: thm * int -> (term * term) list * term list * term * term
wenzelm@18035
   120
  val lift_rule: cterm -> thm -> thm
wenzelm@16425
   121
  val incr_indexes: int -> thm -> thm
wenzelm@16425
   122
  val assumption: int -> thm -> thm Seq.seq
wenzelm@16425
   123
  val eq_assumption: int -> thm -> thm
wenzelm@16425
   124
  val rotate_rule: int -> int -> thm -> thm
wenzelm@16425
   125
  val permute_prems: int -> int -> thm -> thm
wenzelm@1160
   126
  val rename_params_rule: string list * int -> thm -> thm
wenzelm@16425
   127
  val bicompose: bool -> bool * thm * int -> int -> thm -> thm Seq.seq
wenzelm@16425
   128
  val biresolution: bool -> (bool * thm) list -> int -> thm -> thm Seq.seq
wenzelm@16425
   129
  val invoke_oracle: theory -> xstring -> theory * Object.T -> thm
wenzelm@16425
   130
  val invoke_oracle_i: theory -> string -> theory * Object.T -> thm
wenzelm@250
   131
end;
clasohm@0
   132
wenzelm@6089
   133
signature THM =
wenzelm@6089
   134
sig
wenzelm@6089
   135
  include BASIC_THM
wenzelm@16425
   136
  val dest_ctyp: ctyp -> ctyp list
wenzelm@16425
   137
  val dest_comb: cterm -> cterm * cterm
wenzelm@16425
   138
  val dest_abs: string option -> cterm -> cterm * cterm
wenzelm@16425
   139
  val capply: cterm -> cterm -> cterm
wenzelm@16425
   140
  val cabs: cterm -> cterm -> cterm
wenzelm@16425
   141
  val major_prem_of: thm -> term
wenzelm@16425
   142
  val no_prems: thm -> bool
wenzelm@17345
   143
  val no_attributes: 'a -> 'a * 'b list
wenzelm@17345
   144
  val simple_fact: 'a -> ('a * 'b list) list
wenzelm@16945
   145
  val apply_attributes: ('a * thm) * 'a attribute list -> 'a * thm
wenzelm@16945
   146
  val applys_attributes: ('a * thm list) * 'a attribute list -> 'a * thm list
wenzelm@16945
   147
  val terms_of_tpairs: (term * term) list -> term list
wenzelm@16945
   148
  val full_prop_of: thm -> term
wenzelm@16425
   149
  val get_name_tags: thm -> string * tag list
wenzelm@16425
   150
  val put_name_tags: string * tag list -> thm -> thm
wenzelm@16425
   151
  val name_of_thm: thm -> string
wenzelm@16425
   152
  val tags_of_thm: thm -> tag list
wenzelm@16425
   153
  val name_thm: string * thm -> thm
wenzelm@16945
   154
  val compress: thm -> thm
wenzelm@16945
   155
  val adjust_maxidx_thm: thm -> thm
wenzelm@16425
   156
  val rename_boundvars: term -> term -> thm -> thm
wenzelm@16425
   157
  val cterm_match: cterm * cterm -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@16425
   158
  val cterm_first_order_match: cterm * cterm -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@16425
   159
  val cterm_incr_indexes: int -> cterm -> cterm
wenzelm@6089
   160
end;
wenzelm@6089
   161
wenzelm@3550
   162
structure Thm: THM =
clasohm@0
   163
struct
wenzelm@250
   164
wenzelm@16656
   165
wenzelm@387
   166
(*** Certified terms and types ***)
wenzelm@387
   167
wenzelm@16656
   168
(** collect occurrences of sorts -- unless all sorts non-empty **)
wenzelm@16656
   169
wenzelm@16679
   170
fun may_insert_typ_sorts thy T = if Sign.all_sorts_nonempty thy then I else Sorts.insert_typ T;
wenzelm@16679
   171
fun may_insert_term_sorts thy t = if Sign.all_sorts_nonempty thy then I else Sorts.insert_term t;
wenzelm@16656
   172
wenzelm@16656
   173
(*NB: type unification may invent new sorts*)
wenzelm@16656
   174
fun may_insert_env_sorts thy (env as Envir.Envir {iTs, ...}) =
wenzelm@16656
   175
  if Sign.all_sorts_nonempty thy then I
wenzelm@16656
   176
  else Vartab.fold (fn (_, (_, T)) => Sorts.insert_typ T) iTs;
wenzelm@16656
   177
wenzelm@16656
   178
wenzelm@16656
   179
wenzelm@250
   180
(** certified types **)
wenzelm@250
   181
wenzelm@16656
   182
datatype ctyp = Ctyp of {thy_ref: theory_ref, T: typ, sorts: sort list};
wenzelm@250
   183
wenzelm@16656
   184
fun rep_ctyp (Ctyp {thy_ref, T, sorts}) =
wenzelm@16425
   185
  let val thy = Theory.deref thy_ref
wenzelm@16656
   186
  in {thy = thy, sign = thy, T = T, sorts = sorts} end;
wenzelm@250
   187
wenzelm@16656
   188
fun theory_of_ctyp (Ctyp {thy_ref, ...}) = Theory.deref thy_ref;
wenzelm@16425
   189
wenzelm@250
   190
fun typ_of (Ctyp {T, ...}) = T;
wenzelm@250
   191
wenzelm@16656
   192
fun ctyp_of thy raw_T =
wenzelm@16656
   193
  let val T = Sign.certify_typ thy raw_T
wenzelm@16656
   194
  in Ctyp {thy_ref = Theory.self_ref thy, T = T, sorts = may_insert_typ_sorts thy T []} end;
wenzelm@250
   195
wenzelm@16425
   196
fun read_ctyp thy s =
wenzelm@16656
   197
  let val T = Sign.read_typ (thy, K NONE) s
wenzelm@16656
   198
  in Ctyp {thy_ref = Theory.self_ref thy, T = T, sorts = may_insert_typ_sorts thy T []} end;
lcp@229
   199
wenzelm@16656
   200
fun dest_ctyp (Ctyp {thy_ref, T = Type (s, Ts), sorts}) =
wenzelm@16656
   201
      map (fn T => Ctyp {thy_ref = thy_ref, T = T, sorts = sorts}) Ts
wenzelm@16679
   202
  | dest_ctyp cT = raise TYPE ("dest_ctyp", [typ_of cT], []);
berghofe@15087
   203
lcp@229
   204
lcp@229
   205
wenzelm@250
   206
(** certified terms **)
lcp@229
   207
wenzelm@16601
   208
(*certified terms with checked typ, maxidx, and sorts*)
wenzelm@16601
   209
datatype cterm = Cterm of
wenzelm@16601
   210
 {thy_ref: theory_ref,
wenzelm@16601
   211
  t: term,
wenzelm@16601
   212
  T: typ,
wenzelm@16601
   213
  maxidx: int,
wenzelm@16601
   214
  sorts: sort list};
wenzelm@16425
   215
wenzelm@16679
   216
exception CTERM of string;
wenzelm@16679
   217
wenzelm@16601
   218
fun rep_cterm (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16425
   219
  let val thy =  Theory.deref thy_ref
wenzelm@16601
   220
  in {thy = thy, sign = thy, t = t, T = T, maxidx = maxidx, sorts = sorts} end;
lcp@229
   221
wenzelm@16601
   222
fun crep_cterm (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16425
   223
  let val thy = Theory.deref thy_ref in
wenzelm@16656
   224
   {thy = thy, sign = thy, t = t, T = Ctyp {thy_ref = thy_ref, T = T, sorts = sorts},
wenzelm@16601
   225
    maxidx = maxidx, sorts = sorts}
wenzelm@16425
   226
  end;
wenzelm@3967
   227
wenzelm@16425
   228
fun theory_of_cterm (Cterm {thy_ref, ...}) = Theory.deref thy_ref;
wenzelm@16425
   229
val sign_of_cterm = theory_of_cterm;
wenzelm@9461
   230
wenzelm@250
   231
fun term_of (Cterm {t, ...}) = t;
lcp@229
   232
wenzelm@16656
   233
fun ctyp_of_term (Cterm {thy_ref, T, sorts, ...}) =
wenzelm@16656
   234
  Ctyp {thy_ref = thy_ref, T = T, sorts = sorts};
paulson@2671
   235
wenzelm@16425
   236
fun cterm_of thy tm =
wenzelm@16601
   237
  let
wenzelm@16601
   238
    val (t, T, maxidx) = Sign.certify_term (Sign.pp thy) thy tm;
wenzelm@16656
   239
    val sorts = may_insert_term_sorts thy t [];
wenzelm@16601
   240
  in Cterm {thy_ref = Theory.self_ref thy, t = t, T = T, maxidx = maxidx, sorts = sorts} end;
lcp@229
   241
wenzelm@16656
   242
fun merge_thys0 (Cterm {thy_ref = r1, ...}) (Cterm {thy_ref = r2, ...}) =
wenzelm@16656
   243
  Theory.merge_refs (r1, r2);
wenzelm@16656
   244
clasohm@1493
   245
(*Destruct application in cterms*)
wenzelm@16679
   246
fun dest_comb (Cterm {t = t $ u, T, thy_ref, maxidx, sorts}) =
wenzelm@16679
   247
      let val A = Term.argument_type_of t in
wenzelm@16679
   248
        (Cterm {t = t, T = A --> T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts},
wenzelm@16679
   249
         Cterm {t = u, T = A, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts})
clasohm@1493
   250
      end
clasohm@1493
   251
  | dest_comb _ = raise CTERM "dest_comb";
clasohm@1493
   252
clasohm@1493
   253
(*Destruct abstraction in cterms*)
wenzelm@16679
   254
fun dest_abs a (Cterm {t = Abs (x, T, t), T = Type ("fun", [_, U]), thy_ref, maxidx, sorts}) =
wenzelm@16679
   255
      let val (y', t') = Term.dest_abs (if_none a x, T, t) in
wenzelm@16679
   256
        (Cterm {t = Free (y', T), T = T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts},
wenzelm@16679
   257
          Cterm {t = t', T = U, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts})
clasohm@1493
   258
      end
berghofe@10416
   259
  | dest_abs _ _ = raise CTERM "dest_abs";
clasohm@1493
   260
paulson@2147
   261
(*Makes maxidx precise: it is often too big*)
wenzelm@16601
   262
fun adjust_maxidx (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16425
   263
  if maxidx = ~1 then ct
wenzelm@16601
   264
  else Cterm {thy_ref = thy_ref, t = t, T = T, maxidx = maxidx_of_term t, sorts = sorts};
clasohm@1703
   265
clasohm@1516
   266
(*Form cterm out of a function and an argument*)
wenzelm@16601
   267
fun capply
wenzelm@16656
   268
  (cf as Cterm {t = f, T = Type ("fun", [dty, rty]), maxidx = maxidx1, sorts = sorts1, ...})
wenzelm@16656
   269
  (cx as Cterm {t = x, T, maxidx = maxidx2, sorts = sorts2, ...}) =
wenzelm@16601
   270
    if T = dty then
wenzelm@16656
   271
      Cterm {thy_ref = merge_thys0 cf cx,
wenzelm@16656
   272
        t = f $ x,
wenzelm@16656
   273
        T = rty,
wenzelm@16656
   274
        maxidx = Int.max (maxidx1, maxidx2),
wenzelm@16601
   275
        sorts = Sorts.union sorts1 sorts2}
clasohm@1516
   276
      else raise CTERM "capply: types don't agree"
clasohm@1516
   277
  | capply _ _ = raise CTERM "capply: first arg is not a function"
wenzelm@250
   278
wenzelm@16601
   279
fun cabs
wenzelm@16656
   280
  (ct1 as Cterm {t = t1, T = T1, maxidx = maxidx1, sorts = sorts1, ...})
wenzelm@16656
   281
  (ct2 as Cterm {t = t2, T = T2, maxidx = maxidx2, sorts = sorts2, ...}) =
wenzelm@16601
   282
    let val t = lambda t1 t2 handle TERM _ => raise CTERM "cabs: first arg is not a variable" in
wenzelm@16656
   283
      Cterm {thy_ref = merge_thys0 ct1 ct2,
wenzelm@16656
   284
        t = t, T = T1 --> T2,
wenzelm@16656
   285
        maxidx = Int.max (maxidx1, maxidx2),
wenzelm@16656
   286
        sorts = Sorts.union sorts1 sorts2}
wenzelm@16601
   287
    end;
lcp@229
   288
berghofe@10416
   289
(*Matching of cterms*)
wenzelm@16656
   290
fun gen_cterm_match match
wenzelm@16656
   291
    (ct1 as Cterm {t = t1, maxidx = maxidx1, sorts = sorts1, ...},
wenzelm@16656
   292
     ct2 as Cterm {t = t2, maxidx = maxidx2, sorts = sorts2, ...}) =
berghofe@10416
   293
  let
wenzelm@16656
   294
    val thy_ref = merge_thys0 ct1 ct2;
wenzelm@17203
   295
    val (Tinsts, tinsts) = match (Theory.deref thy_ref) (t1, t2);
berghofe@10416
   296
    val maxidx = Int.max (maxidx1, maxidx2);
wenzelm@16601
   297
    val sorts = Sorts.union sorts1 sorts2;
wenzelm@16656
   298
    fun mk_cTinst (ixn, (S, T)) =
wenzelm@16656
   299
      (Ctyp {T = TVar (ixn, S), thy_ref = thy_ref, sorts = sorts},
wenzelm@16656
   300
       Ctyp {T = T, thy_ref = thy_ref, sorts = sorts});
wenzelm@16656
   301
    fun mk_ctinst (ixn, (T, t)) =
wenzelm@16601
   302
      let val T = Envir.typ_subst_TVars Tinsts T in
wenzelm@16656
   303
        (Cterm {t = Var (ixn, T), T = T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts},
wenzelm@16656
   304
         Cterm {t = t, T = T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts})
berghofe@10416
   305
      end;
wenzelm@16656
   306
  in (Vartab.fold (cons o mk_cTinst) Tinsts [], Vartab.fold (cons o mk_ctinst) tinsts []) end;
berghofe@10416
   307
berghofe@10416
   308
val cterm_match = gen_cterm_match Pattern.match;
berghofe@10416
   309
val cterm_first_order_match = gen_cterm_match Pattern.first_order_match;
berghofe@10416
   310
berghofe@10416
   311
(*Incrementing indexes*)
wenzelm@16601
   312
fun cterm_incr_indexes i (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16601
   313
  if i < 0 then raise CTERM "negative increment"
wenzelm@16601
   314
  else if i = 0 then ct
wenzelm@16601
   315
  else Cterm {thy_ref = thy_ref, t = Logic.incr_indexes ([], i) t,
wenzelm@16884
   316
    T = Logic.incr_tvar i T, maxidx = maxidx + i, sorts = sorts};
berghofe@10416
   317
wenzelm@2509
   318
wenzelm@2509
   319
wenzelm@574
   320
(** read cterms **)   (*exception ERROR*)
wenzelm@250
   321
nipkow@4281
   322
(*read terms, infer types, certify terms*)
wenzelm@16425
   323
fun read_def_cterms (thy, types, sorts) used freeze sTs =
wenzelm@250
   324
  let
wenzelm@16425
   325
    val (ts', tye) = Sign.read_def_terms (thy, types, sorts) used freeze sTs;
wenzelm@16425
   326
    val cts = map (cterm_of thy) ts'
wenzelm@2979
   327
      handle TYPE (msg, _, _) => error msg
wenzelm@2386
   328
           | TERM (msg, _) => error msg;
nipkow@4281
   329
  in (cts, tye) end;
nipkow@4281
   330
nipkow@4281
   331
(*read term, infer types, certify term*)
nipkow@4281
   332
fun read_def_cterm args used freeze aT =
nipkow@4281
   333
  let val ([ct],tye) = read_def_cterms args used freeze [aT]
nipkow@4281
   334
  in (ct,tye) end;
lcp@229
   335
wenzelm@16425
   336
fun read_cterm thy = #1 o read_def_cterm (thy, K NONE, K NONE) [] true;
lcp@229
   337
wenzelm@250
   338
wenzelm@6089
   339
(*tags provide additional comment, apart from the axiom/theorem name*)
wenzelm@6089
   340
type tag = string * string list;
wenzelm@6089
   341
wenzelm@2509
   342
wenzelm@387
   343
(*** Meta theorems ***)
lcp@229
   344
berghofe@11518
   345
structure Pt = Proofterm;
berghofe@11518
   346
clasohm@0
   347
datatype thm = Thm of
wenzelm@16425
   348
 {thy_ref: theory_ref,         (*dynamic reference to theory*)
berghofe@11518
   349
  der: bool * Pt.proof,        (*derivation*)
wenzelm@3967
   350
  maxidx: int,                 (*maximum index of any Var or TVar*)
wenzelm@16601
   351
  shyps: sort list,            (*sort hypotheses as ordered list*)
wenzelm@16601
   352
  hyps: term list,             (*hypotheses as ordered list*)
berghofe@13658
   353
  tpairs: (term * term) list,  (*flex-flex pairs*)
wenzelm@3967
   354
  prop: term};                 (*conclusion*)
clasohm@0
   355
wenzelm@16725
   356
(*errors involving theorems*)
wenzelm@16725
   357
exception THM of string * int * thm list;
berghofe@13658
   358
wenzelm@16425
   359
fun rep_thm (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16425
   360
  let val thy = Theory.deref thy_ref in
wenzelm@16425
   361
   {thy = thy, sign = thy, der = der, maxidx = maxidx,
wenzelm@16425
   362
    shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop}
wenzelm@16425
   363
  end;
clasohm@0
   364
wenzelm@16425
   365
(*version of rep_thm returning cterms instead of terms*)
wenzelm@16425
   366
fun crep_thm (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16425
   367
  let
wenzelm@16425
   368
    val thy = Theory.deref thy_ref;
wenzelm@16601
   369
    fun cterm max t = Cterm {thy_ref = thy_ref, t = t, T = propT, maxidx = max, sorts = shyps};
wenzelm@16425
   370
  in
wenzelm@16425
   371
   {thy = thy, sign = thy, der = der, maxidx = maxidx, shyps = shyps,
wenzelm@16425
   372
    hyps = map (cterm ~1) hyps,
wenzelm@16425
   373
    tpairs = map (pairself (cterm maxidx)) tpairs,
wenzelm@16425
   374
    prop = cterm maxidx prop}
clasohm@1517
   375
  end;
clasohm@1517
   376
wenzelm@16725
   377
fun terms_of_tpairs tpairs = fold_rev (fn (t, u) => cons t o cons u) tpairs [];
wenzelm@16725
   378
wenzelm@16725
   379
fun eq_tpairs ((t, u), (t', u')) = t aconv t' andalso u aconv u';
wenzelm@16725
   380
val union_tpairs = gen_merge_lists eq_tpairs;
wenzelm@16884
   381
val maxidx_tpairs = fold (fn (t, u) => Term.maxidx_term t #> Term.maxidx_term u);
wenzelm@16725
   382
wenzelm@16725
   383
fun attach_tpairs tpairs prop =
wenzelm@16725
   384
  Logic.list_implies (map Logic.mk_equals tpairs, prop);
wenzelm@16725
   385
wenzelm@16725
   386
fun full_prop_of (Thm {tpairs, prop, ...}) = attach_tpairs tpairs prop;
wenzelm@16945
   387
wenzelm@16945
   388
wenzelm@16945
   389
(* merge theories of cterms/thms; raise exception if incompatible *)
wenzelm@16945
   390
wenzelm@16945
   391
fun merge_thys1 (Cterm {thy_ref = r1, ...}) (th as Thm {thy_ref = r2, ...}) =
wenzelm@16945
   392
  Theory.merge_refs (r1, r2) handle TERM (msg, _) => raise THM (msg, 0, [th]);
wenzelm@16945
   393
wenzelm@16945
   394
fun merge_thys2 (th1 as Thm {thy_ref = r1, ...}) (th2 as Thm {thy_ref = r2, ...}) =
wenzelm@16945
   395
  Theory.merge_refs (r1, r2) handle TERM (msg, _) => raise THM (msg, 0, [th1, th2]);
wenzelm@16945
   396
clasohm@0
   397
wenzelm@16425
   398
(*attributes subsume any kind of rules or context modifiers*)
wenzelm@6089
   399
type 'a attribute = 'a * thm -> 'a * thm;
wenzelm@17708
   400
wenzelm@6089
   401
fun no_attributes x = (x, []);
wenzelm@17345
   402
fun simple_fact x = [(x, [])];
wenzelm@6089
   403
fun apply_attributes (x_th, atts) = Library.apply atts x_th;
wenzelm@6089
   404
fun applys_attributes (x_ths, atts) = foldl_map (Library.apply atts) x_ths;
wenzelm@6089
   405
wenzelm@16601
   406
wenzelm@16656
   407
(* hyps *)
wenzelm@16601
   408
wenzelm@16945
   409
val insert_hyps = OrdList.insert Term.fast_term_ord;
wenzelm@16679
   410
val remove_hyps = OrdList.remove Term.fast_term_ord;
wenzelm@16679
   411
val union_hyps = OrdList.union Term.fast_term_ord;
wenzelm@16679
   412
val eq_set_hyps = OrdList.eq_set Term.fast_term_ord;
wenzelm@16601
   413
wenzelm@16601
   414
wenzelm@16601
   415
(* eq_thm(s) *)
wenzelm@16601
   416
wenzelm@3994
   417
fun eq_thm (th1, th2) =
wenzelm@3994
   418
  let
wenzelm@16425
   419
    val {thy = thy1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1, prop = prop1, ...} =
wenzelm@9031
   420
      rep_thm th1;
wenzelm@16425
   421
    val {thy = thy2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2, prop = prop2, ...} =
wenzelm@9031
   422
      rep_thm th2;
wenzelm@3994
   423
  in
wenzelm@16601
   424
    Context.joinable (thy1, thy2) andalso
wenzelm@16601
   425
    Sorts.eq_set (shyps1, shyps2) andalso
wenzelm@16601
   426
    eq_set_hyps (hyps1, hyps2) andalso
wenzelm@16656
   427
    equal_lists eq_tpairs (tpairs1, tpairs2) andalso
wenzelm@3994
   428
    prop1 aconv prop2
wenzelm@3994
   429
  end;
wenzelm@387
   430
wenzelm@16135
   431
val eq_thms = Library.equal_lists eq_thm;
wenzelm@16135
   432
wenzelm@16425
   433
fun theory_of_thm (Thm {thy_ref, ...}) = Theory.deref thy_ref;
wenzelm@16425
   434
val sign_of_thm = theory_of_thm;
wenzelm@16425
   435
wenzelm@12803
   436
fun prop_of (Thm {prop, ...}) = prop;
wenzelm@13528
   437
fun proof_of (Thm {der = (_, proof), ...}) = proof;
wenzelm@16601
   438
fun tpairs_of (Thm {tpairs, ...}) = tpairs;
clasohm@0
   439
wenzelm@16601
   440
val concl_of = Logic.strip_imp_concl o prop_of;
wenzelm@16601
   441
val prems_of = Logic.strip_imp_prems o prop_of;
wenzelm@16601
   442
fun nprems_of th = Logic.count_prems (prop_of th, 0);
wenzelm@16601
   443
val no_prems = equal 0 o nprems_of;
wenzelm@16601
   444
wenzelm@16601
   445
fun major_prem_of th =
wenzelm@16601
   446
  (case prems_of th of
wenzelm@16601
   447
    prem :: _ => Logic.strip_assums_concl prem
wenzelm@16601
   448
  | [] => raise THM ("major_prem_of: rule with no premises", 0, [th]));
wenzelm@16601
   449
wenzelm@16601
   450
(*the statement of any thm is a cterm*)
wenzelm@16601
   451
fun cprop_of (Thm {thy_ref, maxidx, shyps, prop, ...}) =
wenzelm@16601
   452
  Cterm {thy_ref = thy_ref, maxidx = maxidx, T = propT, t = prop, sorts = shyps};
wenzelm@16601
   453
wenzelm@18035
   454
fun cgoal_of (th as Thm {thy_ref, maxidx, shyps, prop, ...}) i =
wenzelm@18035
   455
  Cterm {thy_ref = thy_ref, maxidx = maxidx, T = propT, sorts = shyps,
wenzelm@18035
   456
    t = Logic.nth_prem (i, prop) handle TERM _ => raise THM ("cgoal_of", i, [th])};
wenzelm@18035
   457
wenzelm@16656
   458
(*explicit transfer to a super theory*)
wenzelm@16425
   459
fun transfer thy' thm =
wenzelm@3895
   460
  let
wenzelm@16425
   461
    val Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop} = thm;
wenzelm@16425
   462
    val thy = Theory.deref thy_ref;
wenzelm@3895
   463
  in
wenzelm@16945
   464
    if not (subthy (thy, thy')) then
wenzelm@16945
   465
      raise THM ("transfer: not a super theory", 0, [thm])
wenzelm@16945
   466
    else if eq_thy (thy, thy') then thm
wenzelm@16945
   467
    else
wenzelm@16945
   468
      Thm {thy_ref = Theory.self_ref thy',
wenzelm@16945
   469
        der = der,
wenzelm@16945
   470
        maxidx = maxidx,
wenzelm@16945
   471
        shyps = shyps,
wenzelm@16945
   472
        hyps = hyps,
wenzelm@16945
   473
        tpairs = tpairs,
wenzelm@16945
   474
        prop = prop}
wenzelm@3895
   475
  end;
wenzelm@387
   476
wenzelm@16945
   477
(*explicit weakening: maps |- B to A |- B*)
wenzelm@16945
   478
fun weaken raw_ct th =
wenzelm@16945
   479
  let
wenzelm@16945
   480
    val ct as Cterm {t = A, T, sorts, maxidx = maxidxA, ...} = adjust_maxidx raw_ct;
wenzelm@16945
   481
    val Thm {der, maxidx, shyps, hyps, tpairs, prop, ...} = th;
wenzelm@16945
   482
  in
wenzelm@16945
   483
    if T <> propT then
wenzelm@16945
   484
      raise THM ("weaken: assumptions must have type prop", 0, [])
wenzelm@16945
   485
    else if maxidxA <> ~1 then
wenzelm@16945
   486
      raise THM ("weaken: assumptions may not contain schematic variables", maxidxA, [])
wenzelm@16945
   487
    else
wenzelm@16945
   488
      Thm {thy_ref = merge_thys1 ct th,
wenzelm@16945
   489
        der = der,
wenzelm@16945
   490
        maxidx = maxidx,
wenzelm@16945
   491
        shyps = Sorts.union sorts shyps,
wenzelm@16945
   492
        hyps = insert_hyps A hyps,
wenzelm@16945
   493
        tpairs = tpairs,
wenzelm@16945
   494
        prop = prop}
wenzelm@16945
   495
  end;
wenzelm@16656
   496
wenzelm@16656
   497
clasohm@0
   498
wenzelm@1238
   499
(** sort contexts of theorems **)
wenzelm@1238
   500
wenzelm@16656
   501
fun present_sorts (Thm {hyps, tpairs, prop, ...}) =
wenzelm@16656
   502
  fold (fn (t, u) => Sorts.insert_term t o Sorts.insert_term u) tpairs
wenzelm@16656
   503
    (Sorts.insert_terms hyps (Sorts.insert_term prop []));
wenzelm@1238
   504
wenzelm@7642
   505
(*remove extra sorts that are non-empty by virtue of type signature information*)
wenzelm@7642
   506
fun strip_shyps (thm as Thm {shyps = [], ...}) = thm
wenzelm@16425
   507
  | strip_shyps (thm as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@7642
   508
      let
wenzelm@16425
   509
        val thy = Theory.deref thy_ref;
wenzelm@16656
   510
        val shyps' =
wenzelm@16656
   511
          if Sign.all_sorts_nonempty thy then []
wenzelm@16656
   512
          else
wenzelm@16656
   513
            let
wenzelm@16656
   514
              val present = present_sorts thm;
wenzelm@16656
   515
              val extra = Sorts.subtract present shyps;
wenzelm@16656
   516
              val witnessed = map #2 (Sign.witness_sorts thy present extra);
wenzelm@16656
   517
            in Sorts.subtract witnessed shyps end;
wenzelm@7642
   518
      in
wenzelm@16425
   519
        Thm {thy_ref = thy_ref, der = der, maxidx = maxidx,
wenzelm@16656
   520
          shyps = shyps', hyps = hyps, tpairs = tpairs, prop = prop}
wenzelm@7642
   521
      end;
wenzelm@1238
   522
wenzelm@16656
   523
(*dangling sort constraints of a thm*)
wenzelm@16656
   524
fun extra_shyps (th as Thm {shyps, ...}) = Sorts.subtract (present_sorts th) shyps;
wenzelm@16656
   525
wenzelm@1238
   526
wenzelm@1238
   527
paulson@1529
   528
(** Axioms **)
wenzelm@387
   529
wenzelm@16425
   530
(*look up the named axiom in the theory or its ancestors*)
wenzelm@15672
   531
fun get_axiom_i theory name =
wenzelm@387
   532
  let
wenzelm@16425
   533
    fun get_ax thy =
wenzelm@17412
   534
      Symtab.lookup (#2 (#axioms (Theory.rep_theory thy))) name
wenzelm@16601
   535
      |> Option.map (fn prop =>
wenzelm@16601
   536
          Thm {thy_ref = Theory.self_ref thy,
wenzelm@16601
   537
            der = Pt.infer_derivs' I (false, Pt.axm_proof name prop),
wenzelm@16601
   538
            maxidx = maxidx_of_term prop,
wenzelm@16656
   539
            shyps = may_insert_term_sorts thy prop [],
wenzelm@16601
   540
            hyps = [],
wenzelm@16601
   541
            tpairs = [],
wenzelm@16601
   542
            prop = prop});
wenzelm@387
   543
  in
wenzelm@16425
   544
    (case get_first get_ax (theory :: Theory.ancestors_of theory) of
skalberg@15531
   545
      SOME thm => thm
skalberg@15531
   546
    | NONE => raise THEORY ("No axiom " ^ quote name, [theory]))
wenzelm@387
   547
  end;
wenzelm@387
   548
wenzelm@16352
   549
fun get_axiom thy =
wenzelm@16425
   550
  get_axiom_i thy o NameSpace.intern (Theory.axiom_space thy);
wenzelm@15672
   551
wenzelm@6368
   552
fun def_name name = name ^ "_def";
wenzelm@6368
   553
fun get_def thy = get_axiom thy o def_name;
wenzelm@4847
   554
paulson@1529
   555
wenzelm@776
   556
(*return additional axioms of this theory node*)
wenzelm@776
   557
fun axioms_of thy =
wenzelm@776
   558
  map (fn (s, _) => (s, get_axiom thy s))
wenzelm@16352
   559
    (Symtab.dest (#2 (#axioms (Theory.rep_theory thy))));
wenzelm@776
   560
wenzelm@6089
   561
wenzelm@6089
   562
(* name and tags -- make proof objects more readable *)
wenzelm@6089
   563
wenzelm@12923
   564
fun get_name_tags (Thm {hyps, prop, der = (_, prf), ...}) =
wenzelm@12923
   565
  Pt.get_name_tags hyps prop prf;
wenzelm@4018
   566
wenzelm@16425
   567
fun put_name_tags x (Thm {thy_ref, der = (ora, prf), maxidx,
wenzelm@16425
   568
      shyps, hyps, tpairs = [], prop}) = Thm {thy_ref = thy_ref,
wenzelm@16425
   569
        der = (ora, Pt.thm_proof (Theory.deref thy_ref) x hyps prop prf),
berghofe@13658
   570
        maxidx = maxidx, shyps = shyps, hyps = hyps, tpairs = [], prop = prop}
berghofe@13658
   571
  | put_name_tags _ thm =
berghofe@13658
   572
      raise THM ("put_name_tags: unsolved flex-flex constraints", 0, [thm]);
wenzelm@6089
   573
wenzelm@6089
   574
val name_of_thm = #1 o get_name_tags;
wenzelm@6089
   575
val tags_of_thm = #2 o get_name_tags;
wenzelm@6089
   576
wenzelm@6089
   577
fun name_thm (name, thm) = put_name_tags (name, tags_of_thm thm) thm;
clasohm@0
   578
clasohm@0
   579
paulson@1529
   580
(*Compression of theorems -- a separate rule, not integrated with the others,
paulson@1529
   581
  as it could be slow.*)
wenzelm@16425
   582
fun compress (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16991
   583
  let val thy = Theory.deref thy_ref in
wenzelm@16991
   584
    Thm {thy_ref = thy_ref,
wenzelm@16991
   585
      der = der,
wenzelm@16991
   586
      maxidx = maxidx,
wenzelm@16991
   587
      shyps = shyps,
wenzelm@16991
   588
      hyps = map (Compress.term thy) hyps,
wenzelm@16991
   589
      tpairs = map (pairself (Compress.term thy)) tpairs,
wenzelm@16991
   590
      prop = Compress.term thy prop}
wenzelm@16991
   591
  end;
wenzelm@16945
   592
wenzelm@16945
   593
fun adjust_maxidx_thm (Thm {thy_ref, der, shyps, hyps, tpairs, prop, ...}) =
wenzelm@16945
   594
  Thm {thy_ref = thy_ref,
wenzelm@16945
   595
    der = der,
wenzelm@16945
   596
    maxidx = maxidx_tpairs tpairs (maxidx_of_term prop),
wenzelm@16945
   597
    shyps = shyps,
wenzelm@16945
   598
    hyps = hyps,
wenzelm@16945
   599
    tpairs = tpairs,
wenzelm@16945
   600
    prop = prop};
wenzelm@564
   601
wenzelm@387
   602
wenzelm@2509
   603
paulson@1529
   604
(*** Meta rules ***)
clasohm@0
   605
wenzelm@16601
   606
(** primitive rules **)
clasohm@0
   607
wenzelm@16656
   608
(*The assumption rule A |- A*)
wenzelm@16601
   609
fun assume raw_ct =
wenzelm@16601
   610
  let val Cterm {thy_ref, t = prop, T, maxidx, sorts} = adjust_maxidx raw_ct in
wenzelm@16601
   611
    if T <> propT then
wenzelm@16601
   612
      raise THM ("assume: assumptions must have type prop", 0, [])
wenzelm@16601
   613
    else if maxidx <> ~1 then
wenzelm@16601
   614
      raise THM ("assume: assumptions may not contain schematic variables", maxidx, [])
wenzelm@16601
   615
    else Thm {thy_ref = thy_ref,
wenzelm@16601
   616
      der = Pt.infer_derivs' I (false, Pt.Hyp prop),
wenzelm@16601
   617
      maxidx = ~1,
wenzelm@16601
   618
      shyps = sorts,
wenzelm@16601
   619
      hyps = [prop],
wenzelm@16601
   620
      tpairs = [],
wenzelm@16601
   621
      prop = prop}
clasohm@0
   622
  end;
clasohm@0
   623
wenzelm@1220
   624
(*Implication introduction
wenzelm@3529
   625
    [A]
wenzelm@3529
   626
     :
wenzelm@3529
   627
     B
wenzelm@1220
   628
  -------
wenzelm@1220
   629
  A ==> B
wenzelm@1220
   630
*)
wenzelm@16601
   631
fun implies_intr
wenzelm@16679
   632
    (ct as Cterm {t = A, T, maxidx = maxidxA, sorts, ...})
wenzelm@16679
   633
    (th as Thm {der, maxidx, hyps, shyps, tpairs, prop, ...}) =
wenzelm@16601
   634
  if T <> propT then
wenzelm@16601
   635
    raise THM ("implies_intr: assumptions must have type prop", 0, [th])
wenzelm@16601
   636
  else
wenzelm@16601
   637
    Thm {thy_ref = merge_thys1 ct th,
wenzelm@16601
   638
      der = Pt.infer_derivs' (Pt.implies_intr_proof A) der,
wenzelm@16601
   639
      maxidx = Int.max (maxidxA, maxidx),
wenzelm@16601
   640
      shyps = Sorts.union sorts shyps,
wenzelm@16601
   641
      hyps = remove_hyps A hyps,
wenzelm@16601
   642
      tpairs = tpairs,
wenzelm@16601
   643
      prop = implies $ A $ prop};
clasohm@0
   644
paulson@1529
   645
wenzelm@1220
   646
(*Implication elimination
wenzelm@1220
   647
  A ==> B    A
wenzelm@1220
   648
  ------------
wenzelm@1220
   649
        B
wenzelm@1220
   650
*)
wenzelm@16601
   651
fun implies_elim thAB thA =
wenzelm@16601
   652
  let
wenzelm@16601
   653
    val Thm {maxidx = maxA, der = derA, hyps = hypsA, shyps = shypsA, tpairs = tpairsA,
wenzelm@16601
   654
      prop = propA, ...} = thA
wenzelm@16601
   655
    and Thm {der, maxidx, hyps, shyps, tpairs, prop, ...} = thAB;
wenzelm@16601
   656
    fun err () = raise THM ("implies_elim: major premise", 0, [thAB, thA]);
wenzelm@16601
   657
  in
wenzelm@16601
   658
    case prop of
wenzelm@16601
   659
      imp $ A $ B =>
wenzelm@16601
   660
        if imp = Term.implies andalso A aconv propA then
wenzelm@16656
   661
          Thm {thy_ref = merge_thys2 thAB thA,
wenzelm@16601
   662
            der = Pt.infer_derivs (curry Pt.%%) der derA,
wenzelm@16601
   663
            maxidx = Int.max (maxA, maxidx),
wenzelm@16601
   664
            shyps = Sorts.union shypsA shyps,
wenzelm@16601
   665
            hyps = union_hyps hypsA hyps,
wenzelm@16601
   666
            tpairs = union_tpairs tpairsA tpairs,
wenzelm@16601
   667
            prop = B}
wenzelm@16601
   668
        else err ()
wenzelm@16601
   669
    | _ => err ()
wenzelm@16601
   670
  end;
wenzelm@250
   671
wenzelm@1220
   672
(*Forall introduction.  The Free or Var x must not be free in the hypotheses.
wenzelm@16656
   673
    [x]
wenzelm@16656
   674
     :
wenzelm@16656
   675
     A
wenzelm@16656
   676
  ------
wenzelm@16656
   677
  !!x. A
wenzelm@1220
   678
*)
wenzelm@16601
   679
fun forall_intr
wenzelm@16601
   680
    (ct as Cterm {t = x, T, sorts, ...})
wenzelm@16679
   681
    (th as Thm {der, maxidx, shyps, hyps, tpairs, prop, ...}) =
wenzelm@16601
   682
  let
wenzelm@16601
   683
    fun result a =
wenzelm@16601
   684
      Thm {thy_ref = merge_thys1 ct th,
wenzelm@16601
   685
        der = Pt.infer_derivs' (Pt.forall_intr_proof x a) der,
wenzelm@16601
   686
        maxidx = maxidx,
wenzelm@16601
   687
        shyps = Sorts.union sorts shyps,
wenzelm@16601
   688
        hyps = hyps,
wenzelm@16601
   689
        tpairs = tpairs,
wenzelm@16601
   690
        prop = all T $ Abs (a, T, abstract_over (x, prop))};
wenzelm@16601
   691
    fun check_occs x ts =
wenzelm@16847
   692
      if exists (fn t => Logic.occs (x, t)) ts then
wenzelm@16601
   693
        raise THM("forall_intr: variable free in assumptions", 0, [th])
wenzelm@16601
   694
      else ();
wenzelm@16601
   695
  in
wenzelm@16601
   696
    case x of
wenzelm@16601
   697
      Free (a, _) => (check_occs x hyps; check_occs x (terms_of_tpairs tpairs); result a)
wenzelm@16601
   698
    | Var ((a, _), _) => (check_occs x (terms_of_tpairs tpairs); result a)
wenzelm@16601
   699
    | _ => raise THM ("forall_intr: not a variable", 0, [th])
clasohm@0
   700
  end;
clasohm@0
   701
wenzelm@1220
   702
(*Forall elimination
wenzelm@16656
   703
  !!x. A
wenzelm@1220
   704
  ------
wenzelm@1220
   705
  A[t/x]
wenzelm@1220
   706
*)
wenzelm@16601
   707
fun forall_elim
wenzelm@16601
   708
    (ct as Cterm {t, T, maxidx = maxt, sorts, ...})
wenzelm@16601
   709
    (th as Thm {der, maxidx, shyps, hyps, tpairs, prop, ...}) =
wenzelm@16601
   710
  (case prop of
wenzelm@16601
   711
    Const ("all", Type ("fun", [Type ("fun", [qary, _]), _])) $ A =>
wenzelm@16601
   712
      if T <> qary then
wenzelm@16601
   713
        raise THM ("forall_elim: type mismatch", 0, [th])
wenzelm@16601
   714
      else
wenzelm@16601
   715
        Thm {thy_ref = merge_thys1 ct th,
wenzelm@16601
   716
          der = Pt.infer_derivs' (Pt.% o rpair (SOME t)) der,
wenzelm@16601
   717
          maxidx = Int.max (maxidx, maxt),
wenzelm@16601
   718
          shyps = Sorts.union sorts shyps,
wenzelm@16601
   719
          hyps = hyps,
wenzelm@16601
   720
          tpairs = tpairs,
wenzelm@16601
   721
          prop = Term.betapply (A, t)}
wenzelm@16601
   722
  | _ => raise THM ("forall_elim: not quantified", 0, [th]));
clasohm@0
   723
clasohm@0
   724
wenzelm@1220
   725
(* Equality *)
clasohm@0
   726
wenzelm@16601
   727
(*Reflexivity
wenzelm@16601
   728
  t == t
wenzelm@16601
   729
*)
wenzelm@16601
   730
fun reflexive (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16656
   731
  Thm {thy_ref = thy_ref,
wenzelm@16601
   732
    der = Pt.infer_derivs' I (false, Pt.reflexive),
wenzelm@16601
   733
    maxidx = maxidx,
wenzelm@16601
   734
    shyps = sorts,
wenzelm@16601
   735
    hyps = [],
wenzelm@16601
   736
    tpairs = [],
wenzelm@16601
   737
    prop = Logic.mk_equals (t, t)};
clasohm@0
   738
wenzelm@16601
   739
(*Symmetry
wenzelm@16601
   740
  t == u
wenzelm@16601
   741
  ------
wenzelm@16601
   742
  u == t
wenzelm@1220
   743
*)
wenzelm@16601
   744
fun symmetric (th as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16601
   745
  (case prop of
wenzelm@16601
   746
    (eq as Const ("==", Type (_, [T, _]))) $ t $ u =>
wenzelm@16601
   747
      Thm {thy_ref = thy_ref,
wenzelm@16601
   748
        der = Pt.infer_derivs' Pt.symmetric der,
wenzelm@16601
   749
        maxidx = maxidx,
wenzelm@16601
   750
        shyps = shyps,
wenzelm@16601
   751
        hyps = hyps,
wenzelm@16601
   752
        tpairs = tpairs,
wenzelm@16601
   753
        prop = eq $ u $ t}
wenzelm@16601
   754
    | _ => raise THM ("symmetric", 0, [th]));
clasohm@0
   755
wenzelm@16601
   756
(*Transitivity
wenzelm@16601
   757
  t1 == u    u == t2
wenzelm@16601
   758
  ------------------
wenzelm@16601
   759
       t1 == t2
wenzelm@1220
   760
*)
clasohm@0
   761
fun transitive th1 th2 =
wenzelm@16601
   762
  let
wenzelm@16601
   763
    val Thm {der = der1, maxidx = max1, hyps = hyps1, shyps = shyps1, tpairs = tpairs1,
wenzelm@16601
   764
      prop = prop1, ...} = th1
wenzelm@16601
   765
    and Thm {der = der2, maxidx = max2, hyps = hyps2, shyps = shyps2, tpairs = tpairs2,
wenzelm@16601
   766
      prop = prop2, ...} = th2;
wenzelm@16601
   767
    fun err msg = raise THM ("transitive: " ^ msg, 0, [th1, th2]);
wenzelm@16601
   768
  in
wenzelm@16601
   769
    case (prop1, prop2) of
wenzelm@16601
   770
      ((eq as Const ("==", Type (_, [T, _]))) $ t1 $ u, Const ("==", _) $ u' $ t2) =>
wenzelm@16601
   771
        if not (u aconv u') then err "middle term"
wenzelm@16601
   772
        else
wenzelm@16656
   773
          Thm {thy_ref = merge_thys2 th1 th2,
wenzelm@16601
   774
            der = Pt.infer_derivs (Pt.transitive u T) der1 der2,
wenzelm@16601
   775
            maxidx = Int.max (max1, max2),
wenzelm@16601
   776
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   777
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   778
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@16601
   779
            prop = eq $ t1 $ t2}
wenzelm@16601
   780
     | _ =>  err "premises"
clasohm@0
   781
  end;
clasohm@0
   782
wenzelm@16601
   783
(*Beta-conversion
wenzelm@16656
   784
  (%x. t)(u) == t[u/x]
wenzelm@16601
   785
  fully beta-reduces the term if full = true
berghofe@10416
   786
*)
wenzelm@16601
   787
fun beta_conversion full (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16601
   788
  let val t' =
wenzelm@16601
   789
    if full then Envir.beta_norm t
wenzelm@16601
   790
    else
wenzelm@16601
   791
      (case t of Abs (_, _, bodt) $ u => subst_bound (u, bodt)
wenzelm@16601
   792
      | _ => raise THM ("beta_conversion: not a redex", 0, []));
wenzelm@16601
   793
  in
wenzelm@16601
   794
    Thm {thy_ref = thy_ref,
wenzelm@16601
   795
      der = Pt.infer_derivs' I (false, Pt.reflexive),
wenzelm@16601
   796
      maxidx = maxidx,
wenzelm@16601
   797
      shyps = sorts,
wenzelm@16601
   798
      hyps = [],
wenzelm@16601
   799
      tpairs = [],
wenzelm@16601
   800
      prop = Logic.mk_equals (t, t')}
berghofe@10416
   801
  end;
berghofe@10416
   802
wenzelm@16601
   803
fun eta_conversion (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16601
   804
  Thm {thy_ref = thy_ref,
wenzelm@16601
   805
    der = Pt.infer_derivs' I (false, Pt.reflexive),
wenzelm@16601
   806
    maxidx = maxidx,
wenzelm@16601
   807
    shyps = sorts,
wenzelm@16601
   808
    hyps = [],
wenzelm@16601
   809
    tpairs = [],
wenzelm@16601
   810
    prop = Logic.mk_equals (t, Pattern.eta_contract t)};
clasohm@0
   811
clasohm@0
   812
(*The abstraction rule.  The Free or Var x must not be free in the hypotheses.
clasohm@0
   813
  The bound variable will be named "a" (since x will be something like x320)
wenzelm@16601
   814
      t == u
wenzelm@16601
   815
  --------------
wenzelm@16601
   816
  %x. t == %x. u
wenzelm@1220
   817
*)
wenzelm@16601
   818
fun abstract_rule a
wenzelm@16601
   819
    (Cterm {t = x, T, sorts, ...})
wenzelm@16601
   820
    (th as Thm {thy_ref, der, maxidx, hyps, shyps, tpairs, prop}) =
wenzelm@16601
   821
  let
wenzelm@17708
   822
    val string_of = Sign.string_of_term (Theory.deref thy_ref);
wenzelm@16601
   823
    val (t, u) = Logic.dest_equals prop
wenzelm@16601
   824
      handle TERM _ => raise THM ("abstract_rule: premise not an equality", 0, [th]);
wenzelm@16601
   825
    val result =
wenzelm@16601
   826
      Thm {thy_ref = thy_ref,
wenzelm@16601
   827
        der = Pt.infer_derivs' (Pt.abstract_rule x a) der,
wenzelm@16601
   828
        maxidx = maxidx,
wenzelm@16601
   829
        shyps = Sorts.union sorts shyps,
wenzelm@16601
   830
        hyps = hyps,
wenzelm@16601
   831
        tpairs = tpairs,
wenzelm@16601
   832
        prop = Logic.mk_equals
wenzelm@16601
   833
          (Abs (a, T, abstract_over (x, t)), Abs (a, T, abstract_over (x, u)))};
wenzelm@16601
   834
    fun check_occs x ts =
wenzelm@16847
   835
      if exists (fn t => Logic.occs (x, t)) ts then
wenzelm@17708
   836
        raise THM ("abstract_rule: variable free in assumptions " ^ string_of x, 0, [th])
wenzelm@16601
   837
      else ();
wenzelm@16601
   838
  in
wenzelm@16601
   839
    case x of
wenzelm@16601
   840
      Free _ => (check_occs x hyps; check_occs x (terms_of_tpairs tpairs); result)
wenzelm@16601
   841
    | Var _ => (check_occs x (terms_of_tpairs tpairs); result)
wenzelm@17708
   842
    | _ => raise THM ("abstract_rule: not a variable " ^ string_of x, 0, [th])
clasohm@0
   843
  end;
clasohm@0
   844
clasohm@0
   845
(*The combination rule
wenzelm@3529
   846
  f == g  t == u
wenzelm@3529
   847
  --------------
wenzelm@16601
   848
    f t == g u
wenzelm@1220
   849
*)
clasohm@0
   850
fun combination th1 th2 =
wenzelm@16601
   851
  let
wenzelm@16601
   852
    val Thm {der = der1, maxidx = max1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1,
wenzelm@16601
   853
      prop = prop1, ...} = th1
wenzelm@16601
   854
    and Thm {der = der2, maxidx = max2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2,
wenzelm@16601
   855
      prop = prop2, ...} = th2;
wenzelm@16601
   856
    fun chktypes fT tT =
wenzelm@16601
   857
      (case fT of
wenzelm@16601
   858
        Type ("fun", [T1, T2]) =>
wenzelm@16601
   859
          if T1 <> tT then
wenzelm@16601
   860
            raise THM ("combination: types", 0, [th1, th2])
wenzelm@16601
   861
          else ()
wenzelm@16601
   862
      | _ => raise THM ("combination: not function type", 0, [th1, th2]));
wenzelm@16601
   863
  in
wenzelm@16601
   864
    case (prop1, prop2) of
wenzelm@16601
   865
      (Const ("==", Type ("fun", [fT, _])) $ f $ g,
wenzelm@16601
   866
       Const ("==", Type ("fun", [tT, _])) $ t $ u) =>
wenzelm@16601
   867
        (chktypes fT tT;
wenzelm@16601
   868
          Thm {thy_ref = merge_thys2 th1 th2,
wenzelm@16601
   869
            der = Pt.infer_derivs (Pt.combination f g t u fT) der1 der2,
wenzelm@16601
   870
            maxidx = Int.max (max1, max2),
wenzelm@16601
   871
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   872
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   873
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@16601
   874
            prop = Logic.mk_equals (f $ t, g $ u)})
wenzelm@16601
   875
     | _ => raise THM ("combination: premises", 0, [th1, th2])
clasohm@0
   876
  end;
clasohm@0
   877
wenzelm@16601
   878
(*Equality introduction
wenzelm@3529
   879
  A ==> B  B ==> A
wenzelm@3529
   880
  ----------------
wenzelm@3529
   881
       A == B
wenzelm@1220
   882
*)
clasohm@0
   883
fun equal_intr th1 th2 =
wenzelm@16601
   884
  let
wenzelm@16601
   885
    val Thm {der = der1, maxidx = max1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1,
wenzelm@16601
   886
      prop = prop1, ...} = th1
wenzelm@16601
   887
    and Thm {der = der2, maxidx = max2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2,
wenzelm@16601
   888
      prop = prop2, ...} = th2;
wenzelm@16601
   889
    fun err msg = raise THM ("equal_intr: " ^ msg, 0, [th1, th2]);
wenzelm@16601
   890
  in
wenzelm@16601
   891
    case (prop1, prop2) of
wenzelm@16601
   892
      (Const("==>", _) $ A $ B, Const("==>", _) $ B' $ A') =>
wenzelm@16601
   893
        if A aconv A' andalso B aconv B' then
wenzelm@16601
   894
          Thm {thy_ref = merge_thys2 th1 th2,
wenzelm@16601
   895
            der = Pt.infer_derivs (Pt.equal_intr A B) der1 der2,
wenzelm@16601
   896
            maxidx = Int.max (max1, max2),
wenzelm@16601
   897
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   898
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   899
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@16601
   900
            prop = Logic.mk_equals (A, B)}
wenzelm@16601
   901
        else err "not equal"
wenzelm@16601
   902
    | _ =>  err "premises"
paulson@1529
   903
  end;
paulson@1529
   904
paulson@1529
   905
(*The equal propositions rule
wenzelm@3529
   906
  A == B  A
paulson@1529
   907
  ---------
paulson@1529
   908
      B
paulson@1529
   909
*)
paulson@1529
   910
fun equal_elim th1 th2 =
wenzelm@16601
   911
  let
wenzelm@16601
   912
    val Thm {der = der1, maxidx = max1, shyps = shyps1, hyps = hyps1,
wenzelm@16601
   913
      tpairs = tpairs1, prop = prop1, ...} = th1
wenzelm@16601
   914
    and Thm {der = der2, maxidx = max2, shyps = shyps2, hyps = hyps2,
wenzelm@16601
   915
      tpairs = tpairs2, prop = prop2, ...} = th2;
wenzelm@16601
   916
    fun err msg = raise THM ("equal_elim: " ^ msg, 0, [th1, th2]);
wenzelm@16601
   917
  in
wenzelm@16601
   918
    case prop1 of
wenzelm@16601
   919
      Const ("==", _) $ A $ B =>
wenzelm@16601
   920
        if prop2 aconv A then
wenzelm@16601
   921
          Thm {thy_ref = merge_thys2 th1 th2,
wenzelm@16601
   922
            der = Pt.infer_derivs (Pt.equal_elim A B) der1 der2,
wenzelm@16601
   923
            maxidx = Int.max (max1, max2),
wenzelm@16601
   924
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   925
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   926
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@16601
   927
            prop = B}
wenzelm@16601
   928
        else err "not equal"
paulson@1529
   929
     | _ =>  err"major premise"
paulson@1529
   930
  end;
clasohm@0
   931
wenzelm@1220
   932
wenzelm@1220
   933
clasohm@0
   934
(**** Derived rules ****)
clasohm@0
   935
wenzelm@16601
   936
(*Smash unifies the list of term pairs leaving no flex-flex pairs.
wenzelm@250
   937
  Instantiates the theorem and deletes trivial tpairs.
clasohm@0
   938
  Resulting sequence may contain multiple elements if the tpairs are
clasohm@0
   939
    not all flex-flex. *)
wenzelm@16601
   940
fun flexflex_rule (th as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16601
   941
  Unify.smash_unifiers (Theory.deref thy_ref, Envir.empty maxidx, tpairs)
wenzelm@16601
   942
  |> Seq.map (fn env =>
wenzelm@16601
   943
      if Envir.is_empty env then th
wenzelm@16601
   944
      else
wenzelm@16601
   945
        let
wenzelm@16601
   946
          val tpairs' = tpairs |> map (pairself (Envir.norm_term env))
wenzelm@16601
   947
            (*remove trivial tpairs, of the form t==t*)
wenzelm@16884
   948
            |> filter_out (op aconv);
wenzelm@16601
   949
          val prop' = Envir.norm_term env prop;
wenzelm@16601
   950
        in
wenzelm@16601
   951
          Thm {thy_ref = thy_ref,
wenzelm@16601
   952
            der = Pt.infer_derivs' (Pt.norm_proof' env) der,
wenzelm@16711
   953
            maxidx = maxidx_tpairs tpairs' (maxidx_of_term prop'),
wenzelm@16656
   954
            shyps = may_insert_env_sorts (Theory.deref thy_ref) env shyps,
wenzelm@16601
   955
            hyps = hyps,
wenzelm@16601
   956
            tpairs = tpairs',
wenzelm@16601
   957
            prop = prop'}
wenzelm@16601
   958
        end);
wenzelm@16601
   959
clasohm@0
   960
clasohm@0
   961
(*Instantiation of Vars
wenzelm@16656
   962
           A
wenzelm@16656
   963
  --------------------
wenzelm@16656
   964
  A[t1/v1, ..., tn/vn]
wenzelm@1220
   965
*)
clasohm@0
   966
wenzelm@6928
   967
local
wenzelm@6928
   968
wenzelm@16425
   969
fun pretty_typing thy t T =
wenzelm@16425
   970
  Pretty.block [Sign.pretty_term thy t, Pretty.str " ::", Pretty.brk 1, Sign.pretty_typ thy T];
berghofe@15797
   971
wenzelm@16884
   972
fun add_inst (ct, cu) (thy_ref, sorts) =
wenzelm@6928
   973
  let
wenzelm@16884
   974
    val Cterm {t = t, T = T, ...} = ct
wenzelm@16884
   975
    and Cterm {t = u, T = U, sorts = sorts_u, ...} = cu;
wenzelm@16884
   976
    val thy_ref' = Theory.merge_refs (thy_ref, merge_thys0 ct cu);
wenzelm@16884
   977
    val sorts' = Sorts.union sorts_u sorts;
wenzelm@3967
   978
  in
wenzelm@16884
   979
    (case t of Var v =>
wenzelm@16884
   980
      if T = U then ((v, u), (thy_ref', sorts'))
wenzelm@16884
   981
      else raise TYPE (Pretty.string_of (Pretty.block
wenzelm@16884
   982
       [Pretty.str "instantiate: type conflict",
wenzelm@16884
   983
        Pretty.fbrk, pretty_typing (Theory.deref thy_ref') t T,
wenzelm@16884
   984
        Pretty.fbrk, pretty_typing (Theory.deref thy_ref') u U]), [T, U], [t, u])
wenzelm@16884
   985
    | _ => raise TYPE (Pretty.string_of (Pretty.block
wenzelm@16884
   986
       [Pretty.str "instantiate: not a variable",
wenzelm@16884
   987
        Pretty.fbrk, Sign.pretty_term (Theory.deref thy_ref') t]), [], [t]))
clasohm@0
   988
  end;
clasohm@0
   989
wenzelm@16884
   990
fun add_instT (cT, cU) (thy_ref, sorts) =
wenzelm@16656
   991
  let
wenzelm@16884
   992
    val Ctyp {T, thy_ref = thy_ref1, ...} = cT
wenzelm@16884
   993
    and Ctyp {T = U, thy_ref = thy_ref2, sorts = sorts_U, ...} = cU;
wenzelm@16884
   994
    val thy_ref' = Theory.merge_refs (thy_ref, Theory.merge_refs (thy_ref1, thy_ref2));
wenzelm@16884
   995
    val thy' = Theory.deref thy_ref';
wenzelm@16884
   996
    val sorts' = Sorts.union sorts_U sorts;
wenzelm@16656
   997
  in
wenzelm@16884
   998
    (case T of TVar (v as (_, S)) =>
wenzelm@17203
   999
      if Sign.of_sort thy' (U, S) then ((v, U), (thy_ref', sorts'))
wenzelm@16656
  1000
      else raise TYPE ("Type not of sort " ^ Sign.string_of_sort thy' S, [U], [])
wenzelm@16656
  1001
    | _ => raise TYPE (Pretty.string_of (Pretty.block
berghofe@15797
  1002
        [Pretty.str "instantiate: not a type variable",
wenzelm@16656
  1003
         Pretty.fbrk, Sign.pretty_typ thy' T]), [T], []))
wenzelm@16656
  1004
  end;
clasohm@0
  1005
wenzelm@6928
  1006
in
wenzelm@6928
  1007
wenzelm@16601
  1008
(*Left-to-right replacements: ctpairs = [..., (vi, ti), ...].
clasohm@0
  1009
  Instantiates distinct Vars by terms of same type.
wenzelm@16601
  1010
  Does NOT normalize the resulting theorem!*)
paulson@1529
  1011
fun instantiate ([], []) th = th
wenzelm@16884
  1012
  | instantiate (instT, inst) th =
wenzelm@16656
  1013
      let
wenzelm@16884
  1014
        val Thm {thy_ref, der, hyps, shyps, tpairs, prop, ...} = th;
wenzelm@16884
  1015
        val (inst', (instT', (thy_ref', shyps'))) =
wenzelm@16884
  1016
          (thy_ref, shyps) |> fold_map add_inst inst ||> fold_map add_instT instT;
wenzelm@16884
  1017
        val subst = Term.instantiate (instT', inst');
wenzelm@16656
  1018
        val prop' = subst prop;
wenzelm@16884
  1019
        val tpairs' = map (pairself subst) tpairs;
wenzelm@16656
  1020
      in
wenzelm@16884
  1021
        if has_duplicates (fn ((v, _), (v', _)) => Term.eq_var (v, v')) inst' then
wenzelm@16656
  1022
          raise THM ("instantiate: variables not distinct", 0, [th])
wenzelm@16884
  1023
        else if has_duplicates (fn ((v, _), (v', _)) => Term.eq_tvar (v, v')) instT' then
wenzelm@16656
  1024
          raise THM ("instantiate: type variables not distinct", 0, [th])
wenzelm@16656
  1025
        else
wenzelm@16884
  1026
          Thm {thy_ref = thy_ref',
wenzelm@16884
  1027
            der = Pt.infer_derivs' (Pt.instantiate (instT', inst')) der,
wenzelm@16884
  1028
            maxidx = maxidx_tpairs tpairs' (maxidx_of_term prop'),
wenzelm@16656
  1029
            shyps = shyps',
wenzelm@16656
  1030
            hyps = hyps,
wenzelm@16884
  1031
            tpairs = tpairs',
wenzelm@16656
  1032
            prop = prop'}
wenzelm@16656
  1033
      end
wenzelm@16656
  1034
      handle TYPE (msg, _, _) => raise THM (msg, 0, [th]);
wenzelm@6928
  1035
wenzelm@6928
  1036
end;
wenzelm@6928
  1037
clasohm@0
  1038
wenzelm@16601
  1039
(*The trivial implication A ==> A, justified by assume and forall rules.
wenzelm@16601
  1040
  A can contain Vars, not so for assume!*)
wenzelm@16601
  1041
fun trivial (Cterm {thy_ref, t =A, T, maxidx, sorts}) =
wenzelm@16601
  1042
  if T <> propT then
wenzelm@16601
  1043
    raise THM ("trivial: the term must have type prop", 0, [])
wenzelm@16601
  1044
  else
wenzelm@16601
  1045
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1046
      der = Pt.infer_derivs' I (false, Pt.AbsP ("H", NONE, Pt.PBound 0)),
wenzelm@16601
  1047
      maxidx = maxidx,
wenzelm@16601
  1048
      shyps = sorts,
wenzelm@16601
  1049
      hyps = [],
wenzelm@16601
  1050
      tpairs = [],
wenzelm@16601
  1051
      prop = implies $ A $ A};
clasohm@0
  1052
paulson@1503
  1053
(*Axiom-scheme reflecting signature contents: "OFCLASS(?'a::c, c_class)" *)
wenzelm@16425
  1054
fun class_triv thy c =
wenzelm@16601
  1055
  let val Cterm {thy_ref, t, maxidx, sorts, ...} =
wenzelm@16425
  1056
    cterm_of thy (Logic.mk_inclass (TVar (("'a", 0), [c]), c))
wenzelm@6368
  1057
      handle TERM (msg, _) => raise THM ("class_triv: " ^ msg, 0, []);
wenzelm@399
  1058
  in
wenzelm@16601
  1059
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1060
      der = Pt.infer_derivs' I (false, Pt.PAxm ("ProtoPure.class_triv:" ^ c, t, SOME [])),
wenzelm@16601
  1061
      maxidx = maxidx,
wenzelm@16601
  1062
      shyps = sorts,
wenzelm@16601
  1063
      hyps = [],
wenzelm@16601
  1064
      tpairs = [],
wenzelm@16601
  1065
      prop = t}
wenzelm@399
  1066
  end;
wenzelm@399
  1067
wenzelm@399
  1068
wenzelm@6786
  1069
(* Replace all TFrees not fixed or in the hyps by new TVars *)
wenzelm@16601
  1070
fun varifyT' fixed (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@12500
  1071
  let
berghofe@15797
  1072
    val tfrees = foldr add_term_tfrees fixed hyps;
berghofe@13658
  1073
    val prop1 = attach_tpairs tpairs prop;
berghofe@13658
  1074
    val (prop2, al) = Type.varify (prop1, tfrees);
wenzelm@16601
  1075
    val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2);
wenzelm@16601
  1076
  in
wenzelm@16601
  1077
    (Thm {thy_ref = thy_ref,
wenzelm@16601
  1078
      der = Pt.infer_derivs' (Pt.varify_proof prop tfrees) der,
wenzelm@16601
  1079
      maxidx = Int.max (0, maxidx),
wenzelm@16601
  1080
      shyps = shyps,
wenzelm@16601
  1081
      hyps = hyps,
wenzelm@16601
  1082
      tpairs = rev (map Logic.dest_equals ts),
wenzelm@16601
  1083
      prop = prop3}, al)
clasohm@0
  1084
  end;
clasohm@0
  1085
wenzelm@12500
  1086
val varifyT = #1 o varifyT' [];
wenzelm@6786
  1087
clasohm@0
  1088
(* Replace all TVars by new TFrees *)
wenzelm@16601
  1089
fun freezeT (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
berghofe@13658
  1090
  let
berghofe@13658
  1091
    val prop1 = attach_tpairs tpairs prop;
wenzelm@16287
  1092
    val prop2 = Type.freeze prop1;
wenzelm@16601
  1093
    val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2);
wenzelm@16601
  1094
  in
wenzelm@16601
  1095
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1096
      der = Pt.infer_derivs' (Pt.freezeT prop1) der,
wenzelm@16601
  1097
      maxidx = maxidx_of_term prop2,
wenzelm@16601
  1098
      shyps = shyps,
wenzelm@16601
  1099
      hyps = hyps,
wenzelm@16601
  1100
      tpairs = rev (map Logic.dest_equals ts),
wenzelm@16601
  1101
      prop = prop3}
wenzelm@1220
  1102
  end;
clasohm@0
  1103
clasohm@0
  1104
clasohm@0
  1105
(*** Inference rules for tactics ***)
clasohm@0
  1106
clasohm@0
  1107
(*Destruct proof state into constraints, other goals, goal(i), rest *)
berghofe@13658
  1108
fun dest_state (state as Thm{prop,tpairs,...}, i) =
berghofe@13658
  1109
  (case  Logic.strip_prems(i, [], prop) of
berghofe@13658
  1110
      (B::rBs, C) => (tpairs, rev rBs, B, C)
berghofe@13658
  1111
    | _ => raise THM("dest_state", i, [state]))
clasohm@0
  1112
  handle TERM _ => raise THM("dest_state", i, [state]);
clasohm@0
  1113
lcp@309
  1114
(*Increment variables and parameters of orule as required for
wenzelm@18035
  1115
  resolution with a goal.*)
wenzelm@18035
  1116
fun lift_rule goal orule =
wenzelm@16601
  1117
  let
wenzelm@18035
  1118
    val Cterm {t = gprop, T, maxidx = gmax, sorts, ...} = goal;
wenzelm@18035
  1119
    val inc = gmax + 1;
wenzelm@18035
  1120
    val lift_abs = Logic.lift_abs inc gprop;
wenzelm@18035
  1121
    val lift_all = Logic.lift_all inc gprop;
wenzelm@18035
  1122
    val Thm {der, maxidx, shyps, hyps, tpairs, prop, ...} = orule;
wenzelm@16601
  1123
    val (As, B) = Logic.strip_horn prop;
wenzelm@16601
  1124
  in
wenzelm@18035
  1125
    if T <> propT then raise THM ("lift_rule: the term must have type prop", 0, [])
wenzelm@18035
  1126
    else
wenzelm@18035
  1127
      Thm {thy_ref = merge_thys1 goal orule,
wenzelm@18035
  1128
        der = Pt.infer_derivs' (Pt.lift_proof gprop inc prop) der,
wenzelm@18035
  1129
        maxidx = maxidx + inc,
wenzelm@18035
  1130
        shyps = Sorts.union shyps sorts,  (*sic!*)
wenzelm@18035
  1131
        hyps = hyps,
wenzelm@18035
  1132
        tpairs = map (pairself lift_abs) tpairs,
wenzelm@18035
  1133
        prop = Logic.list_implies (map lift_all As, lift_all B)}
clasohm@0
  1134
  end;
clasohm@0
  1135
wenzelm@16425
  1136
fun incr_indexes i (thm as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16601
  1137
  if i < 0 then raise THM ("negative increment", 0, [thm])
wenzelm@16601
  1138
  else if i = 0 then thm
wenzelm@16601
  1139
  else
wenzelm@16425
  1140
    Thm {thy_ref = thy_ref,
wenzelm@16884
  1141
      der = Pt.infer_derivs'
wenzelm@16884
  1142
        (Pt.map_proof_terms (Logic.incr_indexes ([], i)) (Logic.incr_tvar i)) der,
wenzelm@16601
  1143
      maxidx = maxidx + i,
wenzelm@16601
  1144
      shyps = shyps,
wenzelm@16601
  1145
      hyps = hyps,
wenzelm@16601
  1146
      tpairs = map (pairself (Logic.incr_indexes ([], i))) tpairs,
wenzelm@16601
  1147
      prop = Logic.incr_indexes ([], i) prop};
berghofe@10416
  1148
clasohm@0
  1149
(*Solve subgoal Bi of proof state B1...Bn/C by assumption. *)
clasohm@0
  1150
fun assumption i state =
wenzelm@16601
  1151
  let
wenzelm@16601
  1152
    val Thm {thy_ref, der, maxidx, shyps, hyps, prop, ...} = state;
wenzelm@16656
  1153
    val thy = Theory.deref thy_ref;
wenzelm@16601
  1154
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1155
    fun newth n (env as Envir.Envir {maxidx, ...}, tpairs) =
wenzelm@16601
  1156
      Thm {thy_ref = thy_ref,
wenzelm@16601
  1157
        der = Pt.infer_derivs'
wenzelm@16601
  1158
          ((if Envir.is_empty env then I else (Pt.norm_proof' env)) o
wenzelm@16601
  1159
            Pt.assumption_proof Bs Bi n) der,
wenzelm@16601
  1160
        maxidx = maxidx,
wenzelm@16656
  1161
        shyps = may_insert_env_sorts thy env shyps,
wenzelm@16601
  1162
        hyps = hyps,
wenzelm@16601
  1163
        tpairs =
wenzelm@16601
  1164
          if Envir.is_empty env then tpairs
wenzelm@16601
  1165
          else map (pairself (Envir.norm_term env)) tpairs,
wenzelm@16601
  1166
        prop =
wenzelm@16601
  1167
          if Envir.is_empty env then (*avoid wasted normalizations*)
wenzelm@16601
  1168
            Logic.list_implies (Bs, C)
wenzelm@16601
  1169
          else (*normalize the new rule fully*)
wenzelm@16601
  1170
            Envir.norm_term env (Logic.list_implies (Bs, C))};
wenzelm@16601
  1171
    fun addprfs [] _ = Seq.empty
wenzelm@16601
  1172
      | addprfs ((t, u) :: apairs) n = Seq.make (fn () => Seq.pull
wenzelm@16601
  1173
          (Seq.mapp (newth n)
wenzelm@16656
  1174
            (Unify.unifiers (thy, Envir.empty maxidx, (t, u) :: tpairs))
wenzelm@16601
  1175
            (addprfs apairs (n + 1))))
wenzelm@16601
  1176
  in addprfs (Logic.assum_pairs (~1, Bi)) 1 end;
clasohm@0
  1177
wenzelm@250
  1178
(*Solve subgoal Bi of proof state B1...Bn/C by assumption.
clasohm@0
  1179
  Checks if Bi's conclusion is alpha-convertible to one of its assumptions*)
clasohm@0
  1180
fun eq_assumption i state =
wenzelm@16601
  1181
  let
wenzelm@16601
  1182
    val Thm {thy_ref, der, maxidx, shyps, hyps, prop, ...} = state;
wenzelm@16601
  1183
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1184
  in
wenzelm@16601
  1185
    (case find_index (op aconv) (Logic.assum_pairs (~1, Bi)) of
wenzelm@16601
  1186
      ~1 => raise THM ("eq_assumption", 0, [state])
wenzelm@16601
  1187
    | n =>
wenzelm@16601
  1188
        Thm {thy_ref = thy_ref,
wenzelm@16601
  1189
          der = Pt.infer_derivs' (Pt.assumption_proof Bs Bi (n + 1)) der,
wenzelm@16601
  1190
          maxidx = maxidx,
wenzelm@16601
  1191
          shyps = shyps,
wenzelm@16601
  1192
          hyps = hyps,
wenzelm@16601
  1193
          tpairs = tpairs,
wenzelm@16601
  1194
          prop = Logic.list_implies (Bs, C)})
clasohm@0
  1195
  end;
clasohm@0
  1196
clasohm@0
  1197
paulson@2671
  1198
(*For rotate_tac: fast rotation of assumptions of subgoal i*)
paulson@2671
  1199
fun rotate_rule k i state =
wenzelm@16601
  1200
  let
wenzelm@16601
  1201
    val Thm {thy_ref, der, maxidx, shyps, hyps, prop, ...} = state;
wenzelm@16601
  1202
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1203
    val params = Term.strip_all_vars Bi
wenzelm@16601
  1204
    and rest   = Term.strip_all_body Bi;
wenzelm@16601
  1205
    val asms   = Logic.strip_imp_prems rest
wenzelm@16601
  1206
    and concl  = Logic.strip_imp_concl rest;
wenzelm@16601
  1207
    val n = length asms;
wenzelm@16601
  1208
    val m = if k < 0 then n + k else k;
wenzelm@16601
  1209
    val Bi' =
wenzelm@16601
  1210
      if 0 = m orelse m = n then Bi
wenzelm@16601
  1211
      else if 0 < m andalso m < n then
wenzelm@16601
  1212
        let val (ps, qs) = splitAt (m, asms)
wenzelm@16601
  1213
        in list_all (params, Logic.list_implies (qs @ ps, concl)) end
wenzelm@16601
  1214
      else raise THM ("rotate_rule", k, [state]);
wenzelm@16601
  1215
  in
wenzelm@16601
  1216
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1217
      der = Pt.infer_derivs' (Pt.rotate_proof Bs Bi m) der,
wenzelm@16601
  1218
      maxidx = maxidx,
wenzelm@16601
  1219
      shyps = shyps,
wenzelm@16601
  1220
      hyps = hyps,
wenzelm@16601
  1221
      tpairs = tpairs,
wenzelm@16601
  1222
      prop = Logic.list_implies (Bs @ [Bi'], C)}
paulson@2671
  1223
  end;
paulson@2671
  1224
paulson@2671
  1225
paulson@7248
  1226
(*Rotates a rule's premises to the left by k, leaving the first j premises
paulson@7248
  1227
  unchanged.  Does nothing if k=0 or if k equals n-j, where n is the
wenzelm@16656
  1228
  number of premises.  Useful with etac and underlies defer_tac*)
paulson@7248
  1229
fun permute_prems j k rl =
wenzelm@16601
  1230
  let
wenzelm@16601
  1231
    val Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop} = rl;
wenzelm@16601
  1232
    val prems = Logic.strip_imp_prems prop
wenzelm@16601
  1233
    and concl = Logic.strip_imp_concl prop;
wenzelm@16601
  1234
    val moved_prems = List.drop (prems, j)
wenzelm@16601
  1235
    and fixed_prems = List.take (prems, j)
wenzelm@16601
  1236
      handle Subscript => raise THM ("permute_prems: j", j, [rl]);
wenzelm@16601
  1237
    val n_j = length moved_prems;
wenzelm@16601
  1238
    val m = if k < 0 then n_j + k else k;
wenzelm@16601
  1239
    val prop' =
wenzelm@16601
  1240
      if 0 = m orelse m = n_j then prop
wenzelm@16601
  1241
      else if 0 < m andalso m < n_j then
wenzelm@16601
  1242
        let val (ps, qs) = splitAt (m, moved_prems)
wenzelm@16601
  1243
        in Logic.list_implies (fixed_prems @ qs @ ps, concl) end
wenzelm@16725
  1244
      else raise THM ("permute_prems: k", k, [rl]);
wenzelm@16601
  1245
  in
wenzelm@16601
  1246
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1247
      der = Pt.infer_derivs' (Pt.permute_prems_prf prems j m) der,
wenzelm@16601
  1248
      maxidx = maxidx,
wenzelm@16601
  1249
      shyps = shyps,
wenzelm@16601
  1250
      hyps = hyps,
wenzelm@16601
  1251
      tpairs = tpairs,
wenzelm@16601
  1252
      prop = prop'}
paulson@7248
  1253
  end;
paulson@7248
  1254
paulson@7248
  1255
clasohm@0
  1256
(** User renaming of parameters in a subgoal **)
clasohm@0
  1257
clasohm@0
  1258
(*Calls error rather than raising an exception because it is intended
clasohm@0
  1259
  for top-level use -- exception handling would not make sense here.
clasohm@0
  1260
  The names in cs, if distinct, are used for the innermost parameters;
wenzelm@17868
  1261
  preceding parameters may be renamed to make all params distinct.*)
clasohm@0
  1262
fun rename_params_rule (cs, i) state =
wenzelm@16601
  1263
  let
wenzelm@16601
  1264
    val Thm {thy_ref, der, maxidx, shyps, hyps, ...} = state;
wenzelm@16601
  1265
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1266
    val iparams = map #1 (Logic.strip_params Bi);
wenzelm@16601
  1267
    val short = length iparams - length cs;
wenzelm@16601
  1268
    val newnames =
wenzelm@16601
  1269
      if short < 0 then error "More names than abstractions!"
wenzelm@16601
  1270
      else variantlist (Library.take (short, iparams), cs) @ cs;
wenzelm@16601
  1271
    val freenames = map (#1 o dest_Free) (term_frees Bi);
wenzelm@16601
  1272
    val newBi = Logic.list_rename_params (newnames, Bi);
wenzelm@250
  1273
  in
wenzelm@16601
  1274
    case findrep cs of
wenzelm@16601
  1275
      c :: _ => (warning ("Can't rename.  Bound variables not distinct: " ^ c); state)
wenzelm@16601
  1276
    | [] =>
wenzelm@16601
  1277
      (case cs inter_string freenames of
wenzelm@16601
  1278
        a :: _ => (warning ("Can't rename.  Bound/Free variable clash: " ^ a); state)
wenzelm@16601
  1279
      | [] =>
wenzelm@16601
  1280
        Thm {thy_ref = thy_ref,
wenzelm@16601
  1281
          der = der,
wenzelm@16601
  1282
          maxidx = maxidx,
wenzelm@16601
  1283
          shyps = shyps,
wenzelm@16601
  1284
          hyps = hyps,
wenzelm@16601
  1285
          tpairs = tpairs,
wenzelm@16601
  1286
          prop = Logic.list_implies (Bs @ [newBi], C)})
clasohm@0
  1287
  end;
clasohm@0
  1288
wenzelm@12982
  1289
clasohm@0
  1290
(*** Preservation of bound variable names ***)
clasohm@0
  1291
wenzelm@16601
  1292
fun rename_boundvars pat obj (thm as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@12982
  1293
  (case Term.rename_abs pat obj prop of
skalberg@15531
  1294
    NONE => thm
skalberg@15531
  1295
  | SOME prop' => Thm
wenzelm@16425
  1296
      {thy_ref = thy_ref,
wenzelm@12982
  1297
       der = der,
wenzelm@12982
  1298
       maxidx = maxidx,
wenzelm@12982
  1299
       hyps = hyps,
wenzelm@12982
  1300
       shyps = shyps,
berghofe@13658
  1301
       tpairs = tpairs,
wenzelm@12982
  1302
       prop = prop'});
berghofe@10416
  1303
clasohm@0
  1304
wenzelm@16656
  1305
(* strip_apply f (A, B) strips off all assumptions/parameters from A
clasohm@0
  1306
   introduced by lifting over B, and applies f to remaining part of A*)
clasohm@0
  1307
fun strip_apply f =
clasohm@0
  1308
  let fun strip(Const("==>",_)$ A1 $ B1,
wenzelm@250
  1309
                Const("==>",_)$ _  $ B2) = implies $ A1 $ strip(B1,B2)
wenzelm@250
  1310
        | strip((c as Const("all",_)) $ Abs(a,T,t1),
wenzelm@250
  1311
                      Const("all",_)  $ Abs(_,_,t2)) = c$Abs(a,T,strip(t1,t2))
wenzelm@250
  1312
        | strip(A,_) = f A
clasohm@0
  1313
  in strip end;
clasohm@0
  1314
clasohm@0
  1315
(*Use the alist to rename all bound variables and some unknowns in a term
clasohm@0
  1316
  dpairs = current disagreement pairs;  tpairs = permanent ones (flexflex);
clasohm@0
  1317
  Preserves unknowns in tpairs and on lhs of dpairs. *)
clasohm@0
  1318
fun rename_bvs([],_,_,_) = I
clasohm@0
  1319
  | rename_bvs(al,dpairs,tpairs,B) =
skalberg@15574
  1320
    let val vars = foldr add_term_vars []
skalberg@15574
  1321
                        (map fst dpairs @ map fst tpairs @ map snd tpairs)
wenzelm@250
  1322
        (*unknowns appearing elsewhere be preserved!*)
wenzelm@250
  1323
        val vids = map (#1 o #1 o dest_Var) vars;
wenzelm@250
  1324
        fun rename(t as Var((x,i),T)) =
wenzelm@17184
  1325
                (case AList.lookup (op =) al x of
skalberg@15531
  1326
                   SOME(y) => if x mem_string vids orelse y mem_string vids then t
wenzelm@250
  1327
                              else Var((y,i),T)
skalberg@15531
  1328
                 | NONE=> t)
clasohm@0
  1329
          | rename(Abs(x,T,t)) =
wenzelm@17184
  1330
              Abs (if_none (AList.lookup (op =) al x) x, T, rename t)
clasohm@0
  1331
          | rename(f$t) = rename f $ rename t
clasohm@0
  1332
          | rename(t) = t;
wenzelm@250
  1333
        fun strip_ren Ai = strip_apply rename (Ai,B)
clasohm@0
  1334
    in strip_ren end;
clasohm@0
  1335
clasohm@0
  1336
(*Function to rename bounds/unknowns in the argument, lifted over B*)
clasohm@0
  1337
fun rename_bvars(dpairs, tpairs, B) =
skalberg@15574
  1338
        rename_bvs(foldr Term.match_bvars [] dpairs, dpairs, tpairs, B);
clasohm@0
  1339
clasohm@0
  1340
clasohm@0
  1341
(*** RESOLUTION ***)
clasohm@0
  1342
lcp@721
  1343
(** Lifting optimizations **)
lcp@721
  1344
clasohm@0
  1345
(*strip off pairs of assumptions/parameters in parallel -- they are
clasohm@0
  1346
  identical because of lifting*)
wenzelm@250
  1347
fun strip_assums2 (Const("==>", _) $ _ $ B1,
wenzelm@250
  1348
                   Const("==>", _) $ _ $ B2) = strip_assums2 (B1,B2)
clasohm@0
  1349
  | strip_assums2 (Const("all",_)$Abs(a,T,t1),
wenzelm@250
  1350
                   Const("all",_)$Abs(_,_,t2)) =
clasohm@0
  1351
      let val (B1,B2) = strip_assums2 (t1,t2)
clasohm@0
  1352
      in  (Abs(a,T,B1), Abs(a,T,B2))  end
clasohm@0
  1353
  | strip_assums2 BB = BB;
clasohm@0
  1354
clasohm@0
  1355
lcp@721
  1356
(*Faster normalization: skip assumptions that were lifted over*)
lcp@721
  1357
fun norm_term_skip env 0 t = Envir.norm_term env t
lcp@721
  1358
  | norm_term_skip env n (Const("all",_)$Abs(a,T,t)) =
lcp@721
  1359
        let val Envir.Envir{iTs, ...} = env
berghofe@15797
  1360
            val T' = Envir.typ_subst_TVars iTs T
wenzelm@1238
  1361
            (*Must instantiate types of parameters because they are flattened;
lcp@721
  1362
              this could be a NEW parameter*)
lcp@721
  1363
        in  all T' $ Abs(a, T', norm_term_skip env n t)  end
lcp@721
  1364
  | norm_term_skip env n (Const("==>", _) $ A $ B) =
wenzelm@1238
  1365
        implies $ A $ norm_term_skip env (n-1) B
lcp@721
  1366
  | norm_term_skip env n t = error"norm_term_skip: too few assumptions??";
lcp@721
  1367
lcp@721
  1368
clasohm@0
  1369
(*Composition of object rule r=(A1...Am/B) with proof state s=(B1...Bn/C)
wenzelm@250
  1370
  Unifies B with Bi, replacing subgoal i    (1 <= i <= n)
clasohm@0
  1371
  If match then forbid instantiations in proof state
clasohm@0
  1372
  If lifted then shorten the dpair using strip_assums2.
clasohm@0
  1373
  If eres_flg then simultaneously proves A1 by assumption.
wenzelm@250
  1374
  nsubgoal is the number of new subgoals (written m above).
clasohm@0
  1375
  Curried so that resolution calls dest_state only once.
clasohm@0
  1376
*)
wenzelm@4270
  1377
local exception COMPOSE
clasohm@0
  1378
in
wenzelm@250
  1379
fun bicompose_aux match (state, (stpairs, Bs, Bi, C), lifted)
clasohm@0
  1380
                        (eres_flg, orule, nsubgoal) =
paulson@1529
  1381
 let val Thm{der=sder, maxidx=smax, shyps=sshyps, hyps=shyps, ...} = state
wenzelm@16425
  1382
     and Thm{der=rder, maxidx=rmax, shyps=rshyps, hyps=rhyps,
berghofe@13658
  1383
             tpairs=rtpairs, prop=rprop,...} = orule
paulson@1529
  1384
         (*How many hyps to skip over during normalization*)
wenzelm@1238
  1385
     and nlift = Logic.count_prems(strip_all_body Bi,
wenzelm@1238
  1386
                                   if eres_flg then ~1 else 0)
wenzelm@16601
  1387
     val thy_ref = merge_thys2 state orule;
wenzelm@16425
  1388
     val thy = Theory.deref thy_ref;
clasohm@0
  1389
     (** Add new theorem with prop = '[| Bs; As |] ==> C' to thq **)
berghofe@11518
  1390
     fun addth A (As, oldAs, rder', n) ((env as Envir.Envir {maxidx, ...}, tpairs), thq) =
wenzelm@250
  1391
       let val normt = Envir.norm_term env;
wenzelm@250
  1392
           (*perform minimal copying here by examining env*)
berghofe@13658
  1393
           val (ntpairs, normp) =
berghofe@13658
  1394
             if Envir.is_empty env then (tpairs, (Bs @ As, C))
wenzelm@250
  1395
             else
wenzelm@250
  1396
             let val ntps = map (pairself normt) tpairs
paulson@2147
  1397
             in if Envir.above (smax, env) then
wenzelm@1238
  1398
                  (*no assignments in state; normalize the rule only*)
wenzelm@1238
  1399
                  if lifted
berghofe@13658
  1400
                  then (ntps, (Bs @ map (norm_term_skip env nlift) As, C))
berghofe@13658
  1401
                  else (ntps, (Bs @ map normt As, C))
paulson@1529
  1402
                else if match then raise COMPOSE
wenzelm@250
  1403
                else (*normalize the new rule fully*)
berghofe@13658
  1404
                  (ntps, (map normt (Bs @ As), normt C))
wenzelm@250
  1405
             end
wenzelm@16601
  1406
           val th =
wenzelm@16425
  1407
             Thm{thy_ref = thy_ref,
berghofe@11518
  1408
                 der = Pt.infer_derivs
berghofe@11518
  1409
                   ((if Envir.is_empty env then I
berghofe@11518
  1410
                     else if Envir.above (smax, env) then
berghofe@11518
  1411
                       (fn f => fn der => f (Pt.norm_proof' env der))
berghofe@11518
  1412
                     else
berghofe@11518
  1413
                       curry op oo (Pt.norm_proof' env))
berghofe@11518
  1414
                    (Pt.bicompose_proof Bs oldAs As A n)) rder' sder,
wenzelm@2386
  1415
                 maxidx = maxidx,
wenzelm@16656
  1416
                 shyps = may_insert_env_sorts thy env (Sorts.union rshyps sshyps),
wenzelm@16601
  1417
                 hyps = union_hyps rhyps shyps,
berghofe@13658
  1418
                 tpairs = ntpairs,
berghofe@13658
  1419
                 prop = Logic.list_implies normp}
berghofe@11518
  1420
        in  Seq.cons(th, thq)  end  handle COMPOSE => thq;
berghofe@13658
  1421
     val (rAs,B) = Logic.strip_prems(nsubgoal, [], rprop)
clasohm@0
  1422
       handle TERM _ => raise THM("bicompose: rule", 0, [orule,state]);
clasohm@0
  1423
     (*Modify assumptions, deleting n-th if n>0 for e-resolution*)
clasohm@0
  1424
     fun newAs(As0, n, dpairs, tpairs) =
berghofe@11518
  1425
       let val (As1, rder') =
berghofe@11518
  1426
         if !Logic.auto_rename orelse not lifted then (As0, rder)
berghofe@11518
  1427
         else (map (rename_bvars(dpairs,tpairs,B)) As0,
berghofe@11518
  1428
           Pt.infer_derivs' (Pt.map_proof_terms
berghofe@11518
  1429
             (rename_bvars (dpairs, tpairs, Bound 0)) I) rder);
berghofe@11518
  1430
       in (map (Logic.flatten_params n) As1, As1, rder', n)
wenzelm@250
  1431
          handle TERM _ =>
wenzelm@250
  1432
          raise THM("bicompose: 1st premise", 0, [orule])
clasohm@0
  1433
       end;
paulson@2147
  1434
     val env = Envir.empty(Int.max(rmax,smax));
clasohm@0
  1435
     val BBi = if lifted then strip_assums2(B,Bi) else (B,Bi);
clasohm@0
  1436
     val dpairs = BBi :: (rtpairs@stpairs);
clasohm@0
  1437
     (*elim-resolution: try each assumption in turn.  Initially n=1*)
berghofe@11518
  1438
     fun tryasms (_, _, _, []) = Seq.empty
berghofe@11518
  1439
       | tryasms (A, As, n, (t,u)::apairs) =
wenzelm@16425
  1440
          (case Seq.pull(Unify.unifiers(thy, env, (t,u)::dpairs))  of
wenzelm@16425
  1441
              NONE                   => tryasms (A, As, n+1, apairs)
wenzelm@16425
  1442
            | cell as SOME((_,tpairs),_) =>
wenzelm@16425
  1443
                Seq.it_right (addth A (newAs(As, n, [BBi,(u,t)], tpairs)))
wenzelm@16425
  1444
                    (Seq.make(fn()=> cell),
wenzelm@16425
  1445
                     Seq.make(fn()=> Seq.pull (tryasms(A, As, n+1, apairs)))))
clasohm@0
  1446
     fun eres [] = raise THM("bicompose: no premises", 0, [orule,state])
skalberg@15531
  1447
       | eres (A1::As) = tryasms(SOME A1, As, 1, Logic.assum_pairs(nlift+1,A1))
clasohm@0
  1448
     (*ordinary resolution*)
skalberg@15531
  1449
     fun res(NONE) = Seq.empty
skalberg@15531
  1450
       | res(cell as SOME((_,tpairs),_)) =
skalberg@15531
  1451
             Seq.it_right (addth NONE (newAs(rev rAs, 0, [BBi], tpairs)))
wenzelm@4270
  1452
                       (Seq.make (fn()=> cell), Seq.empty)
clasohm@0
  1453
 in  if eres_flg then eres(rev rAs)
wenzelm@16425
  1454
     else res(Seq.pull(Unify.unifiers(thy, env, dpairs)))
clasohm@0
  1455
 end;
wenzelm@7528
  1456
end;
clasohm@0
  1457
clasohm@0
  1458
clasohm@0
  1459
fun bicompose match arg i state =
clasohm@0
  1460
    bicompose_aux match (state, dest_state(state,i), false) arg;
clasohm@0
  1461
clasohm@0
  1462
(*Quick test whether rule is resolvable with the subgoal with hyps Hs
clasohm@0
  1463
  and conclusion B.  If eres_flg then checks 1st premise of rule also*)
clasohm@0
  1464
fun could_bires (Hs, B, eres_flg, rule) =
wenzelm@16847
  1465
    let fun could_reshyp (A1::_) = exists (fn H => could_unify (A1, H)) Hs
wenzelm@250
  1466
          | could_reshyp [] = false;  (*no premise -- illegal*)
wenzelm@250
  1467
    in  could_unify(concl_of rule, B) andalso
wenzelm@250
  1468
        (not eres_flg  orelse  could_reshyp (prems_of rule))
clasohm@0
  1469
    end;
clasohm@0
  1470
clasohm@0
  1471
(*Bi-resolution of a state with a list of (flag,rule) pairs.
clasohm@0
  1472
  Puts the rule above:  rule/state.  Renames vars in the rules. *)
wenzelm@250
  1473
fun biresolution match brules i state =
wenzelm@18035
  1474
    let val (stpairs, Bs, Bi, C) = dest_state(state,i);
wenzelm@18035
  1475
        val lift = lift_rule (cgoal_of state i);
wenzelm@250
  1476
        val B = Logic.strip_assums_concl Bi;
wenzelm@250
  1477
        val Hs = Logic.strip_assums_hyp Bi;
wenzelm@250
  1478
        val comp = bicompose_aux match (state, (stpairs, Bs, Bi, C), true);
wenzelm@4270
  1479
        fun res [] = Seq.empty
wenzelm@250
  1480
          | res ((eres_flg, rule)::brules) =
nipkow@13642
  1481
              if !Pattern.trace_unify_fail orelse
nipkow@13642
  1482
                 could_bires (Hs, B, eres_flg, rule)
wenzelm@4270
  1483
              then Seq.make (*delay processing remainder till needed*)
skalberg@15531
  1484
                  (fn()=> SOME(comp (eres_flg, lift rule, nprems_of rule),
wenzelm@250
  1485
                               res brules))
wenzelm@250
  1486
              else res brules
wenzelm@4270
  1487
    in  Seq.flat (res brules)  end;
clasohm@0
  1488
clasohm@0
  1489
wenzelm@2509
  1490
(*** Oracles ***)
wenzelm@2509
  1491
wenzelm@16425
  1492
fun invoke_oracle_i thy1 name =
wenzelm@3812
  1493
  let
wenzelm@3812
  1494
    val oracle =
wenzelm@17412
  1495
      (case Symtab.lookup (#2 (#oracles (Theory.rep_theory thy1))) name of
skalberg@15531
  1496
        NONE => raise THM ("Unknown oracle: " ^ name, 0, [])
skalberg@15531
  1497
      | SOME (f, _) => f);
wenzelm@16847
  1498
    val thy_ref1 = Theory.self_ref thy1;
wenzelm@3812
  1499
  in
wenzelm@16425
  1500
    fn (thy2, data) =>
wenzelm@3812
  1501
      let
wenzelm@16847
  1502
        val thy' = Theory.merge (Theory.deref thy_ref1, thy2);
wenzelm@14828
  1503
        val (prop, T, maxidx) =
wenzelm@16425
  1504
          Sign.certify_term (Sign.pp thy') thy' (oracle (thy', data));
wenzelm@3812
  1505
      in
wenzelm@3812
  1506
        if T <> propT then
wenzelm@3812
  1507
          raise THM ("Oracle's result must have type prop: " ^ name, 0, [])
wenzelm@16601
  1508
        else
wenzelm@16601
  1509
          Thm {thy_ref = Theory.self_ref thy',
berghofe@11518
  1510
            der = (true, Pt.oracle_proof name prop),
wenzelm@3812
  1511
            maxidx = maxidx,
wenzelm@16656
  1512
            shyps = may_insert_term_sorts thy' prop [],
wenzelm@16425
  1513
            hyps = [],
berghofe@13658
  1514
            tpairs = [],
wenzelm@16601
  1515
            prop = prop}
wenzelm@3812
  1516
      end
wenzelm@3812
  1517
  end;
wenzelm@3812
  1518
wenzelm@15672
  1519
fun invoke_oracle thy =
wenzelm@16425
  1520
  invoke_oracle_i thy o NameSpace.intern (Theory.oracle_space thy);
wenzelm@15672
  1521
clasohm@0
  1522
end;
paulson@1503
  1523
wenzelm@6089
  1524
structure BasicThm: BASIC_THM = Thm;
wenzelm@6089
  1525
open BasicThm;