src/HOL/Hahn_Banach/Hahn_Banach_Ext_Lemmas.thy
author wenzelm
Mon Apr 25 16:09:26 2016 +0200 (2016-04-25)
changeset 63040 eb4ddd18d635
parent 61879 e4f9d8f094fe
permissions -rw-r--r--
eliminated old 'def';
tuned comments;
wenzelm@31795
     1
(*  Title:      HOL/Hahn_Banach/Hahn_Banach_Ext_Lemmas.thy
wenzelm@7917
     2
    Author:     Gertrud Bauer, TU Munich
wenzelm@7917
     3
*)
wenzelm@7917
     4
wenzelm@58889
     5
section \<open>Extending non-maximal functions\<close>
wenzelm@7917
     6
wenzelm@31795
     7
theory Hahn_Banach_Ext_Lemmas
wenzelm@31795
     8
imports Function_Norm
wenzelm@27612
     9
begin
wenzelm@7917
    10
wenzelm@58744
    11
text \<open>
wenzelm@61879
    12
  In this section the following context is presumed. Let \<open>E\<close> be a real vector
wenzelm@61879
    13
  space with a seminorm \<open>q\<close> on \<open>E\<close>. \<open>F\<close> is a subspace of \<open>E\<close> and \<open>f\<close> a linear
wenzelm@61879
    14
  function on \<open>F\<close>. We consider a subspace \<open>H\<close> of \<open>E\<close> that is a superspace of
wenzelm@61879
    15
  \<open>F\<close> and a linear form \<open>h\<close> on \<open>H\<close>. \<open>H\<close> is a not equal to \<open>E\<close> and \<open>x\<^sub>0\<close> is an
wenzelm@61879
    16
  element in \<open>E - H\<close>. \<open>H\<close> is extended to the direct sum \<open>H' = H + lin x\<^sub>0\<close>, so
wenzelm@61879
    17
  for any \<open>x \<in> H'\<close> the decomposition of \<open>x = y + a \<cdot> x\<close> with \<open>y \<in> H\<close> is
wenzelm@61879
    18
  unique. \<open>h'\<close> is defined on \<open>H'\<close> by \<open>h' x = h y + a \<cdot> \<xi>\<close> for a certain \<open>\<xi>\<close>.
wenzelm@7917
    19
wenzelm@61540
    20
  Subsequently we show some properties of this extension \<open>h'\<close> of \<open>h\<close>.
wenzelm@7917
    21
wenzelm@61486
    22
  \<^medskip>
wenzelm@61540
    23
  This lemma will be used to show the existence of a linear extension of \<open>f\<close>
wenzelm@61540
    24
  (see page \pageref{ex-xi-use}). It is a consequence of the completeness of
wenzelm@61540
    25
  \<open>\<real>\<close>. To show
wenzelm@10687
    26
  \begin{center}
wenzelm@10687
    27
  \begin{tabular}{l}
wenzelm@61539
    28
  \<open>\<exists>\<xi>. \<forall>y \<in> F. a y \<le> \<xi> \<and> \<xi> \<le> b y\<close>
wenzelm@10687
    29
  \end{tabular}
wenzelm@10687
    30
  \end{center}
wenzelm@61540
    31
  \<^noindent> it suffices to show that
wenzelm@10687
    32
  \begin{center}
wenzelm@10687
    33
  \begin{tabular}{l}
wenzelm@61539
    34
  \<open>\<forall>u \<in> F. \<forall>v \<in> F. a u \<le> b v\<close>
wenzelm@10687
    35
  \end{tabular}
wenzelm@10687
    36
  \end{center}
wenzelm@58744
    37
\<close>
wenzelm@7917
    38
wenzelm@10687
    39
lemma ex_xi:
ballarin@27611
    40
  assumes "vectorspace F"
wenzelm@13515
    41
  assumes r: "\<And>u v. u \<in> F \<Longrightarrow> v \<in> F \<Longrightarrow> a u \<le> b v"
wenzelm@13515
    42
  shows "\<exists>xi::real. \<forall>y \<in> F. a y \<le> xi \<and> xi \<le> b y"
wenzelm@10007
    43
proof -
ballarin@29234
    44
  interpret vectorspace F by fact
wenzelm@58744
    45
  txt \<open>From the completeness of the reals follows:
wenzelm@61539
    46
    The set \<open>S = {a u. u \<in> F}\<close> has a supremum, if it is
wenzelm@58744
    47
    non-empty and has an upper bound.\<close>
wenzelm@7917
    48
wenzelm@13515
    49
  let ?S = "{a u | u. u \<in> F}"
wenzelm@13515
    50
  have "\<exists>xi. lub ?S xi"
wenzelm@13515
    51
  proof (rule real_complete)
wenzelm@13515
    52
    have "a 0 \<in> ?S" by blast
wenzelm@13515
    53
    then show "\<exists>X. X \<in> ?S" ..
wenzelm@13515
    54
    have "\<forall>y \<in> ?S. y \<le> b 0"
wenzelm@13515
    55
    proof
wenzelm@13515
    56
      fix y assume y: "y \<in> ?S"
wenzelm@13515
    57
      then obtain u where u: "u \<in> F" and y: "y = a u" by blast
wenzelm@13515
    58
      from u and zero have "a u \<le> b 0" by (rule r)
wenzelm@13515
    59
      with y show "y \<le> b 0" by (simp only:)
wenzelm@10007
    60
    qed
wenzelm@13515
    61
    then show "\<exists>u. \<forall>y \<in> ?S. y \<le> u" ..
wenzelm@10007
    62
  qed
wenzelm@13515
    63
  then obtain xi where xi: "lub ?S xi" ..
wenzelm@13515
    64
  {
wenzelm@13515
    65
    fix y assume "y \<in> F"
wenzelm@13515
    66
    then have "a y \<in> ?S" by blast
wenzelm@13515
    67
    with xi have "a y \<le> xi" by (rule lub.upper)
wenzelm@60458
    68
  }
wenzelm@60458
    69
  moreover {
wenzelm@13515
    70
    fix y assume y: "y \<in> F"
wenzelm@13515
    71
    from xi have "xi \<le> b y"
wenzelm@13515
    72
    proof (rule lub.least)
wenzelm@13515
    73
      fix au assume "au \<in> ?S"
wenzelm@13515
    74
      then obtain u where u: "u \<in> F" and au: "au = a u" by blast
wenzelm@13515
    75
      from u y have "a u \<le> b y" by (rule r)
wenzelm@13515
    76
      with au show "au \<le> b y" by (simp only:)
wenzelm@10007
    77
    qed
wenzelm@60458
    78
  }
wenzelm@60458
    79
  ultimately show "\<exists>xi. \<forall>y \<in> F. a y \<le> xi \<and> xi \<le> b y" by blast
wenzelm@10007
    80
qed
wenzelm@7917
    81
wenzelm@58744
    82
text \<open>
wenzelm@61486
    83
  \<^medskip>
wenzelm@61879
    84
  The function \<open>h'\<close> is defined as a \<open>h' x = h y + a \<cdot> \<xi>\<close> where \<open>x = y + a \<cdot> \<xi>\<close>
wenzelm@61879
    85
  is a linear extension of \<open>h\<close> to \<open>H'\<close>.
wenzelm@58744
    86
\<close>
wenzelm@7917
    87
wenzelm@10687
    88
lemma h'_lf:
wenzelm@63040
    89
  assumes h'_def: "\<And>x. h' x = (let (y, a) =
wenzelm@63040
    90
      SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H in h y + a * xi)"
wenzelm@63040
    91
    and H'_def: "H' = H + lin x0"
wenzelm@13515
    92
    and HE: "H \<unlhd> E"
ballarin@27611
    93
  assumes "linearform H h"
wenzelm@13515
    94
  assumes x0: "x0 \<notin> H"  "x0 \<in> E"  "x0 \<noteq> 0"
ballarin@27611
    95
  assumes E: "vectorspace E"
wenzelm@13515
    96
  shows "linearform H' h'"
ballarin@27611
    97
proof -
ballarin@29234
    98
  interpret linearform H h by fact
ballarin@29234
    99
  interpret vectorspace E by fact
wenzelm@27612
   100
  show ?thesis
wenzelm@27612
   101
  proof
wenzelm@58744
   102
    note E = \<open>vectorspace E\<close>
ballarin@27611
   103
    have H': "vectorspace H'"
ballarin@27611
   104
    proof (unfold H'_def)
wenzelm@58744
   105
      from \<open>x0 \<in> E\<close>
ballarin@27611
   106
      have "lin x0 \<unlhd> E" ..
krauss@47445
   107
      with HE show "vectorspace (H + lin x0)" using E ..
ballarin@27611
   108
    qed
ballarin@27611
   109
    {
ballarin@27611
   110
      fix x1 x2 assume x1: "x1 \<in> H'" and x2: "x2 \<in> H'"
ballarin@27611
   111
      show "h' (x1 + x2) = h' x1 + h' x2"
ballarin@27611
   112
      proof -
wenzelm@32960
   113
        from H' x1 x2 have "x1 + x2 \<in> H'"
ballarin@27611
   114
          by (rule vectorspace.add_closed)
wenzelm@32960
   115
        with x1 x2 obtain y y1 y2 a a1 a2 where
ballarin@27611
   116
          x1x2: "x1 + x2 = y + a \<cdot> x0" and y: "y \<in> H"
wenzelm@13515
   117
          and x1_rep: "x1 = y1 + a1 \<cdot> x0" and y1: "y1 \<in> H"
wenzelm@13515
   118
          and x2_rep: "x2 = y2 + a2 \<cdot> x0" and y2: "y2 \<in> H"
wenzelm@27612
   119
          unfolding H'_def sum_def lin_def by blast
wenzelm@32960
   120
        
wenzelm@32960
   121
        have ya: "y1 + y2 = y \<and> a1 + a2 = a" using E HE _ y x0
wenzelm@58999
   122
        proof (rule decomp_H') text_raw \<open>\label{decomp-H-use}\<close>
ballarin@27611
   123
          from HE y1 y2 show "y1 + y2 \<in> H"
ballarin@27611
   124
            by (rule subspace.add_closed)
ballarin@27611
   125
          from x0 and HE y y1 y2
ballarin@27611
   126
          have "x0 \<in> E"  "y \<in> E"  "y1 \<in> E"  "y2 \<in> E" by auto
ballarin@27611
   127
          with x1_rep x2_rep have "(y1 + y2) + (a1 + a2) \<cdot> x0 = x1 + x2"
ballarin@27611
   128
            by (simp add: add_ac add_mult_distrib2)
ballarin@27611
   129
          also note x1x2
ballarin@27611
   130
          finally show "(y1 + y2) + (a1 + a2) \<cdot> x0 = y + a \<cdot> x0" .
wenzelm@32960
   131
        qed
wenzelm@32960
   132
        
wenzelm@32960
   133
        from h'_def x1x2 E HE y x0
wenzelm@32960
   134
        have "h' (x1 + x2) = h y + a * xi"
ballarin@27611
   135
          by (rule h'_definite)
wenzelm@32960
   136
        also have "\<dots> = h (y1 + y2) + (a1 + a2) * xi"
ballarin@27611
   137
          by (simp only: ya)
wenzelm@32960
   138
        also from y1 y2 have "h (y1 + y2) = h y1 + h y2"
ballarin@27611
   139
          by simp
wenzelm@32960
   140
        also have "\<dots> + (a1 + a2) * xi = (h y1 + a1 * xi) + (h y2 + a2 * xi)"
webertj@49962
   141
          by (simp add: distrib_right)
wenzelm@32960
   142
        also from h'_def x1_rep E HE y1 x0
wenzelm@32960
   143
        have "h y1 + a1 * xi = h' x1"
ballarin@27611
   144
          by (rule h'_definite [symmetric])
wenzelm@32960
   145
        also from h'_def x2_rep E HE y2 x0
wenzelm@32960
   146
        have "h y2 + a2 * xi = h' x2"
ballarin@27611
   147
          by (rule h'_definite [symmetric])
wenzelm@32960
   148
        finally show ?thesis .
wenzelm@10007
   149
      qed
ballarin@27611
   150
    next
ballarin@27611
   151
      fix x1 c assume x1: "x1 \<in> H'"
ballarin@27611
   152
      show "h' (c \<cdot> x1) = c * (h' x1)"
ballarin@27611
   153
      proof -
wenzelm@32960
   154
        from H' x1 have ax1: "c \<cdot> x1 \<in> H'"
ballarin@27611
   155
          by (rule vectorspace.mult_closed)
wenzelm@32960
   156
        with x1 obtain y a y1 a1 where
wenzelm@27612
   157
            cx1_rep: "c \<cdot> x1 = y + a \<cdot> x0" and y: "y \<in> H"
wenzelm@13515
   158
          and x1_rep: "x1 = y1 + a1 \<cdot> x0" and y1: "y1 \<in> H"
wenzelm@27612
   159
          unfolding H'_def sum_def lin_def by blast
wenzelm@32960
   160
        
wenzelm@32960
   161
        have ya: "c \<cdot> y1 = y \<and> c * a1 = a" using E HE _ y x0
wenzelm@32960
   162
        proof (rule decomp_H')
ballarin@27611
   163
          from HE y1 show "c \<cdot> y1 \<in> H"
ballarin@27611
   164
            by (rule subspace.mult_closed)
ballarin@27611
   165
          from x0 and HE y y1
ballarin@27611
   166
          have "x0 \<in> E"  "y \<in> E"  "y1 \<in> E" by auto
ballarin@27611
   167
          with x1_rep have "c \<cdot> y1 + (c * a1) \<cdot> x0 = c \<cdot> x1"
ballarin@27611
   168
            by (simp add: mult_assoc add_mult_distrib1)
ballarin@27611
   169
          also note cx1_rep
ballarin@27611
   170
          finally show "c \<cdot> y1 + (c * a1) \<cdot> x0 = y + a \<cdot> x0" .
wenzelm@32960
   171
        qed
wenzelm@32960
   172
        
wenzelm@32960
   173
        from h'_def cx1_rep E HE y x0 have "h' (c \<cdot> x1) = h y + a * xi"
ballarin@27611
   174
          by (rule h'_definite)
wenzelm@32960
   175
        also have "\<dots> = h (c \<cdot> y1) + (c * a1) * xi"
ballarin@27611
   176
          by (simp only: ya)
wenzelm@32960
   177
        also from y1 have "h (c \<cdot> y1) = c * h y1"
ballarin@27611
   178
          by simp
wenzelm@32960
   179
        also have "\<dots> + (c * a1) * xi = c * (h y1 + a1 * xi)"
webertj@49962
   180
          by (simp only: distrib_left)
wenzelm@32960
   181
        also from h'_def x1_rep E HE y1 x0 have "h y1 + a1 * xi = h' x1"
ballarin@27611
   182
          by (rule h'_definite [symmetric])
wenzelm@32960
   183
        finally show ?thesis .
wenzelm@10007
   184
      qed
ballarin@27611
   185
    }
ballarin@27611
   186
  qed
wenzelm@10007
   187
qed
wenzelm@7917
   188
wenzelm@61486
   189
text \<open>
wenzelm@61486
   190
  \<^medskip>
wenzelm@61540
   191
  The linear extension \<open>h'\<close> of \<open>h\<close> is bounded by the seminorm \<open>p\<close>.
wenzelm@61540
   192
\<close>
wenzelm@7917
   193
bauerg@9374
   194
lemma h'_norm_pres:
wenzelm@63040
   195
  assumes h'_def: "\<And>x. h' x = (let (y, a) =
wenzelm@63040
   196
      SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H in h y + a * xi)"
wenzelm@63040
   197
    and H'_def: "H' = H + lin x0"
wenzelm@13515
   198
    and x0: "x0 \<notin> H"  "x0 \<in> E"  "x0 \<noteq> 0"
ballarin@27611
   199
  assumes E: "vectorspace E" and HE: "subspace H E"
ballarin@27611
   200
    and "seminorm E p" and "linearform H h"
wenzelm@13515
   201
  assumes a: "\<forall>y \<in> H. h y \<le> p y"
wenzelm@13515
   202
    and a': "\<forall>y \<in> H. - p (y + x0) - h y \<le> xi \<and> xi \<le> p (y + x0) - h y"
wenzelm@13515
   203
  shows "\<forall>x \<in> H'. h' x \<le> p x"
ballarin@27611
   204
proof -
ballarin@29234
   205
  interpret vectorspace E by fact
ballarin@29234
   206
  interpret subspace H E by fact
ballarin@29234
   207
  interpret seminorm E p by fact
ballarin@29234
   208
  interpret linearform H h by fact
wenzelm@27612
   209
  show ?thesis
wenzelm@27612
   210
  proof
ballarin@27611
   211
    fix x assume x': "x \<in> H'"
ballarin@27611
   212
    show "h' x \<le> p x"
ballarin@27611
   213
    proof -
ballarin@27611
   214
      from a' have a1: "\<forall>ya \<in> H. - p (ya + x0) - h ya \<le> xi"
wenzelm@32960
   215
        and a2: "\<forall>ya \<in> H. xi \<le> p (ya + x0) - h ya" by auto
ballarin@27611
   216
      from x' obtain y a where
wenzelm@27612
   217
          x_rep: "x = y + a \<cdot> x0" and y: "y \<in> H"
wenzelm@32960
   218
        unfolding H'_def sum_def lin_def by blast
ballarin@27611
   219
      from y have y': "y \<in> E" ..
ballarin@27611
   220
      from y have ay: "inverse a \<cdot> y \<in> H" by simp
ballarin@27611
   221
      
ballarin@27611
   222
      from h'_def x_rep E HE y x0 have "h' x = h y + a * xi"
wenzelm@32960
   223
        by (rule h'_definite)
ballarin@27611
   224
      also have "\<dots> \<le> p (y + a \<cdot> x0)"
ballarin@27611
   225
      proof (rule linorder_cases)
wenzelm@32960
   226
        assume z: "a = 0"
wenzelm@32960
   227
        then have "h y + a * xi = h y" by simp
wenzelm@32960
   228
        also from a y have "\<dots> \<le> p y" ..
wenzelm@32960
   229
        also from x0 y' z have "p y = p (y + a \<cdot> x0)" by simp
wenzelm@32960
   230
        finally show ?thesis .
ballarin@27611
   231
      next
wenzelm@61539
   232
        txt \<open>In the case \<open>a < 0\<close>, we use \<open>a\<^sub>1\<close>
wenzelm@61539
   233
          with \<open>ya\<close> taken as \<open>y / a\<close>:\<close>
wenzelm@32960
   234
        assume lz: "a < 0" then have nz: "a \<noteq> 0" by simp
wenzelm@32960
   235
        from a1 ay
wenzelm@32960
   236
        have "- p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y) \<le> xi" ..
wenzelm@32960
   237
        with lz have "a * xi \<le>
wenzelm@13515
   238
          a * (- p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y))"
ballarin@27611
   239
          by (simp add: mult_left_mono_neg order_less_imp_le)
wenzelm@32960
   240
        
wenzelm@32960
   241
        also have "\<dots> =
wenzelm@13515
   242
          - a * (p (inverse a \<cdot> y + x0)) - a * (h (inverse a \<cdot> y))"
wenzelm@32960
   243
          by (simp add: right_diff_distrib)
wenzelm@32960
   244
        also from lz x0 y' have "- a * (p (inverse a \<cdot> y + x0)) =
wenzelm@13515
   245
          p (a \<cdot> (inverse a \<cdot> y + x0))"
ballarin@27611
   246
          by (simp add: abs_homogenous)
wenzelm@32960
   247
        also from nz x0 y' have "\<dots> = p (y + a \<cdot> x0)"
ballarin@27611
   248
          by (simp add: add_mult_distrib1 mult_assoc [symmetric])
wenzelm@32960
   249
        also from nz y have "a * (h (inverse a \<cdot> y)) =  h y"
ballarin@27611
   250
          by simp
wenzelm@32960
   251
        finally have "a * xi \<le> p (y + a \<cdot> x0) - h y" .
wenzelm@32960
   252
        then show ?thesis by simp
ballarin@27611
   253
      next
wenzelm@61539
   254
        txt \<open>In the case \<open>a > 0\<close>, we use \<open>a\<^sub>2\<close>
wenzelm@61539
   255
          with \<open>ya\<close> taken as \<open>y / a\<close>:\<close>
wenzelm@32960
   256
        assume gz: "0 < a" then have nz: "a \<noteq> 0" by simp
wenzelm@32960
   257
        from a2 ay
wenzelm@32960
   258
        have "xi \<le> p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y)" ..
wenzelm@32960
   259
        with gz have "a * xi \<le>
wenzelm@13515
   260
          a * (p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y))"
ballarin@27611
   261
          by simp
wenzelm@32960
   262
        also have "\<dots> = a * p (inverse a \<cdot> y + x0) - a * h (inverse a \<cdot> y)"
wenzelm@32960
   263
          by (simp add: right_diff_distrib)
wenzelm@32960
   264
        also from gz x0 y'
wenzelm@32960
   265
        have "a * p (inverse a \<cdot> y + x0) = p (a \<cdot> (inverse a \<cdot> y + x0))"
ballarin@27611
   266
          by (simp add: abs_homogenous)
wenzelm@32960
   267
        also from nz x0 y' have "\<dots> = p (y + a \<cdot> x0)"
ballarin@27611
   268
          by (simp add: add_mult_distrib1 mult_assoc [symmetric])
wenzelm@32960
   269
        also from nz y have "a * h (inverse a \<cdot> y) = h y"
ballarin@27611
   270
          by simp
wenzelm@32960
   271
        finally have "a * xi \<le> p (y + a \<cdot> x0) - h y" .
wenzelm@32960
   272
        then show ?thesis by simp
ballarin@27611
   273
      qed
ballarin@27611
   274
      also from x_rep have "\<dots> = p x" by (simp only:)
ballarin@27611
   275
      finally show ?thesis .
wenzelm@10007
   276
    qed
wenzelm@10007
   277
  qed
wenzelm@13515
   278
qed
wenzelm@7917
   279
wenzelm@10007
   280
end