src/HOL/Tools/Sledgehammer/sledgehammer_atp_translate.ML
author blanchet
Wed Dec 15 11:26:28 2010 +0100 (2010-12-15)
changeset 41138 eb80538166b6
parent 41137 8b634031b2a5
child 41140 9c68004b8c9d
permissions -rw-r--r--
implemented partially-typed "tags" type encoding
blanchet@40114
     1
(*  Title:      HOL/Tools/Sledgehammer/sledgehammer_atp_translate.ML
blanchet@38282
     2
    Author:     Fabian Immler, TU Muenchen
blanchet@38282
     3
    Author:     Makarius
blanchet@38282
     4
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@38282
     5
blanchet@39494
     6
Translation of HOL to FOL for Sledgehammer.
blanchet@38282
     7
*)
blanchet@38282
     8
blanchet@40068
     9
signature SLEDGEHAMMER_ATP_TRANSLATE =
blanchet@38282
    10
sig
blanchet@38282
    11
  type 'a problem = 'a ATP_Problem.problem
blanchet@40114
    12
  type translated_formula
blanchet@38282
    13
blanchet@41134
    14
  datatype type_system =
blanchet@41134
    15
    Tags of bool |
blanchet@41134
    16
    Preds of bool |
blanchet@41134
    17
    Const_Args |
blanchet@41134
    18
    No_Types
blanchet@41134
    19
blanchet@41138
    20
  val precise_overloaded_args : bool Unsynchronized.ref
blanchet@40204
    21
  val fact_prefix : string
blanchet@38282
    22
  val conjecture_prefix : string
blanchet@41136
    23
  val is_fully_typed : type_system -> bool
blanchet@41138
    24
  val types_dangerous_types : type_system -> bool
blanchet@41136
    25
  val num_atp_type_args : theory -> type_system -> string -> int
blanchet@41088
    26
  val translate_atp_fact :
blanchet@39005
    27
    Proof.context -> (string * 'a) * thm
blanchet@41091
    28
    -> translated_formula option * ((string * 'a) * thm)
blanchet@40059
    29
  val prepare_atp_problem :
blanchet@41134
    30
    Proof.context -> bool -> bool -> type_system -> bool -> term list -> term
blanchet@41091
    31
    -> (translated_formula option * ((string * 'a) * thm)) list
blanchet@38818
    32
    -> string problem * string Symtab.table * int * (string * 'a) list vector
blanchet@38282
    33
end;
blanchet@38282
    34
blanchet@41138
    35
structure Sledgehammer_ATP_Translate (*### : SLEDGEHAMMER_ATP_TRANSLATE *) =
blanchet@38282
    36
struct
blanchet@38282
    37
blanchet@38282
    38
open ATP_Problem
blanchet@39494
    39
open Metis_Translate
blanchet@38282
    40
open Sledgehammer_Util
blanchet@38282
    41
blanchet@41138
    42
(* FIXME: Remove references once appropriate defaults have been determined
blanchet@41138
    43
   empirically. *)
blanchet@41138
    44
val precise_overloaded_args = Unsynchronized.ref false
blanchet@41138
    45
blanchet@40204
    46
val fact_prefix = "fact_"
blanchet@38282
    47
val conjecture_prefix = "conj_"
blanchet@38282
    48
val helper_prefix = "help_"
blanchet@38282
    49
val class_rel_clause_prefix = "clrel_";
blanchet@38282
    50
val arity_clause_prefix = "arity_"
blanchet@39975
    51
val tfree_prefix = "tfree_"
blanchet@38282
    52
blanchet@38282
    53
(* Freshness almost guaranteed! *)
blanchet@38282
    54
val sledgehammer_weak_prefix = "Sledgehammer:"
blanchet@38282
    55
blanchet@40114
    56
type translated_formula =
blanchet@38752
    57
  {name: string,
blanchet@38752
    58
   kind: kind,
blanchet@38752
    59
   combformula: (name, combterm) formula,
blanchet@38752
    60
   ctypes_sorts: typ list}
blanchet@38282
    61
blanchet@41134
    62
datatype type_system =
blanchet@41134
    63
  Tags of bool |
blanchet@41134
    64
  Preds of bool |
blanchet@41134
    65
  Const_Args |
blanchet@41134
    66
  No_Types
blanchet@41134
    67
blanchet@41134
    68
fun is_fully_typed (Tags full_types) = full_types
blanchet@41134
    69
  | is_fully_typed (Preds full_types) = full_types
blanchet@41134
    70
  | is_fully_typed _ = false
blanchet@41134
    71
blanchet@41138
    72
fun types_dangerous_types (Tags _) = true
blanchet@41138
    73
  | types_dangerous_types (Preds _) = true
blanchet@41138
    74
  | types_dangerous_types _ = false
blanchet@41138
    75
blanchet@41136
    76
(* This is an approximation. If it returns "true" for a constant that isn't
blanchet@41136
    77
   overloaded (i.e., that has one uniform definition), needless clutter is
blanchet@41136
    78
   generated; if it returns "false" for an overloaded constant, the ATP gets a
blanchet@41136
    79
   license to do unsound reasoning if the type system is "overloaded_args". *)
blanchet@41136
    80
fun is_overloaded thy s =
blanchet@41138
    81
  not (!precise_overloaded_args) orelse
blanchet@41136
    82
  length (Defs.specifications_of (Theory.defs_of thy) s) > 1
blanchet@41136
    83
blanchet@41136
    84
fun needs_type_args thy type_sys s =
blanchet@41136
    85
  case type_sys of
blanchet@41138
    86
    Tags full_types => not full_types andalso is_overloaded thy s
blanchet@41138
    87
  | Preds full_types => is_overloaded thy s (* FIXME: could be more precise *)
blanchet@41138
    88
  | Const_Args => is_overloaded thy s
blanchet@41136
    89
  | No_Types => false
blanchet@41136
    90
blanchet@41136
    91
fun num_atp_type_args thy type_sys s =
blanchet@41136
    92
  if needs_type_args thy type_sys s then num_type_args thy s else 0
blanchet@41136
    93
blanchet@41137
    94
fun atp_type_literals_for_types type_sys Ts =
blanchet@41137
    95
  if type_sys = No_Types then [] else type_literals_for_types Ts
blanchet@41137
    96
blanchet@38282
    97
fun mk_anot phi = AConn (ANot, [phi])
blanchet@38282
    98
fun mk_aconn c phi1 phi2 = AConn (c, [phi1, phi2])
blanchet@38282
    99
fun mk_ahorn [] phi = phi
blanchet@38282
   100
  | mk_ahorn (phi :: phis) psi =
blanchet@38282
   101
    AConn (AImplies, [fold (mk_aconn AAnd) phis phi, psi])
blanchet@38282
   102
blanchet@38282
   103
fun combformula_for_prop thy =
blanchet@38282
   104
  let
blanchet@40145
   105
    val do_term = combterm_from_term thy
blanchet@38282
   106
    fun do_quant bs q s T t' =
blanchet@38518
   107
      let val s = Name.variant (map fst bs) s in
blanchet@38518
   108
        do_formula ((s, T) :: bs) t'
blanchet@38518
   109
        #>> (fn phi => AQuant (q, [`make_bound_var s], phi))
blanchet@38518
   110
      end
blanchet@38282
   111
    and do_conn bs c t1 t2 =
blanchet@38282
   112
      do_formula bs t1 ##>> do_formula bs t2
blanchet@38282
   113
      #>> (fn (phi1, phi2) => AConn (c, [phi1, phi2]))
blanchet@38282
   114
    and do_formula bs t =
blanchet@38282
   115
      case t of
blanchet@38282
   116
        @{const Not} $ t1 =>
blanchet@38282
   117
        do_formula bs t1 #>> (fn phi => AConn (ANot, [phi]))
blanchet@38282
   118
      | Const (@{const_name All}, _) $ Abs (s, T, t') =>
blanchet@38282
   119
        do_quant bs AForall s T t'
blanchet@38282
   120
      | Const (@{const_name Ex}, _) $ Abs (s, T, t') =>
blanchet@38282
   121
        do_quant bs AExists s T t'
haftmann@38795
   122
      | @{const HOL.conj} $ t1 $ t2 => do_conn bs AAnd t1 t2
haftmann@38795
   123
      | @{const HOL.disj} $ t1 $ t2 => do_conn bs AOr t1 t2
haftmann@38786
   124
      | @{const HOL.implies} $ t1 $ t2 => do_conn bs AImplies t1 t2
haftmann@38864
   125
      | Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])) $ t1 $ t2 =>
blanchet@38282
   126
        do_conn bs AIff t1 t2
blanchet@38282
   127
      | _ => (fn ts => do_term bs (Envir.eta_contract t)
blanchet@38282
   128
                       |>> AAtom ||> union (op =) ts)
blanchet@38282
   129
  in do_formula [] end
blanchet@38282
   130
blanchet@38618
   131
val presimplify_term = prop_of o Meson.presimplify oo Skip_Proof.make_thm
blanchet@38282
   132
blanchet@38282
   133
fun concealed_bound_name j = sledgehammer_weak_prefix ^ Int.toString j
blanchet@38282
   134
fun conceal_bounds Ts t =
blanchet@38282
   135
  subst_bounds (map (Free o apfst concealed_bound_name)
blanchet@38282
   136
                    (0 upto length Ts - 1 ~~ Ts), t)
blanchet@38282
   137
fun reveal_bounds Ts =
blanchet@38282
   138
  subst_atomic (map (fn (j, T) => (Free (concealed_bound_name j, T), Bound j))
blanchet@38282
   139
                    (0 upto length Ts - 1 ~~ Ts))
blanchet@38282
   140
blanchet@38608
   141
(* Removes the lambdas from an equation of the form "t = (%x. u)".
blanchet@39890
   142
   (Cf. "extensionalize_theorem" in "Meson_Clausify".) *)
blanchet@38608
   143
fun extensionalize_term t =
blanchet@38608
   144
  let
blanchet@38608
   145
    fun aux j (@{const Trueprop} $ t') = @{const Trueprop} $ aux j t'
blanchet@38608
   146
      | aux j (t as Const (s, Type (_, [Type (_, [_, T']),
blanchet@38608
   147
                                        Type (_, [_, res_T])]))
blanchet@38608
   148
                    $ t2 $ Abs (var_s, var_T, t')) =
haftmann@38864
   149
        if s = @{const_name HOL.eq} orelse s = @{const_name "=="} then
blanchet@38608
   150
          let val var_t = Var ((var_s, j), var_T) in
blanchet@38608
   151
            Const (s, T' --> T' --> res_T)
blanchet@38608
   152
              $ betapply (t2, var_t) $ subst_bound (var_t, t')
blanchet@38608
   153
            |> aux (j + 1)
blanchet@38608
   154
          end
blanchet@38608
   155
        else
blanchet@38608
   156
          t
blanchet@38608
   157
      | aux _ t = t
blanchet@38608
   158
  in aux (maxidx_of_term t + 1) t end
blanchet@38608
   159
blanchet@38282
   160
fun introduce_combinators_in_term ctxt kind t =
blanchet@38491
   161
  let val thy = ProofContext.theory_of ctxt in
blanchet@38491
   162
    if Meson.is_fol_term thy t then
blanchet@38491
   163
      t
blanchet@38491
   164
    else
blanchet@38491
   165
      let
blanchet@38491
   166
        fun aux Ts t =
blanchet@38491
   167
          case t of
blanchet@38491
   168
            @{const Not} $ t1 => @{const Not} $ aux Ts t1
blanchet@38491
   169
          | (t0 as Const (@{const_name All}, _)) $ Abs (s, T, t') =>
blanchet@38491
   170
            t0 $ Abs (s, T, aux (T :: Ts) t')
blanchet@38652
   171
          | (t0 as Const (@{const_name All}, _)) $ t1 =>
blanchet@38652
   172
            aux Ts (t0 $ eta_expand Ts t1 1)
blanchet@38491
   173
          | (t0 as Const (@{const_name Ex}, _)) $ Abs (s, T, t') =>
blanchet@38491
   174
            t0 $ Abs (s, T, aux (T :: Ts) t')
blanchet@38652
   175
          | (t0 as Const (@{const_name Ex}, _)) $ t1 =>
blanchet@38652
   176
            aux Ts (t0 $ eta_expand Ts t1 1)
haftmann@38795
   177
          | (t0 as @{const HOL.conj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
haftmann@38795
   178
          | (t0 as @{const HOL.disj}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
haftmann@38786
   179
          | (t0 as @{const HOL.implies}) $ t1 $ t2 => t0 $ aux Ts t1 $ aux Ts t2
haftmann@38864
   180
          | (t0 as Const (@{const_name HOL.eq}, Type (_, [@{typ bool}, _])))
blanchet@38491
   181
              $ t1 $ t2 =>
blanchet@38491
   182
            t0 $ aux Ts t1 $ aux Ts t2
blanchet@38491
   183
          | _ => if not (exists_subterm (fn Abs _ => true | _ => false) t) then
blanchet@38491
   184
                   t
blanchet@38491
   185
                 else
blanchet@38491
   186
                   t |> conceal_bounds Ts
blanchet@38491
   187
                     |> Envir.eta_contract
blanchet@38491
   188
                     |> cterm_of thy
blanchet@39890
   189
                     |> Meson_Clausify.introduce_combinators_in_cterm
blanchet@38491
   190
                     |> prop_of |> Logic.dest_equals |> snd
blanchet@38491
   191
                     |> reveal_bounds Ts
blanchet@39370
   192
        val (t, ctxt') = Variable.import_terms true [t] ctxt |>> the_single
blanchet@38491
   193
      in t |> aux [] |> singleton (Variable.export_terms ctxt' ctxt) end
blanchet@38491
   194
      handle THM _ =>
blanchet@38491
   195
             (* A type variable of sort "{}" will make abstraction fail. *)
blanchet@38613
   196
             if kind = Conjecture then HOLogic.false_const
blanchet@38613
   197
             else HOLogic.true_const
blanchet@38491
   198
  end
blanchet@38282
   199
blanchet@38282
   200
(* Metis's use of "resolve_tac" freezes the schematic variables. We simulate the
blanchet@38282
   201
   same in Sledgehammer to prevent the discovery of unreplable proofs. *)
blanchet@38282
   202
fun freeze_term t =
blanchet@38282
   203
  let
blanchet@38282
   204
    fun aux (t $ u) = aux t $ aux u
blanchet@38282
   205
      | aux (Abs (s, T, t)) = Abs (s, T, aux t)
blanchet@38282
   206
      | aux (Var ((s, i), T)) =
blanchet@38282
   207
        Free (sledgehammer_weak_prefix ^ s ^ "_" ^ string_of_int i, T)
blanchet@38282
   208
      | aux t = t
blanchet@38282
   209
  in t |> exists_subterm is_Var t ? aux end
blanchet@38282
   210
blanchet@38604
   211
(* "Object_Logic.atomize_term" isn't as powerful as it could be; for example,
blanchet@38604
   212
    it leaves metaequalities over "prop"s alone. *)
blanchet@38605
   213
val atomize_term =
blanchet@38605
   214
  let
blanchet@38605
   215
    fun aux (@{const Trueprop} $ t1) = t1
blanchet@38605
   216
      | aux (Const (@{const_name all}, _) $ Abs (s, T, t')) =
blanchet@38605
   217
        HOLogic.all_const T $ Abs (s, T, aux t')
blanchet@38605
   218
      | aux (@{const "==>"} $ t1 $ t2) = HOLogic.mk_imp (pairself aux (t1, t2))
blanchet@38605
   219
      | aux (Const (@{const_name "=="}, Type (_, [@{typ prop}, _])) $ t1 $ t2) =
blanchet@38605
   220
        HOLogic.eq_const HOLogic.boolT $ aux t1 $ aux t2
blanchet@38605
   221
      | aux (Const (@{const_name "=="}, Type (_, [T, _])) $ t1 $ t2) =
blanchet@38605
   222
        HOLogic.eq_const T $ t1 $ t2
blanchet@38605
   223
      | aux _ = raise Fail "aux"
blanchet@38605
   224
  in perhaps (try aux) end
blanchet@38604
   225
blanchet@40204
   226
(* making fact and conjecture formulas *)
blanchet@38613
   227
fun make_formula ctxt presimp name kind t =
blanchet@38282
   228
  let
blanchet@38282
   229
    val thy = ProofContext.theory_of ctxt
blanchet@38608
   230
    val t = t |> Envir.beta_eta_contract
blanchet@38652
   231
              |> transform_elim_term
blanchet@38604
   232
              |> atomize_term
blanchet@38652
   233
    val need_trueprop = (fastype_of t = HOLogic.boolT)
blanchet@38652
   234
    val t = t |> need_trueprop ? HOLogic.mk_Trueprop
blanchet@38282
   235
              |> extensionalize_term
blanchet@38282
   236
              |> presimp ? presimplify_term thy
blanchet@38282
   237
              |> perhaps (try (HOLogic.dest_Trueprop))
blanchet@38282
   238
              |> introduce_combinators_in_term ctxt kind
blanchet@38613
   239
              |> kind <> Axiom ? freeze_term
blanchet@38282
   240
    val (combformula, ctypes_sorts) = combformula_for_prop thy t []
blanchet@38282
   241
  in
blanchet@38752
   242
    {name = name, combformula = combformula, kind = kind,
blanchet@38752
   243
     ctypes_sorts = ctypes_sorts}
blanchet@38282
   244
  end
blanchet@38282
   245
blanchet@41091
   246
fun make_fact ctxt presimp ((name, _), th) =
blanchet@38618
   247
  case make_formula ctxt presimp name Axiom (prop_of th) of
blanchet@38752
   248
    {combformula = AAtom (CombConst (("c_True", _), _, _)), ...} => NONE
blanchet@41091
   249
  | formula => SOME formula
blanchet@38613
   250
fun make_conjecture ctxt ts =
blanchet@38613
   251
  let val last = length ts - 1 in
blanchet@38613
   252
    map2 (fn j => make_formula ctxt true (Int.toString j)
blanchet@38613
   253
                               (if j = last then Conjecture else Hypothesis))
blanchet@38613
   254
         (0 upto last) ts
blanchet@38613
   255
  end
blanchet@38282
   256
blanchet@38282
   257
(** Helper facts **)
blanchet@38282
   258
blanchet@38282
   259
fun count_combterm (CombConst ((s, _), _, _)) =
blanchet@38282
   260
    Symtab.map_entry s (Integer.add 1)
blanchet@38282
   261
  | count_combterm (CombVar _) = I
blanchet@38282
   262
  | count_combterm (CombApp (t1, t2)) = fold count_combterm [t1, t2]
blanchet@38282
   263
fun count_combformula (AQuant (_, _, phi)) = count_combformula phi
blanchet@38282
   264
  | count_combformula (AConn (_, phis)) = fold count_combformula phis
blanchet@38282
   265
  | count_combformula (AAtom tm) = count_combterm tm
blanchet@40114
   266
fun count_translated_formula ({combformula, ...} : translated_formula) =
blanchet@38282
   267
  count_combformula combformula
blanchet@38282
   268
blanchet@38282
   269
val optional_helpers =
blanchet@39953
   270
  [(["c_COMBI"], @{thms Meson.COMBI_def}),
blanchet@39953
   271
   (["c_COMBK"], @{thms Meson.COMBK_def}),
blanchet@39953
   272
   (["c_COMBB"], @{thms Meson.COMBB_def}),
blanchet@39953
   273
   (["c_COMBC"], @{thms Meson.COMBC_def}),
blanchet@39953
   274
   (["c_COMBS"], @{thms Meson.COMBS_def})]
blanchet@41134
   275
val optional_fully_typed_helpers =
blanchet@38678
   276
  [(["c_True", "c_False", "c_If"], @{thms True_or_False}),
blanchet@38678
   277
   (["c_If"], @{thms if_True if_False})]
blanchet@39954
   278
val mandatory_helpers = @{thms Metis.fequal_def}
blanchet@38282
   279
blanchet@38282
   280
val init_counters =
blanchet@41134
   281
  [optional_helpers, optional_fully_typed_helpers] |> maps (maps fst)
blanchet@38678
   282
  |> sort_distinct string_ord |> map (rpair 0) |> Symtab.make
blanchet@38282
   283
blanchet@41134
   284
fun get_helper_facts ctxt is_FO type_sys conjectures facts =
blanchet@38282
   285
  let
blanchet@40069
   286
    val ct =
blanchet@40204
   287
      fold (fold count_translated_formula) [conjectures, facts] init_counters
blanchet@38282
   288
    fun is_needed c = the (Symtab.lookup ct c) > 0
blanchet@38698
   289
    fun baptize th = ((Thm.get_name_hint th, false), th)
blanchet@38282
   290
  in
blanchet@38282
   291
    (optional_helpers
blanchet@41134
   292
     |> is_fully_typed type_sys ? append optional_fully_typed_helpers
blanchet@38282
   293
     |> maps (fn (ss, ths) =>
blanchet@38698
   294
                 if exists is_needed ss then map baptize ths else [])) @
blanchet@38698
   295
    (if is_FO then [] else map baptize mandatory_helpers)
blanchet@41091
   296
    |> map_filter (make_fact ctxt false)
blanchet@38282
   297
  end
blanchet@38282
   298
blanchet@41091
   299
fun translate_atp_fact ctxt = `(make_fact ctxt true)
blanchet@39004
   300
blanchet@41134
   301
fun translate_formulas ctxt type_sys hyp_ts concl_t rich_facts =
blanchet@38282
   302
  let
blanchet@38282
   303
    val thy = ProofContext.theory_of ctxt
blanchet@41091
   304
    val fact_ts = map (prop_of o snd o snd) rich_facts
blanchet@41091
   305
    val (facts, fact_names) =
blanchet@41091
   306
      rich_facts
blanchet@41091
   307
      |> map_filter (fn (NONE, _) => NONE
blanchet@41091
   308
                      | (SOME fact, (name, _)) => SOME (fact, name))
blanchet@41091
   309
      |> ListPair.unzip
blanchet@40204
   310
    (* Remove existing facts from the conjecture, as this can dramatically
blanchet@39005
   311
       boost an ATP's performance (for some reason). *)
blanchet@40204
   312
    val hyp_ts = hyp_ts |> filter_out (member (op aconv) fact_ts)
blanchet@38282
   313
    val goal_t = Logic.list_implies (hyp_ts, concl_t)
blanchet@38282
   314
    val is_FO = Meson.is_fol_term thy goal_t
blanchet@38282
   315
    val subs = tfree_classes_of_terms [goal_t]
blanchet@40204
   316
    val supers = tvar_classes_of_terms fact_ts
blanchet@40204
   317
    val tycons = type_consts_of_terms thy (goal_t :: fact_ts)
blanchet@40204
   318
    (* TFrees in the conjecture; TVars in the facts *)
blanchet@38613
   319
    val conjectures = make_conjecture ctxt (hyp_ts @ [concl_t])
blanchet@41134
   320
    val helper_facts = get_helper_facts ctxt is_FO type_sys conjectures facts
blanchet@41137
   321
    val (supers', arity_clauses) =
blanchet@41137
   322
      if type_sys = No_Types then ([], [])
blanchet@41137
   323
      else make_arity_clauses thy tycons supers
blanchet@38282
   324
    val class_rel_clauses = make_class_rel_clauses thy subs supers'
blanchet@38282
   325
  in
blanchet@40204
   326
    (fact_names |> map single |> Vector.fromList,
blanchet@40204
   327
     (conjectures, facts, helper_facts, class_rel_clauses, arity_clauses))
blanchet@38282
   328
  end
blanchet@38282
   329
blanchet@41138
   330
fun tag_with_type ty t = ATerm (`I type_tag_name, [ty, t])
blanchet@38282
   331
blanchet@38282
   332
fun fo_term_for_combtyp (CombTVar name) = ATerm (name, [])
blanchet@38282
   333
  | fo_term_for_combtyp (CombTFree name) = ATerm (name, [])
blanchet@38282
   334
  | fo_term_for_combtyp (CombType (name, tys)) =
blanchet@38282
   335
    ATerm (name, map fo_term_for_combtyp tys)
blanchet@38282
   336
blanchet@38282
   337
fun fo_literal_for_type_literal (TyLitVar (class, name)) =
blanchet@38282
   338
    (true, ATerm (class, [ATerm (name, [])]))
blanchet@38282
   339
  | fo_literal_for_type_literal (TyLitFree (class, name)) =
blanchet@38282
   340
    (true, ATerm (class, [ATerm (name, [])]))
blanchet@38282
   341
blanchet@38282
   342
fun formula_for_fo_literal (pos, t) = AAtom t |> not pos ? mk_anot
blanchet@38282
   343
blanchet@41138
   344
(* Finite types such as "unit", "bool", "bool * bool", and "bool => bool" are
blanchet@41138
   345
   considered dangerous because their "exhaust" properties can easily lead to
blanchet@41138
   346
   unsound ATP proofs. The checks below are an (unsound) approximation of
blanchet@41138
   347
   finiteness. *)
blanchet@41138
   348
blanchet@41138
   349
fun is_dtyp_dangerous _ (Datatype_Aux.DtTFree _) = true
blanchet@41138
   350
  | is_dtyp_dangerous ctxt (Datatype_Aux.DtType (s, Us)) =
blanchet@41138
   351
    is_type_constr_dangerous ctxt s andalso forall (is_dtyp_dangerous ctxt) Us
blanchet@41138
   352
  | is_dtyp_dangerous _ (Datatype_Aux.DtRec _) = false
blanchet@41138
   353
and is_type_dangerous ctxt (Type (s, Ts)) =
blanchet@41138
   354
    is_type_constr_dangerous ctxt s andalso forall (is_type_dangerous ctxt) Ts
blanchet@41138
   355
  | is_type_dangerous ctxt _ = false
blanchet@41138
   356
and is_type_constr_dangerous ctxt s =
blanchet@41138
   357
  let val thy = ProofContext.theory_of ctxt in
blanchet@41138
   358
    case Datatype_Data.get_info thy s of
blanchet@41138
   359
      SOME {descr, ...} =>
blanchet@41138
   360
      forall (fn (_, (_, _, constrs)) =>
blanchet@41138
   361
                 forall (forall (is_dtyp_dangerous ctxt) o snd) constrs) descr
blanchet@41138
   362
    | NONE =>
blanchet@41138
   363
      case Typedef.get_info ctxt s of
blanchet@41138
   364
        ({rep_type, ...}, _) :: _ => is_type_dangerous ctxt rep_type
blanchet@41138
   365
      | [] => true
blanchet@41138
   366
  end
blanchet@41138
   367
blanchet@41138
   368
fun is_combtyp_dangerous ctxt (CombType ((s, _), tys)) =
blanchet@41138
   369
    (case strip_prefix_and_unascii type_const_prefix s of
blanchet@41138
   370
       SOME s' => forall (is_combtyp_dangerous ctxt) tys andalso
blanchet@41138
   371
                  is_type_constr_dangerous ctxt (invert_const s')
blanchet@41138
   372
     | NONE => false)
blanchet@41138
   373
  | is_combtyp_dangerous _ _ = false
blanchet@41138
   374
blanchet@41138
   375
fun should_tag_with_type ctxt (Tags full_types) ty =
blanchet@41138
   376
    full_types orelse is_combtyp_dangerous ctxt ty
blanchet@41138
   377
  | should_tag_with_type _ _ _ = false
blanchet@41138
   378
blanchet@41138
   379
fun fo_term_for_combterm ctxt type_sys =
blanchet@38282
   380
  let
blanchet@41138
   381
    val thy = ProofContext.theory_of ctxt
blanchet@38282
   382
    fun aux top_level u =
blanchet@38282
   383
      let
blanchet@38282
   384
        val (head, args) = strip_combterm_comb u
blanchet@38282
   385
        val (x, ty_args) =
blanchet@38282
   386
          case head of
blanchet@38282
   387
            CombConst (name as (s, s'), _, ty_args) =>
blanchet@41136
   388
            (case strip_prefix_and_unascii const_prefix s of
blanchet@41136
   389
               NONE =>
blanchet@41136
   390
               if s = "equal" then
blanchet@41136
   391
                 if top_level andalso length args = 2 then (name, [])
blanchet@41136
   392
                 else (("c_fequal", @{const_name Metis.fequal}), ty_args)
blanchet@41136
   393
               else
blanchet@41136
   394
                 (name, ty_args)
blanchet@41136
   395
             | SOME s'' =>
blanchet@41136
   396
               let
blanchet@41136
   397
                 val s'' = invert_const s''
blanchet@41136
   398
                 val ty_args =
blanchet@41136
   399
                   if needs_type_args thy type_sys s'' then ty_args else []
blanchet@41136
   400
                in
blanchet@41136
   401
                  if top_level then
blanchet@41136
   402
                    case s of
blanchet@41136
   403
                      "c_False" => (("$false", s'), [])
blanchet@41136
   404
                    | "c_True" => (("$true", s'), [])
blanchet@41136
   405
                    | _ => (name, ty_args)
blanchet@41136
   406
                  else
blanchet@41136
   407
                    (name, ty_args)
blanchet@41136
   408
                end)
blanchet@38282
   409
          | CombVar (name, _) => (name, [])
blanchet@38282
   410
          | CombApp _ => raise Fail "impossible \"CombApp\""
blanchet@41138
   411
        val t =
blanchet@41138
   412
          ATerm (x, map fo_term_for_combtyp ty_args @ map (aux false) args)
blanchet@41138
   413
        val ty = combtyp_of u
blanchet@38282
   414
    in
blanchet@41138
   415
      t |> (if should_tag_with_type ctxt type_sys ty then
blanchet@41138
   416
              tag_with_type (fo_term_for_combtyp ty)
blanchet@41134
   417
            else
blanchet@41134
   418
              I)
blanchet@38282
   419
    end
blanchet@38282
   420
  in aux true end
blanchet@38282
   421
blanchet@41138
   422
fun formula_for_combformula ctxt type_sys =
blanchet@38282
   423
  let
blanchet@38282
   424
    fun aux (AQuant (q, xs, phi)) = AQuant (q, xs, aux phi)
blanchet@38282
   425
      | aux (AConn (c, phis)) = AConn (c, map aux phis)
blanchet@41138
   426
      | aux (AAtom tm) = AAtom (fo_term_for_combterm ctxt type_sys tm)
blanchet@38282
   427
  in aux end
blanchet@38282
   428
blanchet@41138
   429
fun formula_for_fact ctxt type_sys
blanchet@40204
   430
                     ({combformula, ctypes_sorts, ...} : translated_formula) =
blanchet@38282
   431
  mk_ahorn (map (formula_for_fo_literal o fo_literal_for_type_literal)
blanchet@41137
   432
                (atp_type_literals_for_types type_sys ctypes_sorts))
blanchet@41138
   433
           (formula_for_combformula ctxt type_sys combformula)
blanchet@38282
   434
blanchet@41138
   435
fun problem_line_for_fact ctxt prefix type_sys (formula as {name, kind, ...}) =
blanchet@41138
   436
  Fof (prefix ^ ascii_of name, kind, formula_for_fact ctxt type_sys formula)
blanchet@38282
   437
blanchet@38282
   438
fun problem_line_for_class_rel_clause (ClassRelClause {name, subclass,
blanchet@38282
   439
                                                       superclass, ...}) =
blanchet@38282
   440
  let val ty_arg = ATerm (("T", "T"), []) in
blanchet@38282
   441
    Fof (class_rel_clause_prefix ^ ascii_of name, Axiom,
blanchet@38282
   442
         AConn (AImplies, [AAtom (ATerm (subclass, [ty_arg])),
blanchet@38282
   443
                           AAtom (ATerm (superclass, [ty_arg]))]))
blanchet@38282
   444
  end
blanchet@38282
   445
blanchet@38282
   446
fun fo_literal_for_arity_literal (TConsLit (c, t, args)) =
blanchet@38282
   447
    (true, ATerm (c, [ATerm (t, map (fn arg => ATerm (arg, [])) args)]))
blanchet@38282
   448
  | fo_literal_for_arity_literal (TVarLit (c, sort)) =
blanchet@38282
   449
    (false, ATerm (c, [ATerm (sort, [])]))
blanchet@38282
   450
blanchet@38282
   451
fun problem_line_for_arity_clause (ArityClause {name, conclLit, premLits,
blanchet@38282
   452
                                                ...}) =
blanchet@38282
   453
  Fof (arity_clause_prefix ^ ascii_of name, Axiom,
blanchet@38282
   454
       mk_ahorn (map (formula_for_fo_literal o apfst not
blanchet@38282
   455
                      o fo_literal_for_arity_literal) premLits)
blanchet@38282
   456
                (formula_for_fo_literal
blanchet@38282
   457
                     (fo_literal_for_arity_literal conclLit)))
blanchet@38282
   458
blanchet@41138
   459
fun problem_line_for_conjecture ctxt type_sys
blanchet@40114
   460
        ({name, kind, combformula, ...} : translated_formula) =
blanchet@38282
   461
  Fof (conjecture_prefix ^ name, kind,
blanchet@41138
   462
       formula_for_combformula ctxt type_sys combformula)
blanchet@38282
   463
blanchet@41137
   464
fun free_type_literals_for_conjecture type_sys
blanchet@40114
   465
        ({ctypes_sorts, ...} : translated_formula) =
blanchet@41137
   466
  ctypes_sorts |> atp_type_literals_for_types type_sys
blanchet@41137
   467
               |> map fo_literal_for_type_literal
blanchet@38282
   468
blanchet@39975
   469
fun problem_line_for_free_type j lit =
blanchet@39975
   470
  Fof (tfree_prefix ^ string_of_int j, Hypothesis, formula_for_fo_literal lit)
blanchet@41137
   471
fun problem_lines_for_free_types type_sys conjectures =
blanchet@38282
   472
  let
blanchet@41137
   473
    val litss = map (free_type_literals_for_conjecture type_sys) conjectures
blanchet@38282
   474
    val lits = fold (union (op =)) litss []
blanchet@39975
   475
  in map2 problem_line_for_free_type (0 upto length lits - 1) lits end
blanchet@38282
   476
blanchet@38282
   477
(** "hBOOL" and "hAPP" **)
blanchet@38282
   478
blanchet@38282
   479
type const_info = {min_arity: int, max_arity: int, sub_level: bool}
blanchet@38282
   480
blanchet@38282
   481
fun consider_term top_level (ATerm ((s, _), ts)) =
blanchet@39452
   482
  (if is_atp_variable s then
blanchet@38282
   483
     I
blanchet@38282
   484
   else
blanchet@38282
   485
     let val n = length ts in
blanchet@38282
   486
       Symtab.map_default
blanchet@38282
   487
           (s, {min_arity = n, max_arity = 0, sub_level = false})
blanchet@38282
   488
           (fn {min_arity, max_arity, sub_level} =>
blanchet@38282
   489
               {min_arity = Int.min (n, min_arity),
blanchet@38282
   490
                max_arity = Int.max (n, max_arity),
blanchet@38282
   491
                sub_level = sub_level orelse not top_level})
blanchet@38282
   492
     end)
blanchet@41138
   493
  #> fold (consider_term (top_level andalso s = type_tag_name)) ts
blanchet@38282
   494
fun consider_formula (AQuant (_, _, phi)) = consider_formula phi
blanchet@38282
   495
  | consider_formula (AConn (_, phis)) = fold consider_formula phis
blanchet@38282
   496
  | consider_formula (AAtom tm) = consider_term true tm
blanchet@38282
   497
blanchet@38282
   498
fun consider_problem_line (Fof (_, _, phi)) = consider_formula phi
blanchet@38282
   499
fun consider_problem problem = fold (fold consider_problem_line o snd) problem
blanchet@38282
   500
blanchet@38282
   501
fun const_table_for_problem explicit_apply problem =
blanchet@38282
   502
  if explicit_apply then NONE
blanchet@38282
   503
  else SOME (Symtab.empty |> consider_problem problem)
blanchet@38282
   504
blanchet@41134
   505
fun min_arity_of thy type_sys NONE s =
blanchet@41138
   506
    (if s = "equal" orelse s = type_tag_name orelse
blanchet@38282
   507
        String.isPrefix type_const_prefix s orelse
blanchet@38282
   508
        String.isPrefix class_prefix s then
blanchet@38282
   509
       16383 (* large number *)
blanchet@38748
   510
     else case strip_prefix_and_unascii const_prefix s of
blanchet@41136
   511
       SOME s' => num_atp_type_args thy type_sys (invert_const s')
blanchet@38282
   512
     | NONE => 0)
blanchet@38282
   513
  | min_arity_of _ _ (SOME the_const_tab) s =
blanchet@38282
   514
    case Symtab.lookup the_const_tab s of
blanchet@38282
   515
      SOME ({min_arity, ...} : const_info) => min_arity
blanchet@38282
   516
    | NONE => 0
blanchet@38282
   517
blanchet@38282
   518
fun full_type_of (ATerm ((s, _), [ty, _])) =
blanchet@41138
   519
    if s = type_tag_name then SOME ty else NONE
blanchet@41138
   520
  | full_type_of _ = NONE
blanchet@38282
   521
blanchet@38282
   522
fun list_hAPP_rev _ t1 [] = t1
blanchet@38282
   523
  | list_hAPP_rev NONE t1 (t2 :: ts2) =
blanchet@38282
   524
    ATerm (`I "hAPP", [list_hAPP_rev NONE t1 ts2, t2])
blanchet@38282
   525
  | list_hAPP_rev (SOME ty) t1 (t2 :: ts2) =
blanchet@41138
   526
    case full_type_of t2 of
blanchet@41138
   527
      SOME ty2 =>
blanchet@41138
   528
      let val ty' = ATerm (`make_fixed_type_const @{type_name fun},
blanchet@41138
   529
                           [ty2, ty]) in
blanchet@41138
   530
        ATerm (`I "hAPP",
blanchet@41138
   531
               [tag_with_type ty' (list_hAPP_rev (SOME ty') t1 ts2), t2])
blanchet@41138
   532
      end
blanchet@41138
   533
    | NONE => list_hAPP_rev NONE t1 (t2 :: ts2)
blanchet@38282
   534
blanchet@41134
   535
fun repair_applications_in_term thy type_sys const_tab =
blanchet@38282
   536
  let
blanchet@38282
   537
    fun aux opt_ty (ATerm (name as (s, _), ts)) =
blanchet@41138
   538
      if s = type_tag_name then
blanchet@38282
   539
        case ts of
blanchet@38282
   540
          [t1, t2] => ATerm (name, [aux NONE t1, aux (SOME t1) t2])
blanchet@41138
   541
        | _ => raise Fail "malformed type tag"
blanchet@38282
   542
      else
blanchet@38282
   543
        let
blanchet@38282
   544
          val ts = map (aux NONE) ts
blanchet@41134
   545
          val (ts1, ts2) = chop (min_arity_of thy type_sys const_tab s) ts
blanchet@38282
   546
        in list_hAPP_rev opt_ty (ATerm (name, ts1)) (rev ts2) end
blanchet@38282
   547
  in aux NONE end
blanchet@38282
   548
blanchet@38282
   549
fun boolify t = ATerm (`I "hBOOL", [t])
blanchet@38282
   550
blanchet@38282
   551
(* True if the constant ever appears outside of the top-level position in
blanchet@38282
   552
   literals, or if it appears with different arities (e.g., because of different
blanchet@38282
   553
   type instantiations). If false, the constant always receives all of its
blanchet@38282
   554
   arguments and is used as a predicate. *)
blanchet@38282
   555
fun is_predicate NONE s =
blanchet@38589
   556
    s = "equal" orelse s = "$false" orelse s = "$true" orelse
blanchet@38589
   557
    String.isPrefix type_const_prefix s orelse String.isPrefix class_prefix s
blanchet@38282
   558
  | is_predicate (SOME the_const_tab) s =
blanchet@38282
   559
    case Symtab.lookup the_const_tab s of
blanchet@38282
   560
      SOME {min_arity, max_arity, sub_level} =>
blanchet@38282
   561
      not sub_level andalso min_arity = max_arity
blanchet@38282
   562
    | NONE => false
blanchet@38282
   563
blanchet@38282
   564
fun repair_predicates_in_term const_tab (t as ATerm ((s, _), ts)) =
blanchet@41138
   565
  if s = type_tag_name then
blanchet@38282
   566
    case ts of
blanchet@38282
   567
      [_, t' as ATerm ((s', _), _)] =>
blanchet@38282
   568
      if is_predicate const_tab s' then t' else boolify t
blanchet@41138
   569
    | _ => raise Fail "malformed type tag"
blanchet@38282
   570
  else
blanchet@38282
   571
    t |> not (is_predicate const_tab s) ? boolify
blanchet@38282
   572
blanchet@38282
   573
fun close_universally phi =
blanchet@38282
   574
  let
blanchet@38282
   575
    fun term_vars bounds (ATerm (name as (s, _), tms)) =
blanchet@39452
   576
        (is_atp_variable s andalso not (member (op =) bounds name))
blanchet@38282
   577
          ? insert (op =) name
blanchet@38282
   578
        #> fold (term_vars bounds) tms
blanchet@38678
   579
    fun formula_vars bounds (AQuant (_, xs, phi)) =
blanchet@38282
   580
        formula_vars (xs @ bounds) phi
blanchet@38282
   581
      | formula_vars bounds (AConn (_, phis)) = fold (formula_vars bounds) phis
blanchet@38282
   582
      | formula_vars bounds (AAtom tm) = term_vars bounds tm
blanchet@38282
   583
  in
blanchet@38282
   584
    case formula_vars [] phi [] of [] => phi | xs => AQuant (AForall, xs, phi)
blanchet@38282
   585
  end
blanchet@38282
   586
blanchet@41134
   587
fun repair_formula thy explicit_forall type_sys const_tab =
blanchet@38282
   588
  let
blanchet@38282
   589
    fun aux (AQuant (q, xs, phi)) = AQuant (q, xs, aux phi)
blanchet@38282
   590
      | aux (AConn (c, phis)) = AConn (c, map aux phis)
blanchet@38282
   591
      | aux (AAtom tm) =
blanchet@41134
   592
        AAtom (tm |> repair_applications_in_term thy type_sys const_tab
blanchet@38282
   593
                  |> repair_predicates_in_term const_tab)
blanchet@38282
   594
  in aux #> explicit_forall ? close_universally end
blanchet@38282
   595
blanchet@41134
   596
fun repair_problem_line thy explicit_forall type_sys const_tab
blanchet@38282
   597
                        (Fof (ident, kind, phi)) =
blanchet@41134
   598
  Fof (ident, kind, repair_formula thy explicit_forall type_sys const_tab phi)
blanchet@38282
   599
fun repair_problem_with_const_table thy =
blanchet@38282
   600
  map o apsnd o map ooo repair_problem_line thy
blanchet@38282
   601
blanchet@41134
   602
fun repair_problem thy explicit_forall type_sys explicit_apply problem =
blanchet@41134
   603
  repair_problem_with_const_table thy explicit_forall type_sys
blanchet@38282
   604
      (const_table_for_problem explicit_apply problem) problem
blanchet@38282
   605
blanchet@41134
   606
fun prepare_atp_problem ctxt readable_names explicit_forall type_sys
blanchet@40204
   607
                        explicit_apply hyp_ts concl_t facts =
blanchet@38282
   608
  let
blanchet@38282
   609
    val thy = ProofContext.theory_of ctxt
blanchet@40204
   610
    val (fact_names, (conjectures, facts, helper_facts, class_rel_clauses,
blanchet@40204
   611
                      arity_clauses)) =
blanchet@41134
   612
      translate_formulas ctxt type_sys hyp_ts concl_t facts
blanchet@41138
   613
    val fact_lines = map (problem_line_for_fact ctxt fact_prefix type_sys) facts
blanchet@38282
   614
    val helper_lines =
blanchet@41138
   615
      map (problem_line_for_fact ctxt helper_prefix type_sys) helper_facts
blanchet@38282
   616
    val conjecture_lines =
blanchet@41138
   617
      map (problem_line_for_conjecture ctxt type_sys) conjectures
blanchet@41137
   618
    val tfree_lines = problem_lines_for_free_types type_sys conjectures
blanchet@38282
   619
    val class_rel_lines =
blanchet@38282
   620
      map problem_line_for_class_rel_clause class_rel_clauses
blanchet@38282
   621
    val arity_lines = map problem_line_for_arity_clause arity_clauses
blanchet@38282
   622
    (* Reordering these might or might not confuse the proof reconstruction
blanchet@38282
   623
       code or the SPASS Flotter hack. *)
blanchet@38282
   624
    val problem =
blanchet@40204
   625
      [("Relevant facts", fact_lines),
blanchet@38282
   626
       ("Class relationships", class_rel_lines),
blanchet@38282
   627
       ("Arity declarations", arity_lines),
blanchet@38282
   628
       ("Helper facts", helper_lines),
blanchet@38282
   629
       ("Conjectures", conjecture_lines),
blanchet@38282
   630
       ("Type variables", tfree_lines)]
blanchet@41134
   631
      |> repair_problem thy explicit_forall type_sys explicit_apply
blanchet@39452
   632
    val (problem, pool) = nice_atp_problem readable_names problem
blanchet@38282
   633
    val conjecture_offset =
blanchet@40204
   634
      length fact_lines + length class_rel_lines + length arity_lines
blanchet@38282
   635
      + length helper_lines
blanchet@38282
   636
  in
blanchet@38282
   637
    (problem,
blanchet@38282
   638
     case pool of SOME the_pool => snd the_pool | NONE => Symtab.empty,
blanchet@40204
   639
     conjecture_offset, fact_names)
blanchet@38282
   640
  end
blanchet@38282
   641
blanchet@38282
   642
end;