src/HOL/Auth/ZhouGollmann.thy
author wenzelm
Fri Nov 17 02:20:03 2006 +0100 (2006-11-17)
changeset 21404 eb85850d3eb7
parent 20768 1d478c2d621f
child 23746 a455e69c31cc
permissions -rw-r--r--
more robust syntax for definition/abbreviation/notation;
paulson@14145
     1
(*  Title:      HOL/Auth/ZhouGollmann
paulson@14145
     2
    ID:         $Id$
paulson@14145
     3
    Author:     Giampaolo Bella and L C Paulson, Cambridge Univ Computer Lab
paulson@14145
     4
    Copyright   2003  University of Cambridge
paulson@14145
     5
paulson@14145
     6
The protocol of
paulson@14145
     7
  Jianying Zhou and Dieter Gollmann,
paulson@14145
     8
  A Fair Non-Repudiation Protocol,
paulson@14145
     9
  Security and Privacy 1996 (Oakland)
paulson@14145
    10
  55-61
paulson@14145
    11
*)
paulson@14145
    12
haftmann@16417
    13
theory ZhouGollmann imports Public begin
paulson@14145
    14
wenzelm@20768
    15
abbreviation
wenzelm@21404
    16
  TTP :: agent where "TTP == Server"
paulson@14145
    17
wenzelm@21404
    18
abbreviation f_sub :: nat where "f_sub == 5"
wenzelm@21404
    19
abbreviation f_nro :: nat where "f_nro == 2"
wenzelm@21404
    20
abbreviation f_nrr :: nat where "f_nrr == 3"
wenzelm@21404
    21
abbreviation f_con :: nat where "f_con == 4"
paulson@14145
    22
paulson@14145
    23
paulson@14145
    24
constdefs
paulson@14145
    25
  broken :: "agent set"    
paulson@14145
    26
    --{*the compromised honest agents; TTP is included as it's not allowed to
paulson@14145
    27
        use the protocol*}
paulson@14736
    28
   "broken == bad - {Spy}"
paulson@14145
    29
paulson@14145
    30
declare broken_def [simp]
paulson@14145
    31
paulson@14145
    32
consts  zg  :: "event list set"
paulson@14145
    33
paulson@14145
    34
inductive zg
paulson@14145
    35
  intros
paulson@14145
    36
paulson@14145
    37
  Nil:  "[] \<in> zg"
paulson@14145
    38
paulson@14145
    39
  Fake: "[| evsf \<in> zg;  X \<in> synth (analz (spies evsf)) |]
paulson@14145
    40
	 ==> Says Spy B X  # evsf \<in> zg"
paulson@14145
    41
paulson@14736
    42
Reception:  "[| evsr \<in> zg; Says A B X \<in> set evsr |] ==> Gets B X # evsr \<in> zg"
paulson@14145
    43
paulson@14145
    44
  (*L is fresh for honest agents.
paulson@14145
    45
    We don't require K to be fresh because we don't bother to prove secrecy!
paulson@14145
    46
    We just assume that the protocol's objective is to deliver K fairly,
paulson@14145
    47
    rather than to keep M secret.*)
paulson@14145
    48
  ZG1: "[| evs1 \<in> zg;  Nonce L \<notin> used evs1; C = Crypt K (Number m);
paulson@14145
    49
	   K \<in> symKeys;
paulson@14145
    50
	   NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|}|]
paulson@14145
    51
       ==> Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} # evs1 \<in> zg"
paulson@14145
    52
paulson@14145
    53
  (*B must check that NRO is A's signature to learn the sender's name*)
paulson@14145
    54
  ZG2: "[| evs2 \<in> zg;
paulson@14145
    55
	   Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs2;
paulson@14145
    56
	   NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
paulson@14145
    57
	   NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|}|]
paulson@14145
    58
       ==> Says B A {|Number f_nrr, Agent A, Nonce L, NRR|} # evs2  \<in>  zg"
paulson@14145
    59
paulson@14736
    60
  (*A must check that NRR is B's signature to learn the sender's name;
paulson@14736
    61
    without spy, the matching label would be enough*)
paulson@14145
    62
  ZG3: "[| evs3 \<in> zg; C = Crypt K M; K \<in> symKeys;
paulson@14145
    63
	   Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs3;
paulson@14145
    64
	   Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs3;
paulson@14145
    65
	   NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
paulson@14145
    66
	   sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|}|]
paulson@14145
    67
       ==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|}
paulson@14145
    68
	     # evs3 \<in> zg"
paulson@14145
    69
paulson@14145
    70
 (*TTP checks that sub_K is A's signature to learn who issued K, then
paulson@14145
    71
   gives credentials to A and B.  The Notes event models the availability of
paulson@14736
    72
   the credentials, but the act of fetching them is not modelled.  We also
paulson@14736
    73
   give con_K to the Spy. This makes the threat model more dangerous, while 
paulson@14736
    74
   also allowing lemma @{text Crypt_used_imp_spies} to omit the condition
paulson@14736
    75
   @{term "K \<noteq> priK TTP"}. *)
paulson@14145
    76
  ZG4: "[| evs4 \<in> zg; K \<in> symKeys;
paulson@14145
    77
	   Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|}
paulson@14145
    78
	     \<in> set evs4;
paulson@14145
    79
	   sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
paulson@14145
    80
	   con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,
paulson@14145
    81
				      Nonce L, Key K|}|]
paulson@14736
    82
       ==> Says TTP Spy con_K
paulson@14736
    83
           #
paulson@14736
    84
	   Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
paulson@14736
    85
	   # evs4 \<in> zg"
paulson@14145
    86
paulson@14145
    87
paulson@14145
    88
declare Says_imp_knows_Spy [THEN analz.Inj, dest]
paulson@14145
    89
declare Fake_parts_insert_in_Un  [dest]
paulson@14145
    90
declare analz_into_parts [dest]
paulson@14145
    91
paulson@14145
    92
declare symKey_neq_priEK [simp]
paulson@14145
    93
declare symKey_neq_priEK [THEN not_sym, simp]
paulson@14145
    94
paulson@14145
    95
paulson@14146
    96
text{*A "possibility property": there are traces that reach the end*}
paulson@14146
    97
lemma "[|A \<noteq> B; TTP \<noteq> A; TTP \<noteq> B; K \<in> symKeys|] ==>
paulson@14146
    98
     \<exists>L. \<exists>evs \<in> zg.
paulson@14146
    99
           Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K,
paulson@14146
   100
               Crypt (priK TTP) {|Number f_con, Agent A, Agent B, Nonce L, Key K|} |}
paulson@14146
   101
               \<in> set evs"
paulson@14146
   102
apply (intro exI bexI)
paulson@14146
   103
apply (rule_tac [2] zg.Nil
paulson@14146
   104
                    [THEN zg.ZG1, THEN zg.Reception [of _ A B],
paulson@14146
   105
                     THEN zg.ZG2, THEN zg.Reception [of _ B A],
paulson@14146
   106
                     THEN zg.ZG3, THEN zg.Reception [of _ A TTP], 
paulson@14146
   107
                     THEN zg.ZG4])
paulson@14146
   108
apply (possibility, auto)
paulson@14146
   109
done
paulson@14146
   110
paulson@14145
   111
subsection {*Basic Lemmas*}
paulson@14145
   112
paulson@14145
   113
lemma Gets_imp_Says:
paulson@14145
   114
     "[| Gets B X \<in> set evs; evs \<in> zg |] ==> \<exists>A. Says A B X \<in> set evs"
paulson@14145
   115
apply (erule rev_mp)
paulson@14145
   116
apply (erule zg.induct, auto)
paulson@14145
   117
done
paulson@14145
   118
paulson@14145
   119
lemma Gets_imp_knows_Spy:
paulson@14145
   120
     "[| Gets B X \<in> set evs; evs \<in> zg |]  ==> X \<in> spies evs"
paulson@14145
   121
by (blast dest!: Gets_imp_Says Says_imp_knows_Spy)
paulson@14145
   122
paulson@14145
   123
paulson@14145
   124
text{*Lets us replace proofs about @{term "used evs"} by simpler proofs 
paulson@14145
   125
about @{term "parts (spies evs)"}.*}
paulson@14145
   126
lemma Crypt_used_imp_spies:
paulson@14736
   127
     "[| Crypt K X \<in> used evs; evs \<in> zg |]
paulson@14145
   128
      ==> Crypt K X \<in> parts (spies evs)"
paulson@14145
   129
apply (erule rev_mp)
paulson@14145
   130
apply (erule zg.induct)
paulson@14145
   131
apply (simp_all add: parts_insert_knows_A) 
paulson@14145
   132
done
paulson@14145
   133
paulson@14145
   134
lemma Notes_TTP_imp_Gets:
paulson@14145
   135
     "[|Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K |}
paulson@14145
   136
           \<in> set evs;
paulson@14145
   137
        sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
paulson@14145
   138
        evs \<in> zg|]
paulson@14145
   139
    ==> Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs"
paulson@14145
   140
apply (erule rev_mp)
paulson@14145
   141
apply (erule zg.induct, auto)
paulson@14145
   142
done
paulson@14145
   143
paulson@14145
   144
text{*For reasoning about C, which is encrypted in message ZG2*}
paulson@14145
   145
lemma ZG2_msg_in_parts_spies:
paulson@14145
   146
     "[|Gets B {|F, B', L, C, X|} \<in> set evs; evs \<in> zg|]
paulson@14145
   147
      ==> C \<in> parts (spies evs)"
paulson@14145
   148
by (blast dest: Gets_imp_Says)
paulson@14145
   149
paulson@14145
   150
(*classical regularity lemma on priK*)
paulson@14145
   151
lemma Spy_see_priK [simp]:
paulson@14145
   152
     "evs \<in> zg ==> (Key (priK A) \<in> parts (spies evs)) = (A \<in> bad)"
paulson@14145
   153
apply (erule zg.induct)
paulson@14145
   154
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)
paulson@14145
   155
done
paulson@14145
   156
paulson@14145
   157
text{*So that blast can use it too*}
paulson@14145
   158
declare  Spy_see_priK [THEN [2] rev_iffD1, dest!]
paulson@14145
   159
paulson@14145
   160
lemma Spy_analz_priK [simp]:
paulson@14145
   161
     "evs \<in> zg ==> (Key (priK A) \<in> analz (spies evs)) = (A \<in> bad)"
paulson@14145
   162
by auto 
paulson@14145
   163
paulson@14145
   164
paulson@14741
   165
subsection{*About NRO: Validity for @{term B}*}
paulson@14145
   166
paulson@14145
   167
text{*Below we prove that if @{term NRO} exists then @{term A} definitely
paulson@14741
   168
sent it, provided @{term A} is not broken.*}
paulson@14145
   169
paulson@14145
   170
text{*Strong conclusion for a good agent*}
paulson@15068
   171
lemma NRO_validity_good:
paulson@14741
   172
     "[|NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
paulson@14741
   173
        NRO \<in> parts (spies evs);
paulson@14741
   174
        A \<notin> bad;  evs \<in> zg |]
paulson@14145
   175
     ==> Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs"
paulson@14145
   176
apply clarify
paulson@14145
   177
apply (erule rev_mp)
paulson@14145
   178
apply (erule zg.induct)
paulson@14145
   179
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)  
paulson@14145
   180
done
paulson@14145
   181
paulson@14741
   182
lemma NRO_sender:
paulson@14741
   183
     "[|Says A' B {|n, b, l, C, Crypt (priK A) X|} \<in> set evs; evs \<in> zg|]
paulson@14741
   184
    ==> A' \<in> {A,Spy}"
paulson@14741
   185
apply (erule rev_mp)  
paulson@14741
   186
apply (erule zg.induct, simp_all)
paulson@14145
   187
done
paulson@14145
   188
paulson@14741
   189
text{*Holds also for @{term "A = Spy"}!*}
paulson@15068
   190
theorem NRO_validity:
paulson@15047
   191
     "[|Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs;
paulson@14741
   192
        NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
paulson@14741
   193
        A \<notin> broken;  evs \<in> zg |]
paulson@14741
   194
     ==> Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs"
paulson@15047
   195
apply (drule Gets_imp_Says, assumption) 
paulson@14741
   196
apply clarify 
paulson@14741
   197
apply (frule NRO_sender, auto)
paulson@15047
   198
txt{*We are left with the case where the sender is @{term Spy} and not
paulson@15047
   199
  equal to @{term A}, because @{term "A \<notin> bad"}. 
paulson@15068
   200
  Thus theorem @{text NRO_validity_good} applies.*}
paulson@15068
   201
apply (blast dest: NRO_validity_good [OF refl])
paulson@14145
   202
done
paulson@14145
   203
paulson@14145
   204
paulson@14741
   205
subsection{*About NRR: Validity for @{term A}*}
paulson@14145
   206
paulson@14145
   207
text{*Below we prove that if @{term NRR} exists then @{term B} definitely
paulson@14145
   208
sent it, provided @{term B} is not broken.*}
paulson@14145
   209
paulson@14145
   210
text{*Strong conclusion for a good agent*}
paulson@15068
   211
lemma NRR_validity_good:
paulson@14741
   212
     "[|NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
paulson@14741
   213
        NRR \<in> parts (spies evs);
paulson@14741
   214
        B \<notin> bad;  evs \<in> zg |]
paulson@14145
   215
     ==> Says B A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs"
paulson@14145
   216
apply clarify
paulson@14145
   217
apply (erule rev_mp)
paulson@14741
   218
apply (erule zg.induct) 
paulson@14145
   219
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)  
paulson@14145
   220
done
paulson@14145
   221
paulson@14741
   222
lemma NRR_sender:
paulson@14741
   223
     "[|Says B' A {|n, a, l, Crypt (priK B) X|} \<in> set evs; evs \<in> zg|]
paulson@14741
   224
    ==> B' \<in> {B,Spy}"
paulson@14741
   225
apply (erule rev_mp)  
paulson@14741
   226
apply (erule zg.induct, simp_all)
paulson@14145
   227
done
paulson@14145
   228
paulson@14741
   229
text{*Holds also for @{term "B = Spy"}!*}
paulson@15068
   230
theorem NRR_validity:
paulson@14741
   231
     "[|Says B' A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs;
paulson@14741
   232
        NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
paulson@14741
   233
        B \<notin> broken; evs \<in> zg|]
paulson@14741
   234
    ==> Says B A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs"
paulson@14741
   235
apply clarify 
paulson@14741
   236
apply (frule NRR_sender, auto)
paulson@14741
   237
txt{*We are left with the case where @{term "B' = Spy"} and  @{term "B' \<noteq> B"},
paulson@15068
   238
  i.e. @{term "B \<notin> bad"}, when we can apply @{text NRR_validity_good}.*}
paulson@15068
   239
 apply (blast dest: NRR_validity_good [OF refl])
paulson@14145
   240
done
paulson@14145
   241
paulson@14145
   242
paulson@14145
   243
subsection{*Proofs About @{term sub_K}*}
paulson@14145
   244
paulson@14145
   245
text{*Below we prove that if @{term sub_K} exists then @{term A} definitely
paulson@14145
   246
sent it, provided @{term A} is not broken.  *}
paulson@14145
   247
paulson@14145
   248
text{*Strong conclusion for a good agent*}
paulson@15068
   249
lemma sub_K_validity_good:
paulson@14741
   250
     "[|sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
paulson@14741
   251
        sub_K \<in> parts (spies evs);
paulson@14741
   252
        A \<notin> bad;  evs \<in> zg |]
paulson@14145
   253
     ==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs"
paulson@14741
   254
apply clarify
paulson@14145
   255
apply (erule rev_mp)
paulson@14145
   256
apply (erule zg.induct)
paulson@14145
   257
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
paulson@14145
   258
txt{*Fake*} 
paulson@14145
   259
apply (blast dest!: Fake_parts_sing_imp_Un)
paulson@14145
   260
done
paulson@14145
   261
paulson@14741
   262
lemma sub_K_sender:
paulson@14741
   263
     "[|Says A' TTP {|n, b, l, k, Crypt (priK A) X|} \<in> set evs;  evs \<in> zg|]
paulson@14741
   264
    ==> A' \<in> {A,Spy}"
paulson@14741
   265
apply (erule rev_mp)  
paulson@14741
   266
apply (erule zg.induct, simp_all)
paulson@14145
   267
done
paulson@14145
   268
paulson@14741
   269
text{*Holds also for @{term "A = Spy"}!*}
paulson@15068
   270
theorem sub_K_validity:
paulson@15047
   271
     "[|Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs;
paulson@14741
   272
        sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
paulson@14741
   273
        A \<notin> broken;  evs \<in> zg |]
paulson@14741
   274
     ==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs"
paulson@15047
   275
apply (drule Gets_imp_Says, assumption) 
paulson@14741
   276
apply clarify 
paulson@14741
   277
apply (frule sub_K_sender, auto)
paulson@15047
   278
txt{*We are left with the case where the sender is @{term Spy} and not
paulson@15047
   279
  equal to @{term A}, because @{term "A \<notin> bad"}. 
paulson@15068
   280
  Thus theorem @{text sub_K_validity_good} applies.*}
paulson@15068
   281
apply (blast dest: sub_K_validity_good [OF refl])
paulson@14145
   282
done
paulson@14145
   283
paulson@14145
   284
paulson@14741
   285
paulson@14145
   286
subsection{*Proofs About @{term con_K}*}
paulson@14145
   287
paulson@14145
   288
text{*Below we prove that if @{term con_K} exists, then @{term TTP} has it,
paulson@14145
   289
and therefore @{term A} and @{term B}) can get it too.  Moreover, we know
paulson@14145
   290
that @{term A} sent @{term sub_K}*}
paulson@14145
   291
paulson@15068
   292
lemma con_K_validity:
paulson@14145
   293
     "[|con_K \<in> used evs;
paulson@14145
   294
        con_K = Crypt (priK TTP)
paulson@14145
   295
                  {|Number f_con, Agent A, Agent B, Nonce L, Key K|};
paulson@14145
   296
        evs \<in> zg |]
paulson@14145
   297
    ==> Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
paulson@14145
   298
          \<in> set evs"
paulson@14145
   299
apply clarify
paulson@14145
   300
apply (erule rev_mp)
paulson@14145
   301
apply (erule zg.induct)
paulson@14145
   302
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
paulson@14145
   303
txt{*Fake*}
paulson@14145
   304
apply (blast dest!: Fake_parts_sing_imp_Un)
paulson@14741
   305
txt{*ZG2*} 
paulson@14145
   306
apply (blast dest: parts_cut)
paulson@14145
   307
done
paulson@14145
   308
paulson@14145
   309
text{*If @{term TTP} holds @{term con_K} then @{term A} sent
paulson@14736
   310
 @{term sub_K}.  We assume that @{term A} is not broken.  Importantly, nothing
paulson@14736
   311
  needs to be assumed about the form of @{term con_K}!*}
paulson@14145
   312
lemma Notes_TTP_imp_Says_A:
paulson@14145
   313
     "[|Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
paulson@14145
   314
           \<in> set evs;
paulson@14145
   315
        sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
paulson@14145
   316
        A \<notin> broken; evs \<in> zg|]
paulson@14741
   317
     ==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs"
paulson@14741
   318
apply clarify
paulson@14741
   319
apply (erule rev_mp)
paulson@14741
   320
apply (erule zg.induct)
paulson@14741
   321
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
paulson@14741
   322
txt{*ZG4*}
paulson@15047
   323
apply clarify 
paulson@15068
   324
apply (rule sub_K_validity, auto) 
paulson@14741
   325
done
paulson@14145
   326
paulson@14736
   327
text{*If @{term con_K} exists, then @{term A} sent @{term sub_K}.  We again
paulson@14736
   328
   assume that @{term A} is not broken. *}
paulson@15068
   329
theorem B_sub_K_validity:
paulson@14145
   330
     "[|con_K \<in> used evs;
paulson@14145
   331
        con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,
paulson@14145
   332
                                   Nonce L, Key K|};
paulson@14145
   333
        sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
paulson@14741
   334
        A \<notin> broken; evs \<in> zg|]
paulson@14741
   335
     ==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs"
paulson@15068
   336
by (blast dest: con_K_validity Notes_TTP_imp_Says_A)
paulson@14145
   337
paulson@14145
   338
paulson@14145
   339
subsection{*Proving fairness*}
paulson@14145
   340
paulson@14145
   341
text{*Cannot prove that, if @{term B} has NRO, then  @{term A} has her NRR.
paulson@14145
   342
It would appear that @{term B} has a small advantage, though it is
paulson@14145
   343
useless to win disputes: @{term B} needs to present @{term con_K} as well.*}
paulson@14145
   344
paulson@14145
   345
text{*Strange: unicity of the label protects @{term A}?*}
paulson@14145
   346
lemma A_unicity: 
paulson@14145
   347
     "[|NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|};
paulson@14145
   348
        NRO \<in> parts (spies evs);
paulson@14145
   349
        Says A B {|Number f_nro, Agent B, Nonce L, Crypt K M', NRO'|}
paulson@14145
   350
          \<in> set evs;
paulson@14145
   351
        A \<notin> bad; evs \<in> zg |]
paulson@14145
   352
     ==> M'=M"
paulson@14145
   353
apply clarify
paulson@14145
   354
apply (erule rev_mp)
paulson@14145
   355
apply (erule rev_mp)
paulson@14145
   356
apply (erule zg.induct)
paulson@14145
   357
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto) 
paulson@14145
   358
txt{*ZG1: freshness*}
paulson@14145
   359
apply (blast dest: parts.Body) 
paulson@14145
   360
done
paulson@14145
   361
paulson@14145
   362
paulson@14145
   363
text{*Fairness lemma: if @{term sub_K} exists, then @{term A} holds 
paulson@14145
   364
NRR.  Relies on unicity of labels.*}
paulson@14145
   365
lemma sub_K_implies_NRR:
paulson@14741
   366
     "[| NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|};
paulson@14741
   367
         NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, Crypt K M|};
paulson@14741
   368
         sub_K \<in> parts (spies evs);
paulson@14145
   369
         NRO \<in> parts (spies evs);
paulson@14145
   370
         sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
paulson@14145
   371
         A \<notin> bad;  evs \<in> zg |]
paulson@14145
   372
     ==> Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs"
paulson@14145
   373
apply clarify
paulson@14145
   374
apply (erule rev_mp)
paulson@14145
   375
apply (erule rev_mp)
paulson@14145
   376
apply (erule zg.induct)
paulson@14145
   377
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
paulson@14145
   378
txt{*Fake*}
paulson@14145
   379
apply blast 
paulson@14145
   380
txt{*ZG1: freshness*}
paulson@14145
   381
apply (blast dest: parts.Body) 
paulson@14741
   382
txt{*ZG3*} 
paulson@14145
   383
apply (blast dest: A_unicity [OF refl]) 
paulson@14145
   384
done
paulson@14145
   385
paulson@14145
   386
paulson@14145
   387
lemma Crypt_used_imp_L_used:
paulson@14145
   388
     "[| Crypt (priK TTP) {|F, A, B, L, K|} \<in> used evs; evs \<in> zg |]
paulson@14145
   389
      ==> L \<in> used evs"
paulson@14145
   390
apply (erule rev_mp)
paulson@14145
   391
apply (erule zg.induct, auto)
paulson@14145
   392
txt{*Fake*}
paulson@14145
   393
apply (blast dest!: Fake_parts_sing_imp_Un)
paulson@14145
   394
txt{*ZG2: freshness*}
paulson@14145
   395
apply (blast dest: parts.Body) 
paulson@14145
   396
done
paulson@14145
   397
paulson@14145
   398
paulson@14145
   399
text{*Fairness for @{term A}: if @{term con_K} and @{term NRO} exist, 
paulson@14145
   400
then @{term A} holds NRR.  @{term A} must be uncompromised, but there is no
paulson@14145
   401
assumption about @{term B}.*}
paulson@14145
   402
theorem A_fairness_NRO:
paulson@14145
   403
     "[|con_K \<in> used evs;
paulson@14145
   404
        NRO \<in> parts (spies evs);
paulson@14145
   405
        con_K = Crypt (priK TTP)
paulson@14145
   406
                      {|Number f_con, Agent A, Agent B, Nonce L, Key K|};
paulson@14145
   407
        NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|};
paulson@14145
   408
        NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, Crypt K M|};
paulson@14145
   409
        A \<notin> bad;  evs \<in> zg |]
paulson@14145
   410
    ==> Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs"
paulson@14145
   411
apply clarify
paulson@14145
   412
apply (erule rev_mp)
paulson@14145
   413
apply (erule rev_mp)
paulson@14145
   414
apply (erule zg.induct)
paulson@14145
   415
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
paulson@14145
   416
   txt{*Fake*}
paulson@14145
   417
   apply (simp add: parts_insert_knows_A) 
paulson@14145
   418
   apply (blast dest: Fake_parts_sing_imp_Un) 
paulson@14145
   419
  txt{*ZG1*}
paulson@14145
   420
  apply (blast dest: Crypt_used_imp_L_used) 
paulson@14145
   421
 txt{*ZG2*}
paulson@14145
   422
 apply (blast dest: parts_cut)
paulson@14741
   423
txt{*ZG4*} 
paulson@14741
   424
apply (blast intro: sub_K_implies_NRR [OF refl] 
paulson@14145
   425
             dest: Gets_imp_knows_Spy [THEN parts.Inj])
paulson@14145
   426
done
paulson@14145
   427
paulson@14145
   428
text{*Fairness for @{term B}: NRR exists at all, then @{term B} holds NRO.
paulson@14145
   429
@{term B} must be uncompromised, but there is no assumption about @{term
paulson@14145
   430
A}. *}
paulson@14145
   431
theorem B_fairness_NRR:
paulson@14145
   432
     "[|NRR \<in> used evs;
paulson@14145
   433
        NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
paulson@14145
   434
        NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
paulson@14145
   435
        B \<notin> bad; evs \<in> zg |]
paulson@14145
   436
    ==> Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs"
paulson@14145
   437
apply clarify
paulson@14145
   438
apply (erule rev_mp)
paulson@14145
   439
apply (erule zg.induct)
paulson@14145
   440
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
paulson@14145
   441
txt{*Fake*}
paulson@14145
   442
apply (blast dest!: Fake_parts_sing_imp_Un)
paulson@14145
   443
txt{*ZG2*}
paulson@14145
   444
apply (blast dest: parts_cut)
paulson@14145
   445
done
paulson@14145
   446
paulson@14145
   447
paulson@14145
   448
text{*If @{term con_K} exists at all, then @{term B} can get it, by @{text
paulson@15068
   449
con_K_validity}.  Cannot conclude that also NRO is available to @{term B},
paulson@14145
   450
because if @{term A} were unfair, @{term A} could build message 3 without
paulson@14145
   451
building message 1, which contains NRO. *}
paulson@14145
   452
paulson@14145
   453
end