src/HOL/ex/Tarski.thy
author wenzelm
Fri Nov 17 02:20:03 2006 +0100 (2006-11-17)
changeset 21404 eb85850d3eb7
parent 21232 faacfd4392b5
child 22547 c3290f4382e4
permissions -rw-r--r--
more robust syntax for definition/abbreviation/notation;
wenzelm@13383
     1
(*  Title:      HOL/ex/Tarski.thy
wenzelm@7112
     2
    ID:         $Id$
wenzelm@13383
     3
    Author:     Florian Kammüller, Cambridge University Computer Laboratory
wenzelm@13383
     4
*)
wenzelm@7112
     5
paulson@13585
     6
header {* The Full Theorem of Tarski *}
wenzelm@7112
     7
haftmann@16417
     8
theory Tarski imports Main FuncSet begin
wenzelm@7112
     9
wenzelm@13383
    10
text {*
wenzelm@13383
    11
  Minimal version of lattice theory plus the full theorem of Tarski:
wenzelm@13383
    12
  The fixedpoints of a complete lattice themselves form a complete
wenzelm@13383
    13
  lattice.
wenzelm@13383
    14
wenzelm@13383
    15
  Illustrates first-class theories, using the Sigma representation of
wenzelm@13383
    16
  structures.  Tidied and converted to Isar by lcp.
wenzelm@13383
    17
*}
wenzelm@13383
    18
wenzelm@13383
    19
record 'a potype =
wenzelm@7112
    20
  pset  :: "'a set"
wenzelm@7112
    21
  order :: "('a * 'a) set"
wenzelm@7112
    22
wenzelm@19736
    23
definition
wenzelm@21404
    24
  monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool" where
wenzelm@19736
    25
  "monotone f A r = (\<forall>x\<in>A. \<forall>y\<in>A. (x, y): r --> ((f x), (f y)) : r)"
wenzelm@7112
    26
wenzelm@21404
    27
definition
wenzelm@21404
    28
  least :: "['a => bool, 'a potype] => 'a" where
wenzelm@19736
    29
  "least P po = (SOME x. x: pset po & P x &
wenzelm@19736
    30
                       (\<forall>y \<in> pset po. P y --> (x,y): order po))"
wenzelm@7112
    31
wenzelm@21404
    32
definition
wenzelm@21404
    33
  greatest :: "['a => bool, 'a potype] => 'a" where
wenzelm@19736
    34
  "greatest P po = (SOME x. x: pset po & P x &
wenzelm@19736
    35
                          (\<forall>y \<in> pset po. P y --> (y,x): order po))"
wenzelm@7112
    36
wenzelm@21404
    37
definition
wenzelm@21404
    38
  lub  :: "['a set, 'a potype] => 'a" where
wenzelm@19736
    39
  "lub S po = least (%x. \<forall>y\<in>S. (y,x): order po) po"
wenzelm@7112
    40
wenzelm@21404
    41
definition
wenzelm@21404
    42
  glb  :: "['a set, 'a potype] => 'a" where
wenzelm@19736
    43
  "glb S po = greatest (%x. \<forall>y\<in>S. (x,y): order po) po"
wenzelm@7112
    44
wenzelm@21404
    45
definition
wenzelm@21404
    46
  isLub :: "['a set, 'a potype, 'a] => bool" where
wenzelm@19736
    47
  "isLub S po = (%L. (L: pset po & (\<forall>y\<in>S. (y,L): order po) &
wenzelm@19736
    48
                   (\<forall>z\<in>pset po. (\<forall>y\<in>S. (y,z): order po) --> (L,z): order po)))"
wenzelm@7112
    49
wenzelm@21404
    50
definition
wenzelm@21404
    51
  isGlb :: "['a set, 'a potype, 'a] => bool" where
wenzelm@19736
    52
  "isGlb S po = (%G. (G: pset po & (\<forall>y\<in>S. (G,y): order po) &
wenzelm@19736
    53
                 (\<forall>z \<in> pset po. (\<forall>y\<in>S. (z,y): order po) --> (z,G): order po)))"
wenzelm@7112
    54
wenzelm@21404
    55
definition
wenzelm@21404
    56
  "fix"    :: "[('a => 'a), 'a set] => 'a set" where
wenzelm@19736
    57
  "fix f A  = {x. x: A & f x = x}"
wenzelm@7112
    58
wenzelm@21404
    59
definition
wenzelm@21404
    60
  interval :: "[('a*'a) set,'a, 'a ] => 'a set" where
wenzelm@19736
    61
  "interval r a b = {x. (a,x): r & (x,b): r}"
wenzelm@7112
    62
wenzelm@7112
    63
wenzelm@19736
    64
definition
wenzelm@21404
    65
  Bot :: "'a potype => 'a" where
wenzelm@19736
    66
  "Bot po = least (%x. True) po"
wenzelm@7112
    67
wenzelm@21404
    68
definition
wenzelm@21404
    69
  Top :: "'a potype => 'a" where
wenzelm@19736
    70
  "Top po = greatest (%x. True) po"
wenzelm@7112
    71
wenzelm@21404
    72
definition
wenzelm@21404
    73
  PartialOrder :: "('a potype) set" where
wenzelm@19736
    74
  "PartialOrder = {P. refl (pset P) (order P) & antisym (order P) &
paulson@13585
    75
                       trans (order P)}"
wenzelm@7112
    76
wenzelm@21404
    77
definition
wenzelm@21404
    78
  CompleteLattice :: "('a potype) set" where
wenzelm@19736
    79
  "CompleteLattice = {cl. cl: PartialOrder &
paulson@17841
    80
                        (\<forall>S. S \<subseteq> pset cl --> (\<exists>L. isLub S cl L)) &
paulson@17841
    81
                        (\<forall>S. S \<subseteq> pset cl --> (\<exists>G. isGlb S cl G))}"
wenzelm@7112
    82
wenzelm@21404
    83
definition
wenzelm@21404
    84
  CLF :: "('a potype * ('a => 'a)) set" where
wenzelm@19736
    85
  "CLF = (SIGMA cl: CompleteLattice.
wenzelm@19736
    86
            {f. f: pset cl -> pset cl & monotone f (pset cl) (order cl)})"
wenzelm@13383
    87
wenzelm@21404
    88
definition
wenzelm@21404
    89
  induced :: "['a set, ('a * 'a) set] => ('a *'a)set" where
wenzelm@19736
    90
  "induced A r = {(a,b). a : A & b: A & (a,b): r}"
wenzelm@7112
    91
wenzelm@7112
    92
wenzelm@19736
    93
definition
wenzelm@21404
    94
  sublattice :: "('a potype * 'a set)set" where
wenzelm@19736
    95
  "sublattice =
wenzelm@19736
    96
      (SIGMA cl: CompleteLattice.
paulson@17841
    97
          {S. S \<subseteq> pset cl &
wenzelm@19736
    98
           (| pset = S, order = induced S (order cl) |): CompleteLattice})"
wenzelm@7112
    99
wenzelm@19736
   100
abbreviation
wenzelm@21404
   101
  sublat :: "['a set, 'a potype] => bool"  ("_ <<= _" [51,50]50) where
wenzelm@19736
   102
  "S <<= cl == S : sublattice `` {cl}"
wenzelm@7112
   103
wenzelm@19736
   104
definition
wenzelm@21404
   105
  dual :: "'a potype => 'a potype" where
wenzelm@19736
   106
  "dual po = (| pset = pset po, order = converse (order po) |)"
wenzelm@7112
   107
wenzelm@13383
   108
locale (open) PO =
paulson@13115
   109
  fixes cl :: "'a potype"
paulson@13115
   110
    and A  :: "'a set"
paulson@13115
   111
    and r  :: "('a * 'a) set"
paulson@13115
   112
  assumes cl_po:  "cl : PartialOrder"
paulson@13585
   113
  defines A_def: "A == pset cl"
paulson@13585
   114
     and  r_def: "r == order cl"
wenzelm@7112
   115
wenzelm@13383
   116
locale (open) CL = PO +
paulson@13115
   117
  assumes cl_co:  "cl : CompleteLattice"
wenzelm@7112
   118
wenzelm@13383
   119
locale (open) CLF = CL +
paulson@13115
   120
  fixes f :: "'a => 'a"
paulson@13115
   121
    and P :: "'a set"
paulson@13115
   122
  assumes f_cl:  "(cl,f) : CLF" (*was the equivalent "f : CLF``{cl}"*)
paulson@13115
   123
  defines P_def: "P == fix f A"
wenzelm@7112
   124
wenzelm@7112
   125
wenzelm@13383
   126
locale (open) Tarski = CLF +
paulson@13115
   127
  fixes Y     :: "'a set"
paulson@13115
   128
    and intY1 :: "'a set"
paulson@13115
   129
    and v     :: "'a"
paulson@13115
   130
  assumes
paulson@17841
   131
    Y_ss: "Y \<subseteq> P"
paulson@13115
   132
  defines
paulson@13115
   133
    intY1_def: "intY1 == interval r (lub Y cl) (Top cl)"
wenzelm@13383
   134
    and v_def: "v == glb {x. ((%x: intY1. f x) x, x): induced intY1 r &
paulson@13115
   135
                             x: intY1}
wenzelm@13383
   136
                      (| pset=intY1, order=induced intY1 r|)"
paulson@13115
   137
paulson@13115
   138
nipkow@14569
   139
subsection {* Partial Order *}
paulson@13115
   140
paulson@13115
   141
lemma (in PO) PO_imp_refl: "refl A r"
wenzelm@13383
   142
apply (insert cl_po)
paulson@13115
   143
apply (simp add: PartialOrder_def A_def r_def)
paulson@13115
   144
done
paulson@13115
   145
paulson@13115
   146
lemma (in PO) PO_imp_sym: "antisym r"
wenzelm@13383
   147
apply (insert cl_po)
paulson@19316
   148
apply (simp add: PartialOrder_def r_def)
paulson@13115
   149
done
paulson@13115
   150
paulson@13115
   151
lemma (in PO) PO_imp_trans: "trans r"
wenzelm@13383
   152
apply (insert cl_po)
paulson@19316
   153
apply (simp add: PartialOrder_def r_def)
paulson@13115
   154
done
paulson@13115
   155
paulson@18705
   156
lemma (in PO) reflE: "x \<in> A ==> (x, x) \<in> r"
wenzelm@13383
   157
apply (insert cl_po)
paulson@18705
   158
apply (simp add: PartialOrder_def refl_def A_def r_def)
paulson@13115
   159
done
paulson@13115
   160
paulson@18705
   161
lemma (in PO) antisymE: "[| (a, b) \<in> r; (b, a) \<in> r |] ==> a = b"
wenzelm@13383
   162
apply (insert cl_po)
paulson@19316
   163
apply (simp add: PartialOrder_def antisym_def r_def)
paulson@13115
   164
done
paulson@13115
   165
paulson@18705
   166
lemma (in PO) transE: "[| (a, b) \<in> r; (b, c) \<in> r|] ==> (a,c) \<in> r"
wenzelm@13383
   167
apply (insert cl_po)
paulson@19316
   168
apply (simp add: PartialOrder_def r_def)
paulson@13115
   169
apply (unfold trans_def, fast)
paulson@13115
   170
done
paulson@13115
   171
paulson@13115
   172
lemma (in PO) monotoneE:
paulson@13115
   173
     "[| monotone f A r;  x \<in> A; y \<in> A; (x, y) \<in> r |] ==> (f x, f y) \<in> r"
paulson@13115
   174
by (simp add: monotone_def)
paulson@13115
   175
paulson@13115
   176
lemma (in PO) po_subset_po:
paulson@17841
   177
     "S \<subseteq> A ==> (| pset = S, order = induced S r |) \<in> PartialOrder"
paulson@13115
   178
apply (simp (no_asm) add: PartialOrder_def)
paulson@13115
   179
apply auto
wenzelm@13383
   180
-- {* refl *}
paulson@13115
   181
apply (simp add: refl_def induced_def)
paulson@18705
   182
apply (blast intro: reflE)
wenzelm@13383
   183
-- {* antisym *}
paulson@13115
   184
apply (simp add: antisym_def induced_def)
paulson@18705
   185
apply (blast intro: antisymE)
wenzelm@13383
   186
-- {* trans *}
paulson@13115
   187
apply (simp add: trans_def induced_def)
paulson@18705
   188
apply (blast intro: transE)
paulson@13115
   189
done
paulson@13115
   190
paulson@17841
   191
lemma (in PO) indE: "[| (x, y) \<in> induced S r; S \<subseteq> A |] ==> (x, y) \<in> r"
paulson@13115
   192
by (simp add: add: induced_def)
paulson@13115
   193
paulson@13115
   194
lemma (in PO) indI: "[| (x, y) \<in> r; x \<in> S; y \<in> S |] ==> (x, y) \<in> induced S r"
paulson@13115
   195
by (simp add: add: induced_def)
paulson@13115
   196
paulson@17841
   197
lemma (in CL) CL_imp_ex_isLub: "S \<subseteq> A ==> \<exists>L. isLub S cl L"
wenzelm@13383
   198
apply (insert cl_co)
paulson@13115
   199
apply (simp add: CompleteLattice_def A_def)
paulson@13115
   200
done
paulson@13115
   201
paulson@13115
   202
declare (in CL) cl_co [simp]
paulson@13115
   203
paulson@13115
   204
lemma isLub_lub: "(\<exists>L. isLub S cl L) = isLub S cl (lub S cl)"
paulson@13115
   205
by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric])
paulson@13115
   206
paulson@13115
   207
lemma isGlb_glb: "(\<exists>G. isGlb S cl G) = isGlb S cl (glb S cl)"
paulson@13115
   208
by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric])
paulson@13115
   209
paulson@13115
   210
lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)"
paulson@13115
   211
by (simp add: isLub_def isGlb_def dual_def converse_def)
paulson@13115
   212
paulson@13115
   213
lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)"
paulson@13115
   214
by (simp add: isLub_def isGlb_def dual_def converse_def)
paulson@13115
   215
paulson@13115
   216
lemma (in PO) dualPO: "dual cl \<in> PartialOrder"
wenzelm@13383
   217
apply (insert cl_po)
wenzelm@13383
   218
apply (simp add: PartialOrder_def dual_def refl_converse
paulson@13115
   219
                 trans_converse antisym_converse)
paulson@13115
   220
done
paulson@13115
   221
paulson@13115
   222
lemma Rdual:
paulson@17841
   223
     "\<forall>S. (S \<subseteq> A -->( \<exists>L. isLub S (| pset = A, order = r|) L))
paulson@17841
   224
      ==> \<forall>S. (S \<subseteq> A --> (\<exists>G. isGlb S (| pset = A, order = r|) G))"
paulson@13115
   225
apply safe
paulson@13115
   226
apply (rule_tac x = "lub {y. y \<in> A & (\<forall>k \<in> S. (y, k) \<in> r)}
paulson@13115
   227
                      (|pset = A, order = r|) " in exI)
paulson@13115
   228
apply (drule_tac x = "{y. y \<in> A & (\<forall>k \<in> S. (y,k) \<in> r) }" in spec)
paulson@13115
   229
apply (drule mp, fast)
paulson@13115
   230
apply (simp add: isLub_lub isGlb_def)
paulson@13115
   231
apply (simp add: isLub_def, blast)
paulson@13115
   232
done
paulson@13115
   233
paulson@13115
   234
lemma lub_dual_glb: "lub S cl = glb S (dual cl)"
paulson@13115
   235
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def)
paulson@13115
   236
paulson@13115
   237
lemma glb_dual_lub: "glb S cl = lub S (dual cl)"
paulson@13115
   238
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def)
paulson@13115
   239
paulson@17841
   240
lemma CL_subset_PO: "CompleteLattice \<subseteq> PartialOrder"
paulson@13115
   241
by (simp add: PartialOrder_def CompleteLattice_def, fast)
paulson@13115
   242
paulson@13115
   243
lemmas CL_imp_PO = CL_subset_PO [THEN subsetD]
paulson@13115
   244
wenzelm@21232
   245
declare CL_imp_PO [THEN PO.PO_imp_refl, simp]
wenzelm@21232
   246
declare CL_imp_PO [THEN PO.PO_imp_sym, simp]
wenzelm@21232
   247
declare CL_imp_PO [THEN PO.PO_imp_trans, simp]
paulson@13115
   248
paulson@13115
   249
lemma (in CL) CO_refl: "refl A r"
paulson@13115
   250
by (rule PO_imp_refl)
paulson@13115
   251
paulson@13115
   252
lemma (in CL) CO_antisym: "antisym r"
paulson@13115
   253
by (rule PO_imp_sym)
paulson@13115
   254
paulson@13115
   255
lemma (in CL) CO_trans: "trans r"
paulson@13115
   256
by (rule PO_imp_trans)
paulson@13115
   257
paulson@13115
   258
lemma CompleteLatticeI:
paulson@17841
   259
     "[| po \<in> PartialOrder; (\<forall>S. S \<subseteq> pset po --> (\<exists>L. isLub S po L));
paulson@17841
   260
         (\<forall>S. S \<subseteq> pset po --> (\<exists>G. isGlb S po G))|]
paulson@13115
   261
      ==> po \<in> CompleteLattice"
wenzelm@13383
   262
apply (unfold CompleteLattice_def, blast)
paulson@13115
   263
done
paulson@13115
   264
paulson@13115
   265
lemma (in CL) CL_dualCL: "dual cl \<in> CompleteLattice"
wenzelm@13383
   266
apply (insert cl_co)
paulson@13115
   267
apply (simp add: CompleteLattice_def dual_def)
wenzelm@13383
   268
apply (fold dual_def)
wenzelm@13383
   269
apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric]
paulson@13115
   270
                 dualPO)
paulson@13115
   271
done
paulson@13115
   272
paulson@13585
   273
lemma (in PO) dualA_iff: "pset (dual cl) = pset cl"
paulson@13115
   274
by (simp add: dual_def)
paulson@13115
   275
paulson@13585
   276
lemma (in PO) dualr_iff: "((x, y) \<in> (order(dual cl))) = ((y, x) \<in> order cl)"
paulson@13115
   277
by (simp add: dual_def)
paulson@13115
   278
paulson@13115
   279
lemma (in PO) monotone_dual:
paulson@13585
   280
     "monotone f (pset cl) (order cl) 
paulson@13585
   281
     ==> monotone f (pset (dual cl)) (order(dual cl))"
paulson@13585
   282
by (simp add: monotone_def dualA_iff dualr_iff)
paulson@13115
   283
paulson@13115
   284
lemma (in PO) interval_dual:
paulson@13585
   285
     "[| x \<in> A; y \<in> A|] ==> interval r x y = interval (order(dual cl)) y x"
paulson@13115
   286
apply (simp add: interval_def dualr_iff)
paulson@13115
   287
apply (fold r_def, fast)
paulson@13115
   288
done
paulson@13115
   289
paulson@13115
   290
lemma (in PO) interval_not_empty:
paulson@13115
   291
     "[| trans r; interval r a b \<noteq> {} |] ==> (a, b) \<in> r"
paulson@13115
   292
apply (simp add: interval_def)
paulson@13115
   293
apply (unfold trans_def, blast)
paulson@13115
   294
done
paulson@13115
   295
paulson@13115
   296
lemma (in PO) interval_imp_mem: "x \<in> interval r a b ==> (a, x) \<in> r"
paulson@13115
   297
by (simp add: interval_def)
paulson@13115
   298
paulson@13115
   299
lemma (in PO) left_in_interval:
paulson@13115
   300
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> a \<in> interval r a b"
paulson@13115
   301
apply (simp (no_asm_simp) add: interval_def)
paulson@13115
   302
apply (simp add: PO_imp_trans interval_not_empty)
paulson@18705
   303
apply (simp add: reflE)
paulson@13115
   304
done
paulson@13115
   305
paulson@13115
   306
lemma (in PO) right_in_interval:
paulson@13115
   307
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> b \<in> interval r a b"
paulson@13115
   308
apply (simp (no_asm_simp) add: interval_def)
paulson@13115
   309
apply (simp add: PO_imp_trans interval_not_empty)
paulson@18705
   310
apply (simp add: reflE)
paulson@13115
   311
done
paulson@13115
   312
wenzelm@13383
   313
nipkow@14569
   314
subsection {* sublattice *}
wenzelm@13383
   315
paulson@13115
   316
lemma (in PO) sublattice_imp_CL:
paulson@18750
   317
     "S <<= cl  ==> (| pset = S, order = induced S r |) \<in> CompleteLattice"
paulson@19316
   318
by (simp add: sublattice_def CompleteLattice_def r_def)
paulson@13115
   319
paulson@13115
   320
lemma (in CL) sublatticeI:
paulson@17841
   321
     "[| S \<subseteq> A; (| pset = S, order = induced S r |) \<in> CompleteLattice |]
paulson@18750
   322
      ==> S <<= cl"
paulson@13115
   323
by (simp add: sublattice_def A_def r_def)
paulson@13115
   324
wenzelm@13383
   325
nipkow@14569
   326
subsection {* lub *}
wenzelm@13383
   327
paulson@17841
   328
lemma (in CL) lub_unique: "[| S \<subseteq> A; isLub S cl x; isLub S cl L|] ==> x = L"
paulson@13115
   329
apply (rule antisymE)
paulson@13115
   330
apply (auto simp add: isLub_def r_def)
paulson@13115
   331
done
paulson@13115
   332
paulson@17841
   333
lemma (in CL) lub_upper: "[|S \<subseteq> A; x \<in> S|] ==> (x, lub S cl) \<in> r"
paulson@13115
   334
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
paulson@13115
   335
apply (unfold lub_def least_def)
paulson@13115
   336
apply (rule some_equality [THEN ssubst])
paulson@13115
   337
  apply (simp add: isLub_def)
wenzelm@13383
   338
 apply (simp add: lub_unique A_def isLub_def)
paulson@13115
   339
apply (simp add: isLub_def r_def)
paulson@13115
   340
done
paulson@13115
   341
paulson@13115
   342
lemma (in CL) lub_least:
paulson@17841
   343
     "[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r |] ==> (lub S cl, L) \<in> r"
paulson@13115
   344
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
paulson@13115
   345
apply (unfold lub_def least_def)
paulson@13115
   346
apply (rule_tac s=x in some_equality [THEN ssubst])
paulson@13115
   347
  apply (simp add: isLub_def)
wenzelm@13383
   348
 apply (simp add: lub_unique A_def isLub_def)
paulson@13115
   349
apply (simp add: isLub_def r_def A_def)
paulson@13115
   350
done
paulson@13115
   351
paulson@17841
   352
lemma (in CL) lub_in_lattice: "S \<subseteq> A ==> lub S cl \<in> A"
paulson@13115
   353
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
paulson@13115
   354
apply (unfold lub_def least_def)
paulson@13115
   355
apply (subst some_equality)
paulson@13115
   356
apply (simp add: isLub_def)
paulson@13115
   357
prefer 2 apply (simp add: isLub_def A_def)
wenzelm@13383
   358
apply (simp add: lub_unique A_def isLub_def)
paulson@13115
   359
done
paulson@13115
   360
paulson@13115
   361
lemma (in CL) lubI:
paulson@17841
   362
     "[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r;
paulson@13115
   363
         \<forall>z \<in> A. (\<forall>y \<in> S. (y,z) \<in> r) --> (L,z) \<in> r |] ==> L = lub S cl"
paulson@13115
   364
apply (rule lub_unique, assumption)
paulson@13115
   365
apply (simp add: isLub_def A_def r_def)
paulson@13115
   366
apply (unfold isLub_def)
paulson@13115
   367
apply (rule conjI)
paulson@13115
   368
apply (fold A_def r_def)
paulson@13115
   369
apply (rule lub_in_lattice, assumption)
paulson@13115
   370
apply (simp add: lub_upper lub_least)
paulson@13115
   371
done
paulson@13115
   372
paulson@17841
   373
lemma (in CL) lubIa: "[| S \<subseteq> A; isLub S cl L |] ==> L = lub S cl"
paulson@13115
   374
by (simp add: lubI isLub_def A_def r_def)
paulson@13115
   375
paulson@13115
   376
lemma (in CL) isLub_in_lattice: "isLub S cl L ==> L \<in> A"
paulson@13115
   377
by (simp add: isLub_def  A_def)
paulson@13115
   378
paulson@13115
   379
lemma (in CL) isLub_upper: "[|isLub S cl L; y \<in> S|] ==> (y, L) \<in> r"
paulson@13115
   380
by (simp add: isLub_def r_def)
paulson@13115
   381
paulson@13115
   382
lemma (in CL) isLub_least:
paulson@13115
   383
     "[| isLub S cl L; z \<in> A; \<forall>y \<in> S. (y, z) \<in> r|] ==> (L, z) \<in> r"
paulson@13115
   384
by (simp add: isLub_def A_def r_def)
paulson@13115
   385
paulson@13115
   386
lemma (in CL) isLubI:
wenzelm@13383
   387
     "[| L \<in> A; \<forall>y \<in> S. (y, L) \<in> r;
paulson@13115
   388
         (\<forall>z \<in> A. (\<forall>y \<in> S. (y, z):r) --> (L, z) \<in> r)|] ==> isLub S cl L"
paulson@13115
   389
by (simp add: isLub_def A_def r_def)
paulson@13115
   390
wenzelm@13383
   391
nipkow@14569
   392
subsection {* glb *}
wenzelm@13383
   393
paulson@17841
   394
lemma (in CL) glb_in_lattice: "S \<subseteq> A ==> glb S cl \<in> A"
paulson@13115
   395
apply (subst glb_dual_lub)
paulson@13115
   396
apply (simp add: A_def)
paulson@13115
   397
apply (rule dualA_iff [THEN subst])
wenzelm@21232
   398
apply (rule CL.lub_in_lattice)
wenzelm@13383
   399
apply (rule dualPO)
paulson@13115
   400
apply (rule CL_dualCL)
paulson@13115
   401
apply (simp add: dualA_iff)
paulson@13115
   402
done
paulson@13115
   403
paulson@17841
   404
lemma (in CL) glb_lower: "[|S \<subseteq> A; x \<in> S|] ==> (glb S cl, x) \<in> r"
paulson@13115
   405
apply (subst glb_dual_lub)
paulson@13115
   406
apply (simp add: r_def)
paulson@13115
   407
apply (rule dualr_iff [THEN subst])
wenzelm@21232
   408
apply (rule CL.lub_upper)
wenzelm@13383
   409
apply (rule dualPO)
paulson@13115
   410
apply (rule CL_dualCL)
paulson@13115
   411
apply (simp add: dualA_iff A_def, assumption)
paulson@13115
   412
done
paulson@13115
   413
wenzelm@13383
   414
text {*
wenzelm@13383
   415
  Reduce the sublattice property by using substructural properties;
wenzelm@13383
   416
  abandoned see @{text "Tarski_4.ML"}.
wenzelm@13383
   417
*}
paulson@13115
   418
paulson@13115
   419
lemma (in CLF) [simp]:
paulson@13585
   420
    "f: pset cl -> pset cl & monotone f (pset cl) (order cl)"
wenzelm@13383
   421
apply (insert f_cl)
wenzelm@13383
   422
apply (simp add: CLF_def)
paulson@13115
   423
done
paulson@13115
   424
paulson@13115
   425
declare (in CLF) f_cl [simp]
paulson@13115
   426
paulson@13115
   427
paulson@13585
   428
lemma (in CLF) f_in_funcset: "f \<in> A -> A"
paulson@13115
   429
by (simp add: A_def)
paulson@13115
   430
paulson@13115
   431
lemma (in CLF) monotone_f: "monotone f A r"
paulson@13115
   432
by (simp add: A_def r_def)
paulson@13115
   433
paulson@13115
   434
lemma (in CLF) CLF_dual: "(cl,f) \<in> CLF ==> (dual cl, f) \<in> CLF"
paulson@13115
   435
apply (simp add: CLF_def  CL_dualCL monotone_dual)
paulson@13115
   436
apply (simp add: dualA_iff)
paulson@13115
   437
done
paulson@13115
   438
wenzelm@13383
   439
nipkow@14569
   440
subsection {* fixed points *}
wenzelm@13383
   441
paulson@17841
   442
lemma fix_subset: "fix f A \<subseteq> A"
paulson@13115
   443
by (simp add: fix_def, fast)
paulson@13115
   444
paulson@13115
   445
lemma fix_imp_eq: "x \<in> fix f A ==> f x = x"
paulson@13115
   446
by (simp add: fix_def)
paulson@13115
   447
paulson@13115
   448
lemma fixf_subset:
paulson@17841
   449
     "[| A \<subseteq> B; x \<in> fix (%y: A. f y) A |] ==> x \<in> fix f B"
paulson@17841
   450
by (simp add: fix_def, auto)
paulson@13115
   451
wenzelm@13383
   452
nipkow@14569
   453
subsection {* lemmas for Tarski, lub *}
paulson@13115
   454
lemma (in CLF) lubH_le_flubH:
paulson@13115
   455
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> (lub H cl, f (lub H cl)) \<in> r"
paulson@13115
   456
apply (rule lub_least, fast)
paulson@13115
   457
apply (rule f_in_funcset [THEN funcset_mem])
paulson@13115
   458
apply (rule lub_in_lattice, fast)
wenzelm@13383
   459
-- {* @{text "\<forall>x:H. (x, f (lub H r)) \<in> r"} *}
paulson@13115
   460
apply (rule ballI)
paulson@13115
   461
apply (rule transE)
paulson@13585
   462
-- {* instantiates @{text "(x, ???z) \<in> order cl to (x, f x)"}, *}
wenzelm@13383
   463
-- {* because of the def of @{text H} *}
paulson@13115
   464
apply fast
wenzelm@13383
   465
-- {* so it remains to show @{text "(f x, f (lub H cl)) \<in> r"} *}
paulson@13115
   466
apply (rule_tac f = "f" in monotoneE)
paulson@13115
   467
apply (rule monotone_f, fast)
paulson@13115
   468
apply (rule lub_in_lattice, fast)
paulson@13115
   469
apply (rule lub_upper, fast)
paulson@13115
   470
apply assumption
paulson@13115
   471
done
paulson@13115
   472
paulson@13115
   473
lemma (in CLF) flubH_le_lubH:
paulson@13115
   474
     "[|  H = {x. (x, f x) \<in> r & x \<in> A} |] ==> (f (lub H cl), lub H cl) \<in> r"
paulson@13115
   475
apply (rule lub_upper, fast)
paulson@13115
   476
apply (rule_tac t = "H" in ssubst, assumption)
paulson@13115
   477
apply (rule CollectI)
paulson@13115
   478
apply (rule conjI)
paulson@13115
   479
apply (rule_tac [2] f_in_funcset [THEN funcset_mem])
paulson@13115
   480
apply (rule_tac [2] lub_in_lattice)
paulson@13115
   481
prefer 2 apply fast
paulson@13115
   482
apply (rule_tac f = "f" in monotoneE)
paulson@13115
   483
apply (rule monotone_f)
wenzelm@13383
   484
  apply (blast intro: lub_in_lattice)
wenzelm@13383
   485
 apply (blast intro: lub_in_lattice f_in_funcset [THEN funcset_mem])
paulson@13115
   486
apply (simp add: lubH_le_flubH)
paulson@13115
   487
done
paulson@13115
   488
paulson@13115
   489
lemma (in CLF) lubH_is_fixp:
paulson@13115
   490
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A"
paulson@13115
   491
apply (simp add: fix_def)
paulson@13115
   492
apply (rule conjI)
paulson@13115
   493
apply (rule lub_in_lattice, fast)
paulson@13115
   494
apply (rule antisymE)
paulson@13115
   495
apply (simp add: flubH_le_lubH)
paulson@13115
   496
apply (simp add: lubH_le_flubH)
paulson@13115
   497
done
paulson@13115
   498
paulson@13115
   499
lemma (in CLF) fix_in_H:
paulson@13115
   500
     "[| H = {x. (x, f x) \<in> r & x \<in> A};  x \<in> P |] ==> x \<in> H"
wenzelm@13383
   501
by (simp add: P_def fix_imp_eq [of _ f A] reflE CO_refl
wenzelm@13383
   502
                    fix_subset [of f A, THEN subsetD])
paulson@13115
   503
paulson@13115
   504
lemma (in CLF) fixf_le_lubH:
paulson@13115
   505
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> \<forall>x \<in> fix f A. (x, lub H cl) \<in> r"
paulson@13115
   506
apply (rule ballI)
paulson@13115
   507
apply (rule lub_upper, fast)
paulson@13115
   508
apply (rule fix_in_H)
wenzelm@13383
   509
apply (simp_all add: P_def)
paulson@13115
   510
done
paulson@13115
   511
paulson@13115
   512
lemma (in CLF) lubH_least_fixf:
wenzelm@13383
   513
     "H = {x. (x, f x) \<in> r & x \<in> A}
paulson@13115
   514
      ==> \<forall>L. (\<forall>y \<in> fix f A. (y,L) \<in> r) --> (lub H cl, L) \<in> r"
paulson@13115
   515
apply (rule allI)
paulson@13115
   516
apply (rule impI)
paulson@13115
   517
apply (erule bspec)
paulson@13115
   518
apply (rule lubH_is_fixp, assumption)
paulson@13115
   519
done
paulson@13115
   520
nipkow@14569
   521
subsection {* Tarski fixpoint theorem 1, first part *}
paulson@13115
   522
lemma (in CLF) T_thm_1_lub: "lub P cl = lub {x. (x, f x) \<in> r & x \<in> A} cl"
paulson@13115
   523
apply (rule sym)
wenzelm@13383
   524
apply (simp add: P_def)
paulson@13115
   525
apply (rule lubI)
paulson@13115
   526
apply (rule fix_subset)
paulson@13115
   527
apply (rule lub_in_lattice, fast)
paulson@13115
   528
apply (simp add: fixf_le_lubH)
paulson@13115
   529
apply (simp add: lubH_least_fixf)
paulson@13115
   530
done
paulson@13115
   531
paulson@13115
   532
lemma (in CLF) glbH_is_fixp: "H = {x. (f x, x) \<in> r & x \<in> A} ==> glb H cl \<in> P"
wenzelm@13383
   533
  -- {* Tarski for glb *}
paulson@13115
   534
apply (simp add: glb_dual_lub P_def A_def r_def)
paulson@13115
   535
apply (rule dualA_iff [THEN subst])
wenzelm@21232
   536
apply (rule CLF.lubH_is_fixp)
wenzelm@13383
   537
apply (rule dualPO)
paulson@13115
   538
apply (rule CL_dualCL)
paulson@13115
   539
apply (rule f_cl [THEN CLF_dual])
paulson@13115
   540
apply (simp add: dualr_iff dualA_iff)
paulson@13115
   541
done
paulson@13115
   542
paulson@13115
   543
lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \<in> r & x \<in> A} cl"
paulson@13115
   544
apply (simp add: glb_dual_lub P_def A_def r_def)
paulson@13115
   545
apply (rule dualA_iff [THEN subst])
wenzelm@21232
   546
apply (simp add: CLF.T_thm_1_lub [of _ f, OF dualPO CL_dualCL]
paulson@13115
   547
                 dualPO CL_dualCL CLF_dual dualr_iff)
paulson@13115
   548
done
paulson@13115
   549
nipkow@14569
   550
subsection {* interval *}
wenzelm@13383
   551
paulson@13115
   552
lemma (in CLF) rel_imp_elem: "(x, y) \<in> r ==> x \<in> A"
wenzelm@13383
   553
apply (insert CO_refl)
wenzelm@13383
   554
apply (simp add: refl_def, blast)
paulson@13115
   555
done
paulson@13115
   556
paulson@17841
   557
lemma (in CLF) interval_subset: "[| a \<in> A; b \<in> A |] ==> interval r a b \<subseteq> A"
paulson@13115
   558
apply (simp add: interval_def)
paulson@13115
   559
apply (blast intro: rel_imp_elem)
paulson@13115
   560
done
paulson@13115
   561
paulson@13115
   562
lemma (in CLF) intervalI:
paulson@13115
   563
     "[| (a, x) \<in> r; (x, b) \<in> r |] ==> x \<in> interval r a b"
paulson@17841
   564
by (simp add: interval_def)
paulson@13115
   565
paulson@13115
   566
lemma (in CLF) interval_lemma1:
paulson@17841
   567
     "[| S \<subseteq> interval r a b; x \<in> S |] ==> (a, x) \<in> r"
paulson@17841
   568
by (unfold interval_def, fast)
paulson@13115
   569
paulson@13115
   570
lemma (in CLF) interval_lemma2:
paulson@17841
   571
     "[| S \<subseteq> interval r a b; x \<in> S |] ==> (x, b) \<in> r"
paulson@17841
   572
by (unfold interval_def, fast)
paulson@13115
   573
paulson@13115
   574
lemma (in CLF) a_less_lub:
paulson@17841
   575
     "[| S \<subseteq> A; S \<noteq> {};
paulson@13115
   576
         \<forall>x \<in> S. (a,x) \<in> r; \<forall>y \<in> S. (y, L) \<in> r |] ==> (a,L) \<in> r"
paulson@18705
   577
by (blast intro: transE)
paulson@13115
   578
paulson@13115
   579
lemma (in CLF) glb_less_b:
paulson@17841
   580
     "[| S \<subseteq> A; S \<noteq> {};
paulson@13115
   581
         \<forall>x \<in> S. (x,b) \<in> r; \<forall>y \<in> S. (G, y) \<in> r |] ==> (G,b) \<in> r"
paulson@18705
   582
by (blast intro: transE)
paulson@13115
   583
paulson@13115
   584
lemma (in CLF) S_intv_cl:
paulson@17841
   585
     "[| a \<in> A; b \<in> A; S \<subseteq> interval r a b |]==> S \<subseteq> A"
paulson@13115
   586
by (simp add: subset_trans [OF _ interval_subset])
paulson@13115
   587
paulson@13115
   588
lemma (in CLF) L_in_interval:
paulson@17841
   589
     "[| a \<in> A; b \<in> A; S \<subseteq> interval r a b;
paulson@13115
   590
         S \<noteq> {}; isLub S cl L; interval r a b \<noteq> {} |] ==> L \<in> interval r a b"
paulson@13115
   591
apply (rule intervalI)
paulson@13115
   592
apply (rule a_less_lub)
paulson@13115
   593
prefer 2 apply assumption
paulson@13115
   594
apply (simp add: S_intv_cl)
paulson@13115
   595
apply (rule ballI)
paulson@13115
   596
apply (simp add: interval_lemma1)
paulson@13115
   597
apply (simp add: isLub_upper)
wenzelm@13383
   598
-- {* @{text "(L, b) \<in> r"} *}
paulson@13115
   599
apply (simp add: isLub_least interval_lemma2)
paulson@13115
   600
done
paulson@13115
   601
paulson@13115
   602
lemma (in CLF) G_in_interval:
paulson@17841
   603
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {}; S \<subseteq> interval r a b; isGlb S cl G;
paulson@13115
   604
         S \<noteq> {} |] ==> G \<in> interval r a b"
paulson@13115
   605
apply (simp add: interval_dual)
wenzelm@21232
   606
apply (simp add: CLF.L_in_interval [of _ f]
paulson@13115
   607
                 dualA_iff A_def dualPO CL_dualCL CLF_dual isGlb_dual_isLub)
paulson@13115
   608
done
paulson@13115
   609
paulson@13115
   610
lemma (in CLF) intervalPO:
wenzelm@13383
   611
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
paulson@13115
   612
      ==> (| pset = interval r a b, order = induced (interval r a b) r |)
paulson@13115
   613
          \<in> PartialOrder"
paulson@13115
   614
apply (rule po_subset_po)
paulson@13115
   615
apply (simp add: interval_subset)
paulson@13115
   616
done
paulson@13115
   617
paulson@13115
   618
lemma (in CLF) intv_CL_lub:
wenzelm@13383
   619
 "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
paulson@17841
   620
  ==> \<forall>S. S \<subseteq> interval r a b -->
wenzelm@13383
   621
          (\<exists>L. isLub S (| pset = interval r a b,
paulson@13115
   622
                          order = induced (interval r a b) r |)  L)"
paulson@13115
   623
apply (intro strip)
paulson@13115
   624
apply (frule S_intv_cl [THEN CL_imp_ex_isLub])
paulson@13115
   625
prefer 2 apply assumption
paulson@13115
   626
apply assumption
paulson@13115
   627
apply (erule exE)
wenzelm@13383
   628
-- {* define the lub for the interval as *}
paulson@13115
   629
apply (rule_tac x = "if S = {} then a else L" in exI)
paulson@13115
   630
apply (simp (no_asm_simp) add: isLub_def split del: split_if)
wenzelm@13383
   631
apply (intro impI conjI)
wenzelm@13383
   632
-- {* @{text "(if S = {} then a else L) \<in> interval r a b"} *}
paulson@13115
   633
apply (simp add: CL_imp_PO L_in_interval)
paulson@13115
   634
apply (simp add: left_in_interval)
wenzelm@13383
   635
-- {* lub prop 1 *}
paulson@13115
   636
apply (case_tac "S = {}")
wenzelm@13383
   637
-- {* @{text "S = {}, y \<in> S = False => everything"} *}
paulson@13115
   638
apply fast
wenzelm@13383
   639
-- {* @{text "S \<noteq> {}"} *}
paulson@13115
   640
apply simp
wenzelm@13383
   641
-- {* @{text "\<forall>y:S. (y, L) \<in> induced (interval r a b) r"} *}
paulson@13115
   642
apply (rule ballI)
paulson@13115
   643
apply (simp add: induced_def  L_in_interval)
paulson@13115
   644
apply (rule conjI)
paulson@13115
   645
apply (rule subsetD)
paulson@13115
   646
apply (simp add: S_intv_cl, assumption)
paulson@13115
   647
apply (simp add: isLub_upper)
wenzelm@13383
   648
-- {* @{text "\<forall>z:interval r a b. (\<forall>y:S. (y, z) \<in> induced (interval r a b) r \<longrightarrow> (if S = {} then a else L, z) \<in> induced (interval r a b) r"} *}
paulson@13115
   649
apply (rule ballI)
paulson@13115
   650
apply (rule impI)
paulson@13115
   651
apply (case_tac "S = {}")
wenzelm@13383
   652
-- {* @{text "S = {}"} *}
paulson@13115
   653
apply simp
paulson@13115
   654
apply (simp add: induced_def  interval_def)
paulson@13115
   655
apply (rule conjI)
paulson@18705
   656
apply (rule reflE, assumption)
paulson@13115
   657
apply (rule interval_not_empty)
paulson@13115
   658
apply (rule CO_trans)
paulson@13115
   659
apply (simp add: interval_def)
wenzelm@13383
   660
-- {* @{text "S \<noteq> {}"} *}
paulson@13115
   661
apply simp
paulson@13115
   662
apply (simp add: induced_def  L_in_interval)
paulson@13115
   663
apply (rule isLub_least, assumption)
paulson@13115
   664
apply (rule subsetD)
paulson@13115
   665
prefer 2 apply assumption
paulson@13115
   666
apply (simp add: S_intv_cl, fast)
paulson@13115
   667
done
paulson@13115
   668
paulson@13115
   669
lemmas (in CLF) intv_CL_glb = intv_CL_lub [THEN Rdual]
paulson@13115
   670
paulson@13115
   671
lemma (in CLF) interval_is_sublattice:
wenzelm@13383
   672
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
paulson@18750
   673
        ==> interval r a b <<= cl"
paulson@13115
   674
apply (rule sublatticeI)
paulson@13115
   675
apply (simp add: interval_subset)
paulson@13115
   676
apply (rule CompleteLatticeI)
paulson@13115
   677
apply (simp add: intervalPO)
paulson@13115
   678
 apply (simp add: intv_CL_lub)
paulson@13115
   679
apply (simp add: intv_CL_glb)
paulson@13115
   680
done
paulson@13115
   681
wenzelm@13383
   682
lemmas (in CLF) interv_is_compl_latt =
paulson@13115
   683
    interval_is_sublattice [THEN sublattice_imp_CL]
paulson@13115
   684
wenzelm@13383
   685
nipkow@14569
   686
subsection {* Top and Bottom *}
paulson@13115
   687
lemma (in CLF) Top_dual_Bot: "Top cl = Bot (dual cl)"
paulson@13115
   688
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)
paulson@13115
   689
paulson@13115
   690
lemma (in CLF) Bot_dual_Top: "Bot cl = Top (dual cl)"
paulson@13115
   691
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)
paulson@13115
   692
paulson@13115
   693
lemma (in CLF) Bot_in_lattice: "Bot cl \<in> A"
paulson@13115
   694
apply (simp add: Bot_def least_def)
paulson@17841
   695
apply (rule_tac a="glb A cl" in someI2)
paulson@17841
   696
apply (simp_all add: glb_in_lattice glb_lower 
paulson@17841
   697
                     r_def [symmetric] A_def [symmetric])
paulson@13115
   698
done
paulson@13115
   699
paulson@13115
   700
lemma (in CLF) Top_in_lattice: "Top cl \<in> A"
paulson@13115
   701
apply (simp add: Top_dual_Bot A_def)
wenzelm@13383
   702
apply (rule dualA_iff [THEN subst])
wenzelm@21232
   703
apply (blast intro!: CLF.Bot_in_lattice dualPO CL_dualCL CLF_dual f_cl)
paulson@13115
   704
done
paulson@13115
   705
paulson@13115
   706
lemma (in CLF) Top_prop: "x \<in> A ==> (x, Top cl) \<in> r"
paulson@13115
   707
apply (simp add: Top_def greatest_def)
paulson@17841
   708
apply (rule_tac a="lub A cl" in someI2)
paulson@13115
   709
apply (rule someI2)
paulson@17841
   710
apply (simp_all add: lub_in_lattice lub_upper 
paulson@17841
   711
                     r_def [symmetric] A_def [symmetric])
paulson@13115
   712
done
paulson@13115
   713
paulson@13115
   714
lemma (in CLF) Bot_prop: "x \<in> A ==> (Bot cl, x) \<in> r"
paulson@13115
   715
apply (simp add: Bot_dual_Top r_def)
paulson@13115
   716
apply (rule dualr_iff [THEN subst])
wenzelm@21232
   717
apply (simp add: CLF.Top_prop [of _ f]
paulson@13115
   718
                 dualA_iff A_def dualPO CL_dualCL CLF_dual)
paulson@13115
   719
done
paulson@13115
   720
paulson@13115
   721
lemma (in CLF) Top_intv_not_empty: "x \<in> A  ==> interval r x (Top cl) \<noteq> {}"
paulson@13115
   722
apply (rule notI)
paulson@13115
   723
apply (drule_tac a = "Top cl" in equals0D)
paulson@13115
   724
apply (simp add: interval_def)
paulson@13115
   725
apply (simp add: refl_def Top_in_lattice Top_prop)
paulson@13115
   726
done
paulson@13115
   727
paulson@13115
   728
lemma (in CLF) Bot_intv_not_empty: "x \<in> A ==> interval r (Bot cl) x \<noteq> {}"
paulson@13115
   729
apply (simp add: Bot_dual_Top)
paulson@13115
   730
apply (subst interval_dual)
paulson@13115
   731
prefer 2 apply assumption
paulson@13115
   732
apply (simp add: A_def)
paulson@13115
   733
apply (rule dualA_iff [THEN subst])
wenzelm@21232
   734
apply (blast intro!: CLF.Top_in_lattice
paulson@13115
   735
                 f_cl dualPO CL_dualCL CLF_dual)
wenzelm@21232
   736
apply (simp add: CLF.Top_intv_not_empty [of _ f]
paulson@13115
   737
                 dualA_iff A_def dualPO CL_dualCL CLF_dual)
paulson@13115
   738
done
paulson@13115
   739
nipkow@14569
   740
subsection {* fixed points form a partial order *}
wenzelm@13383
   741
paulson@13115
   742
lemma (in CLF) fixf_po: "(| pset = P, order = induced P r|) \<in> PartialOrder"
paulson@13115
   743
by (simp add: P_def fix_subset po_subset_po)
paulson@13115
   744
paulson@17841
   745
lemma (in Tarski) Y_subset_A: "Y \<subseteq> A"
paulson@13115
   746
apply (rule subset_trans [OF _ fix_subset])
paulson@13115
   747
apply (rule Y_ss [simplified P_def])
paulson@13115
   748
done
paulson@13115
   749
paulson@13115
   750
lemma (in Tarski) lubY_in_A: "lub Y cl \<in> A"
paulson@18750
   751
  by (rule Y_subset_A [THEN lub_in_lattice])
paulson@13115
   752
paulson@13115
   753
lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \<in> r"
paulson@13115
   754
apply (rule lub_least)
paulson@13115
   755
apply (rule Y_subset_A)
paulson@13115
   756
apply (rule f_in_funcset [THEN funcset_mem])
paulson@13115
   757
apply (rule lubY_in_A)
paulson@17841
   758
-- {* @{text "Y \<subseteq> P ==> f x = x"} *}
paulson@13115
   759
apply (rule ballI)
paulson@13115
   760
apply (rule_tac t = "x" in fix_imp_eq [THEN subst])
paulson@13115
   761
apply (erule Y_ss [simplified P_def, THEN subsetD])
wenzelm@13383
   762
-- {* @{text "reduce (f x, f (lub Y cl)) \<in> r to (x, lub Y cl) \<in> r"} by monotonicity *}
paulson@13115
   763
apply (rule_tac f = "f" in monotoneE)
paulson@13115
   764
apply (rule monotone_f)
paulson@13115
   765
apply (simp add: Y_subset_A [THEN subsetD])
paulson@13115
   766
apply (rule lubY_in_A)
paulson@13115
   767
apply (simp add: lub_upper Y_subset_A)
paulson@13115
   768
done
paulson@13115
   769
paulson@17841
   770
lemma (in Tarski) intY1_subset: "intY1 \<subseteq> A"
paulson@13115
   771
apply (unfold intY1_def)
paulson@13115
   772
apply (rule interval_subset)
paulson@13115
   773
apply (rule lubY_in_A)
paulson@13115
   774
apply (rule Top_in_lattice)
paulson@13115
   775
done
paulson@13115
   776
paulson@13115
   777
lemmas (in Tarski) intY1_elem = intY1_subset [THEN subsetD]
paulson@13115
   778
paulson@13115
   779
lemma (in Tarski) intY1_f_closed: "x \<in> intY1 \<Longrightarrow> f x \<in> intY1"
paulson@13115
   780
apply (simp add: intY1_def  interval_def)
paulson@13115
   781
apply (rule conjI)
paulson@13115
   782
apply (rule transE)
paulson@13115
   783
apply (rule lubY_le_flubY)
wenzelm@13383
   784
-- {* @{text "(f (lub Y cl), f x) \<in> r"} *}
paulson@13115
   785
apply (rule_tac f=f in monotoneE)
paulson@13115
   786
apply (rule monotone_f)
paulson@13115
   787
apply (rule lubY_in_A)
paulson@13115
   788
apply (simp add: intY1_def interval_def  intY1_elem)
paulson@13115
   789
apply (simp add: intY1_def  interval_def)
wenzelm@13383
   790
-- {* @{text "(f x, Top cl) \<in> r"} *}
paulson@13115
   791
apply (rule Top_prop)
paulson@13115
   792
apply (rule f_in_funcset [THEN funcset_mem])
paulson@13115
   793
apply (simp add: intY1_def interval_def  intY1_elem)
paulson@13115
   794
done
paulson@13115
   795
paulson@13585
   796
lemma (in Tarski) intY1_func: "(%x: intY1. f x) \<in> intY1 -> intY1"
paulson@13115
   797
apply (rule restrictI)
paulson@13115
   798
apply (erule intY1_f_closed)
paulson@13115
   799
done
paulson@13115
   800
paulson@13115
   801
lemma (in Tarski) intY1_mono:
paulson@13115
   802
     "monotone (%x: intY1. f x) intY1 (induced intY1 r)"
paulson@13115
   803
apply (auto simp add: monotone_def induced_def intY1_f_closed)
paulson@13115
   804
apply (blast intro: intY1_elem monotone_f [THEN monotoneE])
paulson@13115
   805
done
paulson@13115
   806
wenzelm@13383
   807
lemma (in Tarski) intY1_is_cl:
paulson@13115
   808
    "(| pset = intY1, order = induced intY1 r |) \<in> CompleteLattice"
paulson@13115
   809
apply (unfold intY1_def)
paulson@13115
   810
apply (rule interv_is_compl_latt)
paulson@13115
   811
apply (rule lubY_in_A)
paulson@13115
   812
apply (rule Top_in_lattice)
paulson@13115
   813
apply (rule Top_intv_not_empty)
paulson@13115
   814
apply (rule lubY_in_A)
paulson@13115
   815
done
paulson@13115
   816
paulson@13115
   817
lemma (in Tarski) v_in_P: "v \<in> P"
paulson@13115
   818
apply (unfold P_def)
paulson@13115
   819
apply (rule_tac A = "intY1" in fixf_subset)
paulson@13115
   820
apply (rule intY1_subset)
wenzelm@21232
   821
apply (simp add: CLF.glbH_is_fixp [OF _ intY1_is_cl, simplified]
paulson@13115
   822
                 v_def CL_imp_PO intY1_is_cl CLF_def intY1_func intY1_mono)
paulson@13115
   823
done
paulson@13115
   824
wenzelm@13383
   825
lemma (in Tarski) z_in_interval:
paulson@13115
   826
     "[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |] ==> z \<in> intY1"
paulson@13115
   827
apply (unfold intY1_def P_def)
paulson@13115
   828
apply (rule intervalI)
wenzelm@13383
   829
prefer 2
paulson@13115
   830
 apply (erule fix_subset [THEN subsetD, THEN Top_prop])
paulson@13115
   831
apply (rule lub_least)
paulson@13115
   832
apply (rule Y_subset_A)
paulson@13115
   833
apply (fast elim!: fix_subset [THEN subsetD])
paulson@13115
   834
apply (simp add: induced_def)
paulson@13115
   835
done
paulson@13115
   836
wenzelm@13383
   837
lemma (in Tarski) f'z_in_int_rel: "[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |]
paulson@13115
   838
      ==> ((%x: intY1. f x) z, z) \<in> induced intY1 r"
paulson@13115
   839
apply (simp add: induced_def  intY1_f_closed z_in_interval P_def)
wenzelm@13383
   840
apply (simp add: fix_imp_eq [of _ f A] fix_subset [of f A, THEN subsetD]
paulson@18705
   841
                 reflE)
paulson@13115
   842
done
paulson@13115
   843
paulson@13115
   844
lemma (in Tarski) tarski_full_lemma:
paulson@13115
   845
     "\<exists>L. isLub Y (| pset = P, order = induced P r |) L"
paulson@13115
   846
apply (rule_tac x = "v" in exI)
paulson@13115
   847
apply (simp add: isLub_def)
wenzelm@13383
   848
-- {* @{text "v \<in> P"} *}
paulson@13115
   849
apply (simp add: v_in_P)
paulson@13115
   850
apply (rule conjI)
wenzelm@13383
   851
-- {* @{text v} is lub *}
wenzelm@13383
   852
-- {* @{text "1. \<forall>y:Y. (y, v) \<in> induced P r"} *}
paulson@13115
   853
apply (rule ballI)
paulson@13115
   854
apply (simp add: induced_def subsetD v_in_P)
paulson@13115
   855
apply (rule conjI)
paulson@13115
   856
apply (erule Y_ss [THEN subsetD])
paulson@13115
   857
apply (rule_tac b = "lub Y cl" in transE)
paulson@13115
   858
apply (rule lub_upper)
paulson@13115
   859
apply (rule Y_subset_A, assumption)
paulson@13115
   860
apply (rule_tac b = "Top cl" in interval_imp_mem)
paulson@13115
   861
apply (simp add: v_def)
paulson@13115
   862
apply (fold intY1_def)
wenzelm@21232
   863
apply (rule CL.glb_in_lattice [OF _ intY1_is_cl, simplified])
paulson@13115
   864
 apply (simp add: CL_imp_PO intY1_is_cl, force)
wenzelm@13383
   865
-- {* @{text v} is LEAST ub *}
paulson@13115
   866
apply clarify
paulson@13115
   867
apply (rule indI)
paulson@13115
   868
  prefer 3 apply assumption
paulson@13115
   869
 prefer 2 apply (simp add: v_in_P)
paulson@13115
   870
apply (unfold v_def)
paulson@13115
   871
apply (rule indE)
paulson@13115
   872
apply (rule_tac [2] intY1_subset)
wenzelm@21232
   873
apply (rule CL.glb_lower [OF _ intY1_is_cl, simplified])
wenzelm@13383
   874
  apply (simp add: CL_imp_PO intY1_is_cl)
paulson@13115
   875
 apply force
paulson@13115
   876
apply (simp add: induced_def intY1_f_closed z_in_interval)
paulson@18705
   877
apply (simp add: P_def fix_imp_eq [of _ f A] reflE
paulson@18705
   878
                 fix_subset [of f A, THEN subsetD])
paulson@13115
   879
done
paulson@13115
   880
paulson@13115
   881
lemma CompleteLatticeI_simp:
wenzelm@13383
   882
     "[| (| pset = A, order = r |) \<in> PartialOrder;
paulson@17841
   883
         \<forall>S. S \<subseteq> A --> (\<exists>L. isLub S (| pset = A, order = r |)  L) |]
paulson@13115
   884
    ==> (| pset = A, order = r |) \<in> CompleteLattice"
paulson@13115
   885
by (simp add: CompleteLatticeI Rdual)
paulson@13115
   886
paulson@13115
   887
theorem (in CLF) Tarski_full:
paulson@13115
   888
     "(| pset = P, order = induced P r|) \<in> CompleteLattice"
paulson@13115
   889
apply (rule CompleteLatticeI_simp)
paulson@13115
   890
apply (rule fixf_po, clarify)
wenzelm@13383
   891
apply (simp add: P_def A_def r_def)
wenzelm@13383
   892
apply (blast intro!: Tarski.tarski_full_lemma cl_po cl_co f_cl)
paulson@13115
   893
done
wenzelm@7112
   894
wenzelm@7112
   895
end