src/HOL/Power.thy
author huffman
Thu Mar 29 11:47:30 2012 +0200 (2012-03-29)
changeset 47191 ebd8c46d156b
parent 45231 d85a2fdc586c
child 47192 0c0501cb6da6
permissions -rw-r--r--
bootstrap Num.thy before Power.thy;
move lemmas about powers into Power.thy
paulson@3390
     1
(*  Title:      HOL/Power.thy
paulson@3390
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@3390
     3
    Copyright   1997  University of Cambridge
paulson@3390
     4
*)
paulson@3390
     5
haftmann@30960
     6
header {* Exponentiation *}
paulson@14348
     7
nipkow@15131
     8
theory Power
huffman@47191
     9
imports Num
nipkow@15131
    10
begin
paulson@14348
    11
haftmann@30960
    12
subsection {* Powers for Arbitrary Monoids *}
haftmann@30960
    13
haftmann@30996
    14
class power = one + times
haftmann@30960
    15
begin
haftmann@24996
    16
haftmann@30960
    17
primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where
haftmann@30960
    18
    power_0: "a ^ 0 = 1"
haftmann@30960
    19
  | power_Suc: "a ^ Suc n = a * a ^ n"
paulson@14348
    20
haftmann@30996
    21
notation (latex output)
haftmann@30996
    22
  power ("(_\<^bsup>_\<^esup>)" [1000] 1000)
haftmann@30996
    23
haftmann@30996
    24
notation (HTML output)
haftmann@30996
    25
  power ("(_\<^bsup>_\<^esup>)" [1000] 1000)
haftmann@30996
    26
haftmann@30960
    27
end
paulson@14348
    28
haftmann@30996
    29
context monoid_mult
haftmann@30996
    30
begin
paulson@14348
    31
wenzelm@39438
    32
subclass power .
paulson@14348
    33
haftmann@30996
    34
lemma power_one [simp]:
haftmann@30996
    35
  "1 ^ n = 1"
huffman@30273
    36
  by (induct n) simp_all
paulson@14348
    37
haftmann@30996
    38
lemma power_one_right [simp]:
haftmann@31001
    39
  "a ^ 1 = a"
haftmann@30996
    40
  by simp
paulson@14348
    41
haftmann@30996
    42
lemma power_commutes:
haftmann@30996
    43
  "a ^ n * a = a * a ^ n"
huffman@30273
    44
  by (induct n) (simp_all add: mult_assoc)
krauss@21199
    45
haftmann@30996
    46
lemma power_Suc2:
haftmann@30996
    47
  "a ^ Suc n = a ^ n * a"
huffman@30273
    48
  by (simp add: power_commutes)
huffman@28131
    49
haftmann@30996
    50
lemma power_add:
haftmann@30996
    51
  "a ^ (m + n) = a ^ m * a ^ n"
haftmann@30996
    52
  by (induct m) (simp_all add: algebra_simps)
paulson@14348
    53
haftmann@30996
    54
lemma power_mult:
haftmann@30996
    55
  "a ^ (m * n) = (a ^ m) ^ n"
huffman@30273
    56
  by (induct n) (simp_all add: power_add)
paulson@14348
    57
haftmann@30996
    58
end
haftmann@30996
    59
haftmann@30996
    60
context comm_monoid_mult
haftmann@30996
    61
begin
haftmann@30996
    62
haftmann@30996
    63
lemma power_mult_distrib:
haftmann@30996
    64
  "(a * b) ^ n = (a ^ n) * (b ^ n)"
huffman@30273
    65
  by (induct n) (simp_all add: mult_ac)
paulson@14348
    66
haftmann@30996
    67
end
haftmann@30996
    68
huffman@47191
    69
context semiring_numeral
huffman@47191
    70
begin
huffman@47191
    71
huffman@47191
    72
lemma numeral_sqr: "numeral (Num.sqr k) = numeral k * numeral k"
huffman@47191
    73
  by (simp only: sqr_conv_mult numeral_mult)
huffman@47191
    74
huffman@47191
    75
lemma numeral_pow: "numeral (Num.pow k l) = numeral k ^ numeral l"
huffman@47191
    76
  by (induct l, simp_all only: numeral_class.numeral.simps pow.simps
huffman@47191
    77
    numeral_sqr numeral_mult power_add power_one_right)
huffman@47191
    78
huffman@47191
    79
lemma power_numeral [simp]: "numeral k ^ numeral l = numeral (Num.pow k l)"
huffman@47191
    80
  by (rule numeral_pow [symmetric])
huffman@47191
    81
huffman@47191
    82
end
huffman@47191
    83
haftmann@30996
    84
context semiring_1
haftmann@30996
    85
begin
haftmann@30996
    86
haftmann@30996
    87
lemma of_nat_power:
haftmann@30996
    88
  "of_nat (m ^ n) = of_nat m ^ n"
haftmann@30996
    89
  by (induct n) (simp_all add: of_nat_mult)
haftmann@30996
    90
huffman@47191
    91
lemma power_zero_numeral [simp]: "(0::'a) ^ numeral k = 0"
huffman@47191
    92
  by (cases "numeral k :: nat", simp_all)
huffman@47191
    93
haftmann@30996
    94
end
haftmann@30996
    95
haftmann@30996
    96
context comm_semiring_1
haftmann@30996
    97
begin
haftmann@30996
    98
haftmann@30996
    99
text {* The divides relation *}
haftmann@30996
   100
haftmann@30996
   101
lemma le_imp_power_dvd:
haftmann@30996
   102
  assumes "m \<le> n" shows "a ^ m dvd a ^ n"
haftmann@30996
   103
proof
haftmann@30996
   104
  have "a ^ n = a ^ (m + (n - m))"
haftmann@30996
   105
    using `m \<le> n` by simp
haftmann@30996
   106
  also have "\<dots> = a ^ m * a ^ (n - m)"
haftmann@30996
   107
    by (rule power_add)
haftmann@30996
   108
  finally show "a ^ n = a ^ m * a ^ (n - m)" .
haftmann@30996
   109
qed
haftmann@30996
   110
haftmann@30996
   111
lemma power_le_dvd:
haftmann@30996
   112
  "a ^ n dvd b \<Longrightarrow> m \<le> n \<Longrightarrow> a ^ m dvd b"
haftmann@30996
   113
  by (rule dvd_trans [OF le_imp_power_dvd])
haftmann@30996
   114
haftmann@30996
   115
lemma dvd_power_same:
haftmann@30996
   116
  "x dvd y \<Longrightarrow> x ^ n dvd y ^ n"
haftmann@30996
   117
  by (induct n) (auto simp add: mult_dvd_mono)
haftmann@30996
   118
haftmann@30996
   119
lemma dvd_power_le:
haftmann@30996
   120
  "x dvd y \<Longrightarrow> m \<ge> n \<Longrightarrow> x ^ n dvd y ^ m"
haftmann@30996
   121
  by (rule power_le_dvd [OF dvd_power_same])
paulson@14348
   122
haftmann@30996
   123
lemma dvd_power [simp]:
haftmann@30996
   124
  assumes "n > (0::nat) \<or> x = 1"
haftmann@30996
   125
  shows "x dvd (x ^ n)"
haftmann@30996
   126
using assms proof
haftmann@30996
   127
  assume "0 < n"
haftmann@30996
   128
  then have "x ^ n = x ^ Suc (n - 1)" by simp
haftmann@30996
   129
  then show "x dvd (x ^ n)" by simp
haftmann@30996
   130
next
haftmann@30996
   131
  assume "x = 1"
haftmann@30996
   132
  then show "x dvd (x ^ n)" by simp
haftmann@30996
   133
qed
haftmann@30996
   134
haftmann@30996
   135
end
haftmann@30996
   136
haftmann@30996
   137
context ring_1
haftmann@30996
   138
begin
haftmann@30996
   139
haftmann@30996
   140
lemma power_minus:
haftmann@30996
   141
  "(- a) ^ n = (- 1) ^ n * a ^ n"
haftmann@30996
   142
proof (induct n)
haftmann@30996
   143
  case 0 show ?case by simp
haftmann@30996
   144
next
haftmann@30996
   145
  case (Suc n) then show ?case
haftmann@30996
   146
    by (simp del: power_Suc add: power_Suc2 mult_assoc)
haftmann@30996
   147
qed
haftmann@30996
   148
huffman@47191
   149
lemma power_minus_Bit0:
huffman@47191
   150
  "(- x) ^ numeral (Num.Bit0 k) = x ^ numeral (Num.Bit0 k)"
huffman@47191
   151
  by (induct k, simp_all only: numeral_class.numeral.simps power_add
huffman@47191
   152
    power_one_right mult_minus_left mult_minus_right minus_minus)
huffman@47191
   153
huffman@47191
   154
lemma power_minus_Bit1:
huffman@47191
   155
  "(- x) ^ numeral (Num.Bit1 k) = - (x ^ numeral (Num.Bit1 k))"
huffman@47191
   156
  by (simp only: nat_number(4) power_Suc power_minus_Bit0 mult_minus_left)
huffman@47191
   157
huffman@47191
   158
lemma power_neg_numeral_Bit0 [simp]:
huffman@47191
   159
  "neg_numeral k ^ numeral (Num.Bit0 l) = numeral (Num.pow k (Num.Bit0 l))"
huffman@47191
   160
  by (simp only: neg_numeral_def power_minus_Bit0 power_numeral)
huffman@47191
   161
huffman@47191
   162
lemma power_neg_numeral_Bit1 [simp]:
huffman@47191
   163
  "neg_numeral k ^ numeral (Num.Bit1 l) = neg_numeral (Num.pow k (Num.Bit1 l))"
huffman@47191
   164
  by (simp only: neg_numeral_def power_minus_Bit1 power_numeral pow.simps)
huffman@47191
   165
haftmann@30996
   166
end
haftmann@30996
   167
haftmann@35028
   168
context linordered_semidom
haftmann@30996
   169
begin
haftmann@30996
   170
haftmann@30996
   171
lemma zero_less_power [simp]:
haftmann@30996
   172
  "0 < a \<Longrightarrow> 0 < a ^ n"
haftmann@30996
   173
  by (induct n) (simp_all add: mult_pos_pos)
haftmann@30996
   174
haftmann@30996
   175
lemma zero_le_power [simp]:
haftmann@30996
   176
  "0 \<le> a \<Longrightarrow> 0 \<le> a ^ n"
haftmann@30996
   177
  by (induct n) (simp_all add: mult_nonneg_nonneg)
paulson@14348
   178
nipkow@25874
   179
lemma one_le_power[simp]:
haftmann@30996
   180
  "1 \<le> a \<Longrightarrow> 1 \<le> a ^ n"
haftmann@30996
   181
  apply (induct n)
haftmann@30996
   182
  apply simp_all
haftmann@30996
   183
  apply (rule order_trans [OF _ mult_mono [of 1 _ 1]])
haftmann@30996
   184
  apply (simp_all add: order_trans [OF zero_le_one])
haftmann@30996
   185
  done
paulson@14348
   186
paulson@14348
   187
lemma power_gt1_lemma:
haftmann@30996
   188
  assumes gt1: "1 < a"
haftmann@30996
   189
  shows "1 < a * a ^ n"
paulson@14348
   190
proof -
haftmann@30996
   191
  from gt1 have "0 \<le> a"
haftmann@30996
   192
    by (fact order_trans [OF zero_le_one less_imp_le])
haftmann@30996
   193
  have "1 * 1 < a * 1" using gt1 by simp
haftmann@30996
   194
  also have "\<dots> \<le> a * a ^ n" using gt1
haftmann@30996
   195
    by (simp only: mult_mono `0 \<le> a` one_le_power order_less_imp_le
wenzelm@14577
   196
        zero_le_one order_refl)
wenzelm@14577
   197
  finally show ?thesis by simp
paulson@14348
   198
qed
paulson@14348
   199
haftmann@30996
   200
lemma power_gt1:
haftmann@30996
   201
  "1 < a \<Longrightarrow> 1 < a ^ Suc n"
haftmann@30996
   202
  by (simp add: power_gt1_lemma)
huffman@24376
   203
haftmann@30996
   204
lemma one_less_power [simp]:
haftmann@30996
   205
  "1 < a \<Longrightarrow> 0 < n \<Longrightarrow> 1 < a ^ n"
haftmann@30996
   206
  by (cases n) (simp_all add: power_gt1_lemma)
paulson@14348
   207
paulson@14348
   208
lemma power_le_imp_le_exp:
haftmann@30996
   209
  assumes gt1: "1 < a"
haftmann@30996
   210
  shows "a ^ m \<le> a ^ n \<Longrightarrow> m \<le> n"
haftmann@30996
   211
proof (induct m arbitrary: n)
paulson@14348
   212
  case 0
wenzelm@14577
   213
  show ?case by simp
paulson@14348
   214
next
paulson@14348
   215
  case (Suc m)
wenzelm@14577
   216
  show ?case
wenzelm@14577
   217
  proof (cases n)
wenzelm@14577
   218
    case 0
haftmann@30996
   219
    with Suc.prems Suc.hyps have "a * a ^ m \<le> 1" by simp
wenzelm@14577
   220
    with gt1 show ?thesis
wenzelm@14577
   221
      by (force simp only: power_gt1_lemma
haftmann@30996
   222
          not_less [symmetric])
wenzelm@14577
   223
  next
wenzelm@14577
   224
    case (Suc n)
haftmann@30996
   225
    with Suc.prems Suc.hyps show ?thesis
wenzelm@14577
   226
      by (force dest: mult_left_le_imp_le
haftmann@30996
   227
          simp add: less_trans [OF zero_less_one gt1])
wenzelm@14577
   228
  qed
paulson@14348
   229
qed
paulson@14348
   230
wenzelm@14577
   231
text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*}
paulson@14348
   232
lemma power_inject_exp [simp]:
haftmann@30996
   233
  "1 < a \<Longrightarrow> a ^ m = a ^ n \<longleftrightarrow> m = n"
wenzelm@14577
   234
  by (force simp add: order_antisym power_le_imp_le_exp)
paulson@14348
   235
paulson@14348
   236
text{*Can relax the first premise to @{term "0<a"} in the case of the
paulson@14348
   237
natural numbers.*}
paulson@14348
   238
lemma power_less_imp_less_exp:
haftmann@30996
   239
  "1 < a \<Longrightarrow> a ^ m < a ^ n \<Longrightarrow> m < n"
haftmann@30996
   240
  by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"]
haftmann@30996
   241
    power_le_imp_le_exp)
paulson@14348
   242
paulson@14348
   243
lemma power_mono:
haftmann@30996
   244
  "a \<le> b \<Longrightarrow> 0 \<le> a \<Longrightarrow> a ^ n \<le> b ^ n"
haftmann@30996
   245
  by (induct n)
haftmann@30996
   246
    (auto intro: mult_mono order_trans [of 0 a b])
paulson@14348
   247
paulson@14348
   248
lemma power_strict_mono [rule_format]:
haftmann@30996
   249
  "a < b \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 < n \<longrightarrow> a ^ n < b ^ n"
haftmann@30996
   250
  by (induct n)
haftmann@30996
   251
   (auto simp add: mult_strict_mono le_less_trans [of 0 a b])
paulson@14348
   252
paulson@14348
   253
text{*Lemma for @{text power_strict_decreasing}*}
paulson@14348
   254
lemma power_Suc_less:
haftmann@30996
   255
  "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a * a ^ n < a ^ n"
haftmann@30996
   256
  by (induct n)
haftmann@30996
   257
    (auto simp add: mult_strict_left_mono)
paulson@14348
   258
haftmann@30996
   259
lemma power_strict_decreasing [rule_format]:
haftmann@30996
   260
  "n < N \<Longrightarrow> 0 < a \<Longrightarrow> a < 1 \<longrightarrow> a ^ N < a ^ n"
haftmann@30996
   261
proof (induct N)
haftmann@30996
   262
  case 0 then show ?case by simp
haftmann@30996
   263
next
haftmann@30996
   264
  case (Suc N) then show ?case 
haftmann@30996
   265
  apply (auto simp add: power_Suc_less less_Suc_eq)
haftmann@30996
   266
  apply (subgoal_tac "a * a^N < 1 * a^n")
haftmann@30996
   267
  apply simp
haftmann@30996
   268
  apply (rule mult_strict_mono) apply auto
haftmann@30996
   269
  done
haftmann@30996
   270
qed
paulson@14348
   271
paulson@14348
   272
text{*Proof resembles that of @{text power_strict_decreasing}*}
haftmann@30996
   273
lemma power_decreasing [rule_format]:
haftmann@30996
   274
  "n \<le> N \<Longrightarrow> 0 \<le> a \<Longrightarrow> a \<le> 1 \<longrightarrow> a ^ N \<le> a ^ n"
haftmann@30996
   275
proof (induct N)
haftmann@30996
   276
  case 0 then show ?case by simp
haftmann@30996
   277
next
haftmann@30996
   278
  case (Suc N) then show ?case 
haftmann@30996
   279
  apply (auto simp add: le_Suc_eq)
haftmann@30996
   280
  apply (subgoal_tac "a * a^N \<le> 1 * a^n", simp)
haftmann@30996
   281
  apply (rule mult_mono) apply auto
haftmann@30996
   282
  done
haftmann@30996
   283
qed
paulson@14348
   284
paulson@14348
   285
lemma power_Suc_less_one:
haftmann@30996
   286
  "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a ^ Suc n < 1"
haftmann@30996
   287
  using power_strict_decreasing [of 0 "Suc n" a] by simp
paulson@14348
   288
paulson@14348
   289
text{*Proof again resembles that of @{text power_strict_decreasing}*}
haftmann@30996
   290
lemma power_increasing [rule_format]:
haftmann@30996
   291
  "n \<le> N \<Longrightarrow> 1 \<le> a \<Longrightarrow> a ^ n \<le> a ^ N"
haftmann@30996
   292
proof (induct N)
haftmann@30996
   293
  case 0 then show ?case by simp
haftmann@30996
   294
next
haftmann@30996
   295
  case (Suc N) then show ?case 
haftmann@30996
   296
  apply (auto simp add: le_Suc_eq)
haftmann@30996
   297
  apply (subgoal_tac "1 * a^n \<le> a * a^N", simp)
haftmann@30996
   298
  apply (rule mult_mono) apply (auto simp add: order_trans [OF zero_le_one])
haftmann@30996
   299
  done
haftmann@30996
   300
qed
paulson@14348
   301
paulson@14348
   302
text{*Lemma for @{text power_strict_increasing}*}
paulson@14348
   303
lemma power_less_power_Suc:
haftmann@30996
   304
  "1 < a \<Longrightarrow> a ^ n < a * a ^ n"
haftmann@30996
   305
  by (induct n) (auto simp add: mult_strict_left_mono less_trans [OF zero_less_one])
paulson@14348
   306
haftmann@30996
   307
lemma power_strict_increasing [rule_format]:
haftmann@30996
   308
  "n < N \<Longrightarrow> 1 < a \<longrightarrow> a ^ n < a ^ N"
haftmann@30996
   309
proof (induct N)
haftmann@30996
   310
  case 0 then show ?case by simp
haftmann@30996
   311
next
haftmann@30996
   312
  case (Suc N) then show ?case 
haftmann@30996
   313
  apply (auto simp add: power_less_power_Suc less_Suc_eq)
haftmann@30996
   314
  apply (subgoal_tac "1 * a^n < a * a^N", simp)
haftmann@30996
   315
  apply (rule mult_strict_mono) apply (auto simp add: less_trans [OF zero_less_one] less_imp_le)
haftmann@30996
   316
  done
haftmann@30996
   317
qed
paulson@14348
   318
nipkow@25134
   319
lemma power_increasing_iff [simp]:
haftmann@30996
   320
  "1 < b \<Longrightarrow> b ^ x \<le> b ^ y \<longleftrightarrow> x \<le> y"
haftmann@30996
   321
  by (blast intro: power_le_imp_le_exp power_increasing less_imp_le)
paulson@15066
   322
paulson@15066
   323
lemma power_strict_increasing_iff [simp]:
haftmann@30996
   324
  "1 < b \<Longrightarrow> b ^ x < b ^ y \<longleftrightarrow> x < y"
nipkow@25134
   325
by (blast intro: power_less_imp_less_exp power_strict_increasing) 
paulson@15066
   326
paulson@14348
   327
lemma power_le_imp_le_base:
haftmann@30996
   328
  assumes le: "a ^ Suc n \<le> b ^ Suc n"
haftmann@30996
   329
    and ynonneg: "0 \<le> b"
haftmann@30996
   330
  shows "a \<le> b"
nipkow@25134
   331
proof (rule ccontr)
nipkow@25134
   332
  assume "~ a \<le> b"
nipkow@25134
   333
  then have "b < a" by (simp only: linorder_not_le)
nipkow@25134
   334
  then have "b ^ Suc n < a ^ Suc n"
wenzelm@41550
   335
    by (simp only: assms power_strict_mono)
haftmann@30996
   336
  from le and this show False
nipkow@25134
   337
    by (simp add: linorder_not_less [symmetric])
nipkow@25134
   338
qed
wenzelm@14577
   339
huffman@22853
   340
lemma power_less_imp_less_base:
huffman@22853
   341
  assumes less: "a ^ n < b ^ n"
huffman@22853
   342
  assumes nonneg: "0 \<le> b"
huffman@22853
   343
  shows "a < b"
huffman@22853
   344
proof (rule contrapos_pp [OF less])
huffman@22853
   345
  assume "~ a < b"
huffman@22853
   346
  hence "b \<le> a" by (simp only: linorder_not_less)
huffman@22853
   347
  hence "b ^ n \<le> a ^ n" using nonneg by (rule power_mono)
haftmann@30996
   348
  thus "\<not> a ^ n < b ^ n" by (simp only: linorder_not_less)
huffman@22853
   349
qed
huffman@22853
   350
paulson@14348
   351
lemma power_inject_base:
haftmann@30996
   352
  "a ^ Suc n = b ^ Suc n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a = b"
haftmann@30996
   353
by (blast intro: power_le_imp_le_base antisym eq_refl sym)
paulson@14348
   354
huffman@22955
   355
lemma power_eq_imp_eq_base:
haftmann@30996
   356
  "a ^ n = b ^ n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 < n \<Longrightarrow> a = b"
haftmann@30996
   357
  by (cases n) (simp_all del: power_Suc, rule power_inject_base)
huffman@22955
   358
haftmann@30996
   359
end
haftmann@30996
   360
haftmann@35028
   361
context linordered_idom
haftmann@30996
   362
begin
huffman@29978
   363
haftmann@30996
   364
lemma power_abs:
haftmann@30996
   365
  "abs (a ^ n) = abs a ^ n"
haftmann@30996
   366
  by (induct n) (auto simp add: abs_mult)
haftmann@30996
   367
haftmann@30996
   368
lemma abs_power_minus [simp]:
haftmann@30996
   369
  "abs ((-a) ^ n) = abs (a ^ n)"
huffman@35216
   370
  by (simp add: power_abs)
haftmann@30996
   371
blanchet@35828
   372
lemma zero_less_power_abs_iff [simp, no_atp]:
haftmann@30996
   373
  "0 < abs a ^ n \<longleftrightarrow> a \<noteq> 0 \<or> n = 0"
haftmann@30996
   374
proof (induct n)
haftmann@30996
   375
  case 0 show ?case by simp
haftmann@30996
   376
next
haftmann@30996
   377
  case (Suc n) show ?case by (auto simp add: Suc zero_less_mult_iff)
huffman@29978
   378
qed
huffman@29978
   379
haftmann@30996
   380
lemma zero_le_power_abs [simp]:
haftmann@30996
   381
  "0 \<le> abs a ^ n"
haftmann@30996
   382
  by (rule zero_le_power [OF abs_ge_zero])
haftmann@30996
   383
haftmann@30996
   384
end
haftmann@30996
   385
haftmann@30996
   386
context ring_1_no_zero_divisors
haftmann@30996
   387
begin
haftmann@30996
   388
haftmann@30996
   389
lemma field_power_not_zero:
haftmann@30996
   390
  "a \<noteq> 0 \<Longrightarrow> a ^ n \<noteq> 0"
haftmann@30996
   391
  by (induct n) auto
haftmann@30996
   392
haftmann@30996
   393
end
haftmann@30996
   394
haftmann@30996
   395
context division_ring
haftmann@30996
   396
begin
huffman@29978
   397
haftmann@30997
   398
text {* FIXME reorient or rename to @{text nonzero_inverse_power} *}
haftmann@30996
   399
lemma nonzero_power_inverse:
haftmann@30996
   400
  "a \<noteq> 0 \<Longrightarrow> inverse (a ^ n) = (inverse a) ^ n"
haftmann@30996
   401
  by (induct n)
haftmann@30996
   402
    (simp_all add: nonzero_inverse_mult_distrib power_commutes field_power_not_zero)
paulson@14348
   403
haftmann@30996
   404
end
haftmann@30996
   405
haftmann@30996
   406
context field
haftmann@30996
   407
begin
haftmann@30996
   408
haftmann@30996
   409
lemma nonzero_power_divide:
haftmann@30996
   410
  "b \<noteq> 0 \<Longrightarrow> (a / b) ^ n = a ^ n / b ^ n"
haftmann@30996
   411
  by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse)
haftmann@30996
   412
haftmann@30996
   413
end
haftmann@30996
   414
haftmann@30996
   415
lemma power_0_Suc [simp]:
haftmann@30996
   416
  "(0::'a::{power, semiring_0}) ^ Suc n = 0"
haftmann@30996
   417
  by simp
nipkow@30313
   418
haftmann@30996
   419
text{*It looks plausible as a simprule, but its effect can be strange.*}
haftmann@30996
   420
lemma power_0_left:
haftmann@30996
   421
  "0 ^ n = (if n = 0 then 1 else (0::'a::{power, semiring_0}))"
haftmann@30996
   422
  by (induct n) simp_all
haftmann@30996
   423
haftmann@30996
   424
lemma power_eq_0_iff [simp]:
haftmann@30996
   425
  "a ^ n = 0 \<longleftrightarrow>
haftmann@30996
   426
     a = (0::'a::{mult_zero,zero_neq_one,no_zero_divisors,power}) \<and> n \<noteq> 0"
haftmann@30996
   427
  by (induct n)
haftmann@30996
   428
    (auto simp add: no_zero_divisors elim: contrapos_pp)
haftmann@30996
   429
haftmann@36409
   430
lemma (in field) power_diff:
haftmann@30996
   431
  assumes nz: "a \<noteq> 0"
haftmann@30996
   432
  shows "n \<le> m \<Longrightarrow> a ^ (m - n) = a ^ m / a ^ n"
haftmann@36409
   433
  by (induct m n rule: diff_induct) (simp_all add: nz field_power_not_zero)
nipkow@30313
   434
haftmann@30996
   435
text{*Perhaps these should be simprules.*}
haftmann@30996
   436
lemma power_inverse:
haftmann@36409
   437
  fixes a :: "'a::division_ring_inverse_zero"
haftmann@36409
   438
  shows "inverse (a ^ n) = inverse a ^ n"
haftmann@30996
   439
apply (cases "a = 0")
haftmann@30996
   440
apply (simp add: power_0_left)
haftmann@30996
   441
apply (simp add: nonzero_power_inverse)
haftmann@30996
   442
done (* TODO: reorient or rename to inverse_power *)
haftmann@30996
   443
haftmann@30996
   444
lemma power_one_over:
haftmann@36409
   445
  "1 / (a::'a::{field_inverse_zero, power}) ^ n =  (1 / a) ^ n"
haftmann@30996
   446
  by (simp add: divide_inverse) (rule power_inverse)
haftmann@30996
   447
haftmann@30996
   448
lemma power_divide:
haftmann@36409
   449
  "(a / b) ^ n = (a::'a::field_inverse_zero) ^ n / b ^ n"
haftmann@30996
   450
apply (cases "b = 0")
haftmann@30996
   451
apply (simp add: power_0_left)
haftmann@30996
   452
apply (rule nonzero_power_divide)
haftmann@30996
   453
apply assumption
nipkow@30313
   454
done
nipkow@30313
   455
nipkow@30313
   456
haftmann@30960
   457
subsection {* Exponentiation for the Natural Numbers *}
wenzelm@14577
   458
haftmann@30996
   459
lemma nat_one_le_power [simp]:
haftmann@30996
   460
  "Suc 0 \<le> i \<Longrightarrow> Suc 0 \<le> i ^ n"
haftmann@30996
   461
  by (rule one_le_power [of i n, unfolded One_nat_def])
huffman@23305
   462
haftmann@30996
   463
lemma nat_zero_less_power_iff [simp]:
haftmann@30996
   464
  "x ^ n > 0 \<longleftrightarrow> x > (0::nat) \<or> n = 0"
haftmann@30996
   465
  by (induct n) auto
paulson@14348
   466
nipkow@30056
   467
lemma nat_power_eq_Suc_0_iff [simp]: 
haftmann@30996
   468
  "x ^ m = Suc 0 \<longleftrightarrow> m = 0 \<or> x = Suc 0"
haftmann@30996
   469
  by (induct m) auto
nipkow@30056
   470
haftmann@30996
   471
lemma power_Suc_0 [simp]:
haftmann@30996
   472
  "Suc 0 ^ n = Suc 0"
haftmann@30996
   473
  by simp
nipkow@30056
   474
paulson@14348
   475
text{*Valid for the naturals, but what if @{text"0<i<1"}?
paulson@14348
   476
Premises cannot be weakened: consider the case where @{term "i=0"},
paulson@14348
   477
@{term "m=1"} and @{term "n=0"}.*}
haftmann@21413
   478
lemma nat_power_less_imp_less:
haftmann@21413
   479
  assumes nonneg: "0 < (i\<Colon>nat)"
haftmann@30996
   480
  assumes less: "i ^ m < i ^ n"
haftmann@21413
   481
  shows "m < n"
haftmann@21413
   482
proof (cases "i = 1")
haftmann@21413
   483
  case True with less power_one [where 'a = nat] show ?thesis by simp
haftmann@21413
   484
next
haftmann@21413
   485
  case False with nonneg have "1 < i" by auto
haftmann@21413
   486
  from power_strict_increasing_iff [OF this] less show ?thesis ..
haftmann@21413
   487
qed
paulson@14348
   488
haftmann@33274
   489
lemma power_dvd_imp_le:
haftmann@33274
   490
  "i ^ m dvd i ^ n \<Longrightarrow> (1::nat) < i \<Longrightarrow> m \<le> n"
haftmann@33274
   491
  apply (rule power_le_imp_le_exp, assumption)
haftmann@33274
   492
  apply (erule dvd_imp_le, simp)
haftmann@33274
   493
  done
haftmann@33274
   494
haftmann@31155
   495
haftmann@31155
   496
subsection {* Code generator tweak *}
haftmann@31155
   497
bulwahn@45231
   498
lemma power_power_power [code]:
haftmann@31155
   499
  "power = power.power (1::'a::{power}) (op *)"
haftmann@31155
   500
  unfolding power_def power.power_def ..
haftmann@31155
   501
haftmann@31155
   502
declare power.power.simps [code]
haftmann@31155
   503
haftmann@33364
   504
code_modulename SML
haftmann@33364
   505
  Power Arith
haftmann@33364
   506
haftmann@33364
   507
code_modulename OCaml
haftmann@33364
   508
  Power Arith
haftmann@33364
   509
haftmann@33364
   510
code_modulename Haskell
haftmann@33364
   511
  Power Arith
haftmann@33364
   512
paulson@3390
   513
end