src/HOL/Map.thy
author nipkow
Thu Mar 23 20:03:53 2006 +0100 (2006-03-23)
changeset 19323 ec5cd5b1804c
parent 18576 8d98b7711e47
child 19378 6cc9ac729eb5
permissions -rw-r--r--
Converted translations to abbbreviations.
Removed a few odd functions from Map and AssocList.
Moved chg_map from Map to Bali/Basis.
nipkow@3981
     1
(*  Title:      HOL/Map.thy
nipkow@3981
     2
    ID:         $Id$
nipkow@3981
     3
    Author:     Tobias Nipkow, based on a theory by David von Oheimb
webertj@13908
     4
    Copyright   1997-2003 TU Muenchen
nipkow@3981
     5
nipkow@3981
     6
The datatype of `maps' (written ~=>); strongly resembles maps in VDM.
nipkow@3981
     7
*)
nipkow@3981
     8
nipkow@13914
     9
header {* Maps *}
nipkow@13914
    10
nipkow@15131
    11
theory Map
nipkow@15140
    12
imports List
nipkow@15131
    13
begin
nipkow@3981
    14
webertj@13908
    15
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0)
oheimb@14100
    16
translations (type) "a ~=> b " <= (type) "a => b option"
nipkow@3981
    17
nipkow@3981
    18
consts
oheimb@14100
    19
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100)
nipkow@15693
    20
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" (infixl "|`"  110)
oheimb@5300
    21
dom	:: "('a ~=> 'b) => 'a set"
oheimb@5300
    22
ran	:: "('a ~=> 'b) => 'b set"
oheimb@5300
    23
map_of	:: "('a * 'b)list => 'a ~=> 'b"
nipkow@19323
    24
map_upds:: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)"
nipkow@13910
    25
map_le  :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50)
nipkow@13910
    26
schirmer@17391
    27
constdefs
schirmer@17391
    28
  map_comp :: "('b ~=> 'c)  => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55)
schirmer@17391
    29
  "f o_m g  == (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)"
nipkow@14739
    30
nipkow@19323
    31
syntax
nipkow@19323
    32
  empty     ::  "'a ~=> 'b"
nipkow@19323
    33
translations
nipkow@19323
    34
  "empty"    => "%_. None"
nipkow@19323
    35
  "empty"    <= "%x. None"
nipkow@19323
    36
nipkow@14180
    37
nonterminals
nipkow@14180
    38
  maplets maplet
nipkow@14180
    39
oheimb@5300
    40
syntax
nipkow@14180
    41
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /|->/ _")
nipkow@14180
    42
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[|->]/ _")
nipkow@14180
    43
  ""         :: "maplet => maplets"             ("_")
nipkow@14180
    44
  "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
nipkow@14180
    45
  "_MapUpd"  :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
nipkow@14180
    46
  "_Map"     :: "maplets => 'a ~=> 'b"            ("(1[_])")
nipkow@3981
    47
wenzelm@12114
    48
syntax (xsymbols)
nipkow@14739
    49
  "~=>"     :: "[type, type] => type"    (infixr "\<rightharpoonup>" 0)
nipkow@14739
    50
schirmer@17391
    51
  map_comp :: "('b ~=> 'c)  => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "\<circ>\<^sub>m" 55)
nipkow@14739
    52
nipkow@14180
    53
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /\<mapsto>/ _")
nipkow@14180
    54
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[\<mapsto>]/ _")
nipkow@14180
    55
nipkow@15693
    56
syntax (latex output)
nipkow@15695
    57
  restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
nipkow@15695
    58
  --"requires amssymb!"
nipkow@15693
    59
oheimb@5300
    60
translations
nipkow@14180
    61
  "_MapUpd m (_Maplets xy ms)"  == "_MapUpd (_MapUpd m xy) ms"
nipkow@14180
    62
  "_MapUpd m (_maplet  x y)"    == "m(x:=Some y)"
nipkow@14180
    63
  "_MapUpd m (_maplets x y)"    == "map_upds m x y"
nipkow@14180
    64
  "_Map ms"                     == "_MapUpd empty ms"
nipkow@14180
    65
  "_Map (_Maplets ms1 ms2)"     <= "_MapUpd (_Map ms1) ms2"
nipkow@14180
    66
  "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3"
nipkow@14180
    67
nipkow@3981
    68
defs
oheimb@14100
    69
map_add_def:   "m1++m2 == %x. case m2 x of None => m1 x | Some y => Some y"
nipkow@15693
    70
restrict_map_def: "m|`A == %x. if x : A then m x else None"
nipkow@14025
    71
nipkow@14025
    72
map_upds_def: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))"
nipkow@3981
    73
webertj@13908
    74
dom_def: "dom(m) == {a. m a ~= None}"
nipkow@14025
    75
ran_def: "ran(m) == {b. EX a. m a = Some b}"
nipkow@3981
    76
nipkow@14376
    77
map_le_def: "m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2  ==  ALL a : dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a"
nipkow@13910
    78
berghofe@5183
    79
primrec
berghofe@5183
    80
  "map_of [] = empty"
oheimb@5300
    81
  "map_of (p#ps) = (map_of ps)(fst p |-> snd p)"
oheimb@5300
    82
nipkow@19323
    83
(* special purpose constants that should be defined somewhere else and
nipkow@19323
    84
whose syntax is a bit odd as well:
nipkow@19323
    85
nipkow@19323
    86
 "@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)"
nipkow@19323
    87
					  ("_/'(_/\<mapsto>\<lambda>_. _')"  [900,0,0,0] 900)
nipkow@19323
    88
  "m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m"
nipkow@19323
    89
nipkow@19323
    90
map_upd_s::"('a ~=> 'b) => 'a set => 'b => 
nipkow@19323
    91
	    ('a ~=> 'b)"			 ("_/'(_{|->}_/')" [900,0,0]900)
nipkow@19323
    92
map_subst::"('a ~=> 'b) => 'b => 'b => 
nipkow@19323
    93
	    ('a ~=> 'b)"			 ("_/'(_~>_/')"    [900,0,0]900)
nipkow@19323
    94
nipkow@19323
    95
map_upd_s_def: "m(as{|->}b) == %x. if x : as then Some b else m x"
nipkow@19323
    96
map_subst_def: "m(a~>b)     == %x. if m x = Some a then Some b else m x"
nipkow@19323
    97
nipkow@19323
    98
  map_upd_s  :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)"
nipkow@19323
    99
				    		 ("_/'(_/{\<mapsto>}/_')" [900,0,0]900)
nipkow@19323
   100
  map_subst :: "('a ~=> 'b) => 'b => 'b => 
nipkow@19323
   101
	        ('a ~=> 'b)"			 ("_/'(_\<leadsto>_/')"    [900,0,0]900)
nipkow@19323
   102
nipkow@19323
   103
nipkow@19323
   104
subsection {* @{term [source] map_upd_s} *}
nipkow@19323
   105
nipkow@19323
   106
lemma map_upd_s_apply [simp]: 
nipkow@19323
   107
  "(m(as{|->}b)) x = (if x : as then Some b else m x)"
nipkow@19323
   108
by (simp add: map_upd_s_def)
nipkow@19323
   109
nipkow@19323
   110
lemma map_subst_apply [simp]: 
nipkow@19323
   111
  "(m(a~>b)) x = (if m x = Some a then Some b else m x)" 
nipkow@19323
   112
by (simp add: map_subst_def)
nipkow@19323
   113
nipkow@19323
   114
*)
webertj@13908
   115
wenzelm@17399
   116
subsection {* @{term [source] empty} *}
webertj@13908
   117
nipkow@13910
   118
lemma empty_upd_none[simp]: "empty(x := None) = empty"
webertj@13908
   119
apply (rule ext)
webertj@13908
   120
apply (simp (no_asm))
webertj@13908
   121
done
nipkow@13910
   122
webertj@13908
   123
webertj@13908
   124
(* FIXME: what is this sum_case nonsense?? *)
nipkow@13910
   125
lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty"
webertj@13908
   126
apply (rule ext)
webertj@13908
   127
apply (simp (no_asm) split add: sum.split)
webertj@13908
   128
done
webertj@13908
   129
wenzelm@17399
   130
subsection {* @{term [source] map_upd} *}
webertj@13908
   131
webertj@13908
   132
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t"
webertj@13908
   133
apply (rule ext)
webertj@13908
   134
apply (simp (no_asm_simp))
webertj@13908
   135
done
webertj@13908
   136
nipkow@13910
   137
lemma map_upd_nonempty[simp]: "t(k|->x) ~= empty"
webertj@13908
   138
apply safe
paulson@14208
   139
apply (drule_tac x = k in fun_cong)
webertj@13908
   140
apply (simp (no_asm_use))
webertj@13908
   141
done
webertj@13908
   142
oheimb@14100
   143
lemma map_upd_eqD1: "m(a\<mapsto>x) = n(a\<mapsto>y) \<Longrightarrow> x = y"
oheimb@14100
   144
by (drule fun_cong [of _ _ a], auto)
oheimb@14100
   145
oheimb@14100
   146
lemma map_upd_Some_unfold: 
oheimb@14100
   147
  "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"
oheimb@14100
   148
by auto
oheimb@14100
   149
nipkow@15303
   150
lemma image_map_upd[simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A"
nipkow@15303
   151
by fastsimp
nipkow@15303
   152
webertj@13908
   153
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))"
webertj@13908
   154
apply (unfold image_def)
webertj@13908
   155
apply (simp (no_asm_use) add: full_SetCompr_eq)
webertj@13908
   156
apply (rule finite_subset)
paulson@14208
   157
prefer 2 apply assumption
webertj@13908
   158
apply auto
webertj@13908
   159
done
webertj@13908
   160
webertj@13908
   161
webertj@13908
   162
(* FIXME: what is this sum_case nonsense?? *)
wenzelm@17399
   163
subsection {* @{term [source] sum_case} and @{term [source] empty}/@{term [source] map_upd} *}
webertj@13908
   164
nipkow@13910
   165
lemma sum_case_map_upd_empty[simp]:
nipkow@13910
   166
 "sum_case (m(k|->y)) empty =  (sum_case m empty)(Inl k|->y)"
webertj@13908
   167
apply (rule ext)
webertj@13908
   168
apply (simp (no_asm) split add: sum.split)
webertj@13908
   169
done
webertj@13908
   170
nipkow@13910
   171
lemma sum_case_empty_map_upd[simp]:
nipkow@13910
   172
 "sum_case empty (m(k|->y)) =  (sum_case empty m)(Inr k|->y)"
webertj@13908
   173
apply (rule ext)
webertj@13908
   174
apply (simp (no_asm) split add: sum.split)
webertj@13908
   175
done
webertj@13908
   176
nipkow@13910
   177
lemma sum_case_map_upd_map_upd[simp]:
nipkow@13910
   178
 "sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)"
webertj@13908
   179
apply (rule ext)
webertj@13908
   180
apply (simp (no_asm) split add: sum.split)
webertj@13908
   181
done
webertj@13908
   182
webertj@13908
   183
wenzelm@17399
   184
subsection {* @{term [source] map_of} *}
webertj@13908
   185
nipkow@15304
   186
lemma map_of_eq_None_iff:
nipkow@15304
   187
 "(map_of xys x = None) = (x \<notin> fst ` (set xys))"
nipkow@15304
   188
by (induct xys) simp_all
nipkow@15304
   189
nipkow@15304
   190
lemma map_of_is_SomeD:
nipkow@15304
   191
 "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys"
nipkow@15304
   192
apply(induct xys)
nipkow@15304
   193
 apply simp
nipkow@15304
   194
apply(clarsimp split:if_splits)
nipkow@15304
   195
done
nipkow@15304
   196
nipkow@15304
   197
lemma map_of_eq_Some_iff[simp]:
nipkow@15304
   198
 "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)"
nipkow@15304
   199
apply(induct xys)
nipkow@15304
   200
 apply(simp)
nipkow@15304
   201
apply(auto simp:map_of_eq_None_iff[symmetric])
nipkow@15304
   202
done
nipkow@15304
   203
nipkow@15304
   204
lemma Some_eq_map_of_iff[simp]:
nipkow@15304
   205
 "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)"
nipkow@15304
   206
by(auto simp del:map_of_eq_Some_iff simp add:map_of_eq_Some_iff[symmetric])
nipkow@15304
   207
paulson@17724
   208
lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk>
nipkow@15304
   209
  \<Longrightarrow> map_of xys x = Some y"
nipkow@15304
   210
apply (induct xys)
nipkow@15304
   211
 apply simp
nipkow@15304
   212
apply force
nipkow@15304
   213
done
nipkow@15304
   214
nipkow@15110
   215
lemma map_of_zip_is_None[simp]:
nipkow@15110
   216
  "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)"
nipkow@15110
   217
by (induct rule:list_induct2, simp_all)
nipkow@15110
   218
nipkow@15110
   219
lemma finite_range_map_of: "finite (range (map_of xys))"
paulson@15251
   220
apply (induct xys)
nipkow@15110
   221
apply  (simp_all (no_asm) add: image_constant)
nipkow@15110
   222
apply (rule finite_subset)
nipkow@15110
   223
prefer 2 apply assumption
nipkow@15110
   224
apply auto
nipkow@15110
   225
done
nipkow@15110
   226
paulson@15369
   227
lemma map_of_SomeD [rule_format]: "map_of xs k = Some y --> (k,y):set xs"
paulson@15251
   228
by (induct "xs", auto)
webertj@13908
   229
paulson@15369
   230
lemma map_of_mapk_SomeI [rule_format]:
paulson@15369
   231
     "inj f ==> map_of t k = Some x -->  
paulson@15369
   232
        map_of (map (split (%k. Pair (f k))) t) (f k) = Some x"
paulson@15251
   233
apply (induct "t")
webertj@13908
   234
apply  (auto simp add: inj_eq)
webertj@13908
   235
done
webertj@13908
   236
paulson@15369
   237
lemma weak_map_of_SomeI [rule_format]:
paulson@15369
   238
     "(k, x) : set l --> (\<exists>x. map_of l k = Some x)"
paulson@15251
   239
by (induct "l", auto)
webertj@13908
   240
webertj@13908
   241
lemma map_of_filter_in: 
webertj@13908
   242
"[| map_of xs k = Some z; P k z |] ==> map_of (filter (split P) xs) k = Some z"
webertj@13908
   243
apply (rule mp)
paulson@14208
   244
prefer 2 apply assumption
webertj@13908
   245
apply (erule thin_rl)
paulson@15251
   246
apply (induct "xs", auto)
webertj@13908
   247
done
webertj@13908
   248
webertj@13908
   249
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)"
paulson@15251
   250
by (induct "xs", auto)
webertj@13908
   251
webertj@13908
   252
wenzelm@17399
   253
subsection {* @{term [source] option_map} related *}
webertj@13908
   254
nipkow@13910
   255
lemma option_map_o_empty[simp]: "option_map f o empty = empty"
webertj@13908
   256
apply (rule ext)
webertj@13908
   257
apply (simp (no_asm))
webertj@13908
   258
done
webertj@13908
   259
nipkow@13910
   260
lemma option_map_o_map_upd[simp]:
nipkow@13910
   261
 "option_map f o m(a|->b) = (option_map f o m)(a|->f b)"
webertj@13908
   262
apply (rule ext)
webertj@13908
   263
apply (simp (no_asm))
webertj@13908
   264
done
webertj@13908
   265
wenzelm@17399
   266
subsection {* @{term [source] map_comp} related *}
schirmer@17391
   267
schirmer@17391
   268
lemma map_comp_empty [simp]: 
schirmer@17391
   269
  "m \<circ>\<^sub>m empty = empty"
schirmer@17391
   270
  "empty \<circ>\<^sub>m m = empty"
schirmer@17391
   271
  by (auto simp add: map_comp_def intro: ext split: option.splits)
schirmer@17391
   272
schirmer@17391
   273
lemma map_comp_simps [simp]: 
schirmer@17391
   274
  "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None"
schirmer@17391
   275
  "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'" 
schirmer@17391
   276
  by (auto simp add: map_comp_def)
schirmer@17391
   277
schirmer@17391
   278
lemma map_comp_Some_iff:
schirmer@17391
   279
  "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)" 
schirmer@17391
   280
  by (auto simp add: map_comp_def split: option.splits)
schirmer@17391
   281
schirmer@17391
   282
lemma map_comp_None_iff:
schirmer@17391
   283
  "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) " 
schirmer@17391
   284
  by (auto simp add: map_comp_def split: option.splits)
webertj@13908
   285
oheimb@14100
   286
subsection {* @{text "++"} *}
webertj@13908
   287
nipkow@14025
   288
lemma map_add_empty[simp]: "m ++ empty = m"
nipkow@14025
   289
apply (unfold map_add_def)
webertj@13908
   290
apply (simp (no_asm))
webertj@13908
   291
done
webertj@13908
   292
nipkow@14025
   293
lemma empty_map_add[simp]: "empty ++ m = m"
nipkow@14025
   294
apply (unfold map_add_def)
webertj@13908
   295
apply (rule ext)
webertj@13908
   296
apply (simp split add: option.split)
webertj@13908
   297
done
webertj@13908
   298
nipkow@14025
   299
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"
nipkow@14025
   300
apply(rule ext)
nipkow@14025
   301
apply(simp add: map_add_def split:option.split)
nipkow@14025
   302
done
nipkow@14025
   303
nipkow@14025
   304
lemma map_add_Some_iff: 
webertj@13908
   305
 "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)"
nipkow@14025
   306
apply (unfold map_add_def)
webertj@13908
   307
apply (simp (no_asm) split add: option.split)
webertj@13908
   308
done
webertj@13908
   309
nipkow@14025
   310
lemmas map_add_SomeD = map_add_Some_iff [THEN iffD1, standard]
nipkow@14025
   311
declare map_add_SomeD [dest!]
webertj@13908
   312
nipkow@14025
   313
lemma map_add_find_right[simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx"
paulson@14208
   314
by (subst map_add_Some_iff, fast)
webertj@13908
   315
nipkow@14025
   316
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)"
nipkow@14025
   317
apply (unfold map_add_def)
webertj@13908
   318
apply (simp (no_asm) split add: option.split)
webertj@13908
   319
done
webertj@13908
   320
nipkow@14025
   321
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)"
nipkow@14025
   322
apply (unfold map_add_def)
paulson@14208
   323
apply (rule ext, auto)
webertj@13908
   324
done
webertj@13908
   325
nipkow@14186
   326
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)"
nipkow@14186
   327
by(simp add:map_upds_def)
nipkow@14186
   328
nipkow@14025
   329
lemma map_of_append[simp]: "map_of (xs@ys) = map_of ys ++ map_of xs"
nipkow@14025
   330
apply (unfold map_add_def)
paulson@15251
   331
apply (induct "xs")
webertj@13908
   332
apply (simp (no_asm))
webertj@13908
   333
apply (rule ext)
webertj@13908
   334
apply (simp (no_asm_simp) split add: option.split)
webertj@13908
   335
done
webertj@13908
   336
webertj@13908
   337
declare fun_upd_apply [simp del]
nipkow@14025
   338
lemma finite_range_map_of_map_add:
nipkow@14025
   339
 "finite (range f) ==> finite (range (f ++ map_of l))"
paulson@15251
   340
apply (induct "l", auto)
webertj@13908
   341
apply (erule finite_range_updI)
webertj@13908
   342
done
webertj@13908
   343
declare fun_upd_apply [simp]
webertj@13908
   344
nipkow@15304
   345
lemma inj_on_map_add_dom[iff]:
nipkow@15304
   346
 "inj_on (m ++ m') (dom m') = inj_on m' (dom m')"
nipkow@15304
   347
by(fastsimp simp add:map_add_def dom_def inj_on_def split:option.splits)
nipkow@15304
   348
wenzelm@17399
   349
subsection {* @{term [source] restrict_map} *}
oheimb@14100
   350
nipkow@15693
   351
lemma restrict_map_to_empty[simp]: "m|`{} = empty"
nipkow@14186
   352
by(simp add: restrict_map_def)
nipkow@14186
   353
nipkow@15693
   354
lemma restrict_map_empty[simp]: "empty|`D = empty"
nipkow@14186
   355
by(simp add: restrict_map_def)
nipkow@14186
   356
nipkow@15693
   357
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x"
oheimb@14100
   358
by (auto simp: restrict_map_def)
oheimb@14100
   359
nipkow@15693
   360
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None"
oheimb@14100
   361
by (auto simp: restrict_map_def)
oheimb@14100
   362
nipkow@15693
   363
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"
oheimb@14100
   364
by (auto simp: restrict_map_def ran_def split: split_if_asm)
oheimb@14100
   365
nipkow@15693
   366
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A"
oheimb@14100
   367
by (auto simp: restrict_map_def dom_def split: split_if_asm)
oheimb@14100
   368
nipkow@15693
   369
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
oheimb@14100
   370
by (rule ext, auto simp: restrict_map_def)
oheimb@14100
   371
nipkow@15693
   372
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)"
oheimb@14100
   373
by (rule ext, auto simp: restrict_map_def)
oheimb@14100
   374
nipkow@14186
   375
lemma restrict_fun_upd[simp]:
nipkow@15693
   376
 "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
nipkow@14186
   377
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   378
nipkow@14186
   379
lemma fun_upd_None_restrict[simp]:
nipkow@15693
   380
  "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)"
nipkow@14186
   381
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   382
nipkow@14186
   383
lemma fun_upd_restrict:
nipkow@15693
   384
 "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
nipkow@14186
   385
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   386
nipkow@14186
   387
lemma fun_upd_restrict_conv[simp]:
nipkow@15693
   388
 "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
nipkow@14186
   389
by(simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   390
oheimb@14100
   391
wenzelm@17399
   392
subsection {* @{term [source] map_upds} *}
nipkow@14025
   393
nipkow@14025
   394
lemma map_upds_Nil1[simp]: "m([] [|->] bs) = m"
nipkow@14025
   395
by(simp add:map_upds_def)
nipkow@14025
   396
nipkow@14025
   397
lemma map_upds_Nil2[simp]: "m(as [|->] []) = m"
nipkow@14025
   398
by(simp add:map_upds_def)
nipkow@14025
   399
nipkow@14025
   400
lemma map_upds_Cons[simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)"
nipkow@14025
   401
by(simp add:map_upds_def)
nipkow@14025
   402
nipkow@14187
   403
lemma map_upds_append1[simp]: "\<And>ys m. size xs < size ys \<Longrightarrow>
nipkow@14187
   404
  m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)"
nipkow@14187
   405
apply(induct xs)
nipkow@14187
   406
 apply(clarsimp simp add:neq_Nil_conv)
paulson@14208
   407
apply (case_tac ys, simp, simp)
nipkow@14187
   408
done
nipkow@14187
   409
nipkow@14187
   410
lemma map_upds_list_update2_drop[simp]:
nipkow@14187
   411
 "\<And>m ys i. \<lbrakk>size xs \<le> i; i < size ys\<rbrakk>
nipkow@14187
   412
     \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)"
paulson@14208
   413
apply (induct xs, simp)
paulson@14208
   414
apply (case_tac ys, simp)
nipkow@14187
   415
apply(simp split:nat.split)
nipkow@14187
   416
done
nipkow@14025
   417
nipkow@14025
   418
lemma map_upd_upds_conv_if: "!!x y ys f.
nipkow@14025
   419
 (f(x|->y))(xs [|->] ys) =
nipkow@14025
   420
 (if x : set(take (length ys) xs) then f(xs [|->] ys)
nipkow@14025
   421
                                  else (f(xs [|->] ys))(x|->y))"
paulson@14208
   422
apply (induct xs, simp)
nipkow@14025
   423
apply(case_tac ys)
nipkow@14025
   424
 apply(auto split:split_if simp:fun_upd_twist)
nipkow@14025
   425
done
nipkow@14025
   426
nipkow@14025
   427
lemma map_upds_twist [simp]:
nipkow@14025
   428
 "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)"
nipkow@14025
   429
apply(insert set_take_subset)
nipkow@14025
   430
apply (fastsimp simp add: map_upd_upds_conv_if)
nipkow@14025
   431
done
nipkow@14025
   432
nipkow@14025
   433
lemma map_upds_apply_nontin[simp]:
nipkow@14025
   434
 "!!ys. x ~: set xs ==> (f(xs[|->]ys)) x = f x"
paulson@14208
   435
apply (induct xs, simp)
nipkow@14025
   436
apply(case_tac ys)
nipkow@14025
   437
 apply(auto simp: map_upd_upds_conv_if)
nipkow@14025
   438
done
nipkow@14025
   439
nipkow@14300
   440
lemma fun_upds_append_drop[simp]:
nipkow@14300
   441
  "!!m ys. size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)"
nipkow@14300
   442
apply(induct xs)
nipkow@14300
   443
 apply (simp)
nipkow@14300
   444
apply(case_tac ys)
nipkow@14300
   445
apply simp_all
nipkow@14300
   446
done
nipkow@14300
   447
nipkow@14300
   448
lemma fun_upds_append2_drop[simp]:
nipkow@14300
   449
  "!!m ys. size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)"
nipkow@14300
   450
apply(induct xs)
nipkow@14300
   451
 apply (simp)
nipkow@14300
   452
apply(case_tac ys)
nipkow@14300
   453
apply simp_all
nipkow@14300
   454
done
nipkow@14300
   455
nipkow@14300
   456
nipkow@14186
   457
lemma restrict_map_upds[simp]: "!!m ys.
nipkow@14186
   458
 \<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
nipkow@15693
   459
 \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)"
paulson@14208
   460
apply (induct xs, simp)
paulson@14208
   461
apply (case_tac ys, simp)
nipkow@14186
   462
apply(simp add:Diff_insert[symmetric] insert_absorb)
nipkow@14186
   463
apply(simp add: map_upd_upds_conv_if)
nipkow@14186
   464
done
nipkow@14186
   465
nipkow@14186
   466
wenzelm@17399
   467
subsection {* @{term [source] dom} *}
webertj@13908
   468
webertj@13908
   469
lemma domI: "m a = Some b ==> a : dom m"
paulson@14208
   470
by (unfold dom_def, auto)
oheimb@14100
   471
(* declare domI [intro]? *)
webertj@13908
   472
paulson@15369
   473
lemma domD: "a : dom m ==> \<exists>b. m a = Some b"
paulson@18447
   474
apply (case_tac "m a") 
paulson@18447
   475
apply (auto simp add: dom_def) 
paulson@18447
   476
done
webertj@13908
   477
nipkow@13910
   478
lemma domIff[iff]: "(a : dom m) = (m a ~= None)"
paulson@14208
   479
by (unfold dom_def, auto)
webertj@13908
   480
declare domIff [simp del]
webertj@13908
   481
nipkow@13910
   482
lemma dom_empty[simp]: "dom empty = {}"
webertj@13908
   483
apply (unfold dom_def)
webertj@13908
   484
apply (simp (no_asm))
webertj@13908
   485
done
webertj@13908
   486
nipkow@13910
   487
lemma dom_fun_upd[simp]:
nipkow@13910
   488
 "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
nipkow@13910
   489
by (simp add:dom_def) blast
webertj@13908
   490
nipkow@13937
   491
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
nipkow@13937
   492
apply(induct xys)
nipkow@13937
   493
apply(auto simp del:fun_upd_apply)
nipkow@13937
   494
done
nipkow@13937
   495
nipkow@15304
   496
lemma dom_map_of_conv_image_fst:
nipkow@15304
   497
  "dom(map_of xys) = fst ` (set xys)"
nipkow@15304
   498
by(force simp: dom_map_of)
nipkow@15304
   499
nipkow@15110
   500
lemma dom_map_of_zip[simp]: "[| length xs = length ys; distinct xs |] ==>
nipkow@15110
   501
  dom(map_of(zip xs ys)) = set xs"
nipkow@15110
   502
by(induct rule: list_induct2, simp_all)
nipkow@15110
   503
webertj@13908
   504
lemma finite_dom_map_of: "finite (dom (map_of l))"
webertj@13908
   505
apply (unfold dom_def)
paulson@15251
   506
apply (induct "l")
webertj@13908
   507
apply (auto simp add: insert_Collect [symmetric])
webertj@13908
   508
done
webertj@13908
   509
nipkow@14025
   510
lemma dom_map_upds[simp]:
nipkow@14025
   511
 "!!m ys. dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m"
paulson@14208
   512
apply (induct xs, simp)
paulson@14208
   513
apply (case_tac ys, auto)
nipkow@14025
   514
done
nipkow@13910
   515
nipkow@14025
   516
lemma dom_map_add[simp]: "dom(m++n) = dom n Un dom m"
paulson@14208
   517
by (unfold dom_def, auto)
nipkow@13910
   518
nipkow@15691
   519
lemma dom_override_on[simp]:
nipkow@15691
   520
 "dom(override_on f g A) =
nipkow@15691
   521
 (dom f  - {a. a : A - dom g}) Un {a. a : A Int dom g}"
nipkow@15691
   522
by(auto simp add: dom_def override_on_def)
webertj@13908
   523
nipkow@14027
   524
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
nipkow@14027
   525
apply(rule ext)
nipkow@18576
   526
apply(force simp: map_add_def dom_def split:option.split) 
nipkow@14027
   527
done
nipkow@14027
   528
wenzelm@17399
   529
subsection {* @{term [source] ran} *}
oheimb@14100
   530
oheimb@14100
   531
lemma ranI: "m a = Some b ==> b : ran m" 
oheimb@14100
   532
by (auto simp add: ran_def)
oheimb@14100
   533
(* declare ranI [intro]? *)
webertj@13908
   534
nipkow@13910
   535
lemma ran_empty[simp]: "ran empty = {}"
webertj@13908
   536
apply (unfold ran_def)
webertj@13908
   537
apply (simp (no_asm))
webertj@13908
   538
done
webertj@13908
   539
nipkow@13910
   540
lemma ran_map_upd[simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)"
paulson@14208
   541
apply (unfold ran_def, auto)
webertj@13908
   542
apply (subgoal_tac "~ (aa = a) ")
webertj@13908
   543
apply auto
webertj@13908
   544
done
nipkow@13910
   545
oheimb@14100
   546
subsection {* @{text "map_le"} *}
nipkow@13910
   547
kleing@13912
   548
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"
nipkow@13910
   549
by(simp add:map_le_def)
nipkow@13910
   550
paulson@17724
   551
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f"
nipkow@14187
   552
by(force simp add:map_le_def)
nipkow@14187
   553
nipkow@13910
   554
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"
nipkow@13910
   555
by(fastsimp simp add:map_le_def)
nipkow@13910
   556
paulson@17724
   557
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)"
nipkow@14187
   558
by(force simp add:map_le_def)
nipkow@14187
   559
nipkow@13910
   560
lemma map_le_upds[simp]:
nipkow@13910
   561
 "!!f g bs. f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)"
paulson@14208
   562
apply (induct as, simp)
paulson@14208
   563
apply (case_tac bs, auto)
nipkow@14025
   564
done
webertj@13908
   565
webertj@14033
   566
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"
webertj@14033
   567
  by (fastsimp simp add: map_le_def dom_def)
webertj@14033
   568
webertj@14033
   569
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"
webertj@14033
   570
  by (simp add: map_le_def)
webertj@14033
   571
nipkow@14187
   572
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3"
paulson@18447
   573
  by (auto simp add: map_le_def dom_def)
webertj@14033
   574
webertj@14033
   575
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"
webertj@14033
   576
  apply (unfold map_le_def)
webertj@14033
   577
  apply (rule ext)
paulson@14208
   578
  apply (case_tac "x \<in> dom f", simp)
paulson@14208
   579
  apply (case_tac "x \<in> dom g", simp, fastsimp)
webertj@14033
   580
done
webertj@14033
   581
webertj@14033
   582
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)"
nipkow@18576
   583
  by (fastsimp simp add: map_le_def)
webertj@14033
   584
nipkow@15304
   585
lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)"
nipkow@15304
   586
by(fastsimp simp add:map_add_def map_le_def expand_fun_eq split:option.splits)
nipkow@15304
   587
nipkow@15303
   588
lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h"
nipkow@18576
   589
by (fastsimp simp add: map_le_def map_add_def dom_def)
nipkow@15303
   590
nipkow@15303
   591
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h"
nipkow@15303
   592
by (clarsimp simp add: map_le_def map_add_def dom_def split:option.splits)
nipkow@15303
   593
nipkow@3981
   594
end