src/HOL/Relation.thy
author nipkow
Thu Mar 23 20:03:53 2006 +0100 (2006-03-23)
changeset 19323 ec5cd5b1804c
parent 19228 30fce6da8cbe
child 19363 667b5ea637dd
permissions -rw-r--r--
Converted translations to abbbreviations.
Removed a few odd functions from Map and AssocList.
Moved chg_map from Map to Bali/Basis.
wenzelm@10358
     1
(*  Title:      HOL/Relation.thy
nipkow@1128
     2
    ID:         $Id$
paulson@1983
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@1983
     4
    Copyright   1996  University of Cambridge
nipkow@1128
     5
*)
nipkow@1128
     6
berghofe@12905
     7
header {* Relations *}
berghofe@12905
     8
nipkow@15131
     9
theory Relation
nipkow@15140
    10
imports Product_Type
nipkow@15131
    11
begin
paulson@5978
    12
wenzelm@12913
    13
subsection {* Definitions *}
wenzelm@12913
    14
paulson@5978
    15
constdefs
wenzelm@10358
    16
  converse :: "('a * 'b) set => ('b * 'a) set"    ("(_^-1)" [1000] 999)
wenzelm@10358
    17
  "r^-1 == {(y, x). (x, y) : r}"
wenzelm@10358
    18
syntax (xsymbols)
berghofe@12905
    19
  converse :: "('a * 'b) set => ('b * 'a) set"    ("(_\<inverse>)" [1000] 999)
paulson@7912
    20
wenzelm@10358
    21
constdefs
nipkow@12487
    22
  rel_comp  :: "[('b * 'c) set, ('a * 'b) set] => ('a * 'c) set"  (infixr "O" 60)
wenzelm@12913
    23
  "r O s == {(x,z). EX y. (x, y) : s & (y, z) : r}"
wenzelm@12913
    24
oheimb@11136
    25
  Image :: "[('a * 'b) set, 'a set] => 'b set"                (infixl "``" 90)
wenzelm@12913
    26
  "r `` s == {y. EX x:s. (x,y):r}"
paulson@7912
    27
berghofe@12905
    28
  Id    :: "('a * 'a) set"  -- {* the identity relation *}
wenzelm@12913
    29
  "Id == {p. EX x. p = (x,x)}"
paulson@7912
    30
berghofe@12905
    31
  diag  :: "'a set => ('a * 'a) set"  -- {* diagonal: identity over a set *}
paulson@13830
    32
  "diag A == \<Union>x\<in>A. {(x,x)}"
wenzelm@12913
    33
oheimb@11136
    34
  Domain :: "('a * 'b) set => 'a set"
wenzelm@12913
    35
  "Domain r == {x. EX y. (x,y):r}"
paulson@5978
    36
oheimb@11136
    37
  Range  :: "('a * 'b) set => 'b set"
wenzelm@12913
    38
  "Range r == Domain(r^-1)"
paulson@5978
    39
oheimb@11136
    40
  Field :: "('a * 'a) set => 'a set"
paulson@13830
    41
  "Field r == Domain r \<union> Range r"
paulson@10786
    42
berghofe@12905
    43
  refl   :: "['a set, ('a * 'a) set] => bool"  -- {* reflexivity over a set *}
wenzelm@12913
    44
  "refl A r == r \<subseteq> A \<times> A & (ALL x: A. (x,x) : r)"
paulson@6806
    45
berghofe@12905
    46
  sym    :: "('a * 'a) set => bool"  -- {* symmetry predicate *}
wenzelm@12913
    47
  "sym r == ALL x y. (x,y): r --> (y,x): r"
paulson@6806
    48
berghofe@12905
    49
  antisym:: "('a * 'a) set => bool"  -- {* antisymmetry predicate *}
wenzelm@12913
    50
  "antisym r == ALL x y. (x,y):r --> (y,x):r --> x=y"
paulson@6806
    51
berghofe@12905
    52
  trans  :: "('a * 'a) set => bool"  -- {* transitivity predicate *}
wenzelm@12913
    53
  "trans r == (ALL x y z. (x,y):r --> (y,z):r --> (x,z):r)"
paulson@5978
    54
oheimb@11136
    55
  single_valued :: "('a * 'b) set => bool"
wenzelm@12913
    56
  "single_valued r == ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z)"
berghofe@7014
    57
oheimb@11136
    58
  inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set"
wenzelm@12913
    59
  "inv_image r f == {(x, y). (f x, f y) : r}"
oheimb@11136
    60
nipkow@19323
    61
abbreviation (output)
berghofe@12905
    62
  reflexive :: "('a * 'a) set => bool"  -- {* reflexivity over a type *}
nipkow@19323
    63
  "reflexive = refl UNIV"
paulson@6806
    64
berghofe@12905
    65
wenzelm@12913
    66
subsection {* The identity relation *}
berghofe@12905
    67
berghofe@12905
    68
lemma IdI [intro]: "(a, a) : Id"
berghofe@12905
    69
  by (simp add: Id_def)
berghofe@12905
    70
berghofe@12905
    71
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P"
nipkow@17589
    72
  by (unfold Id_def) (iprover elim: CollectE)
berghofe@12905
    73
berghofe@12905
    74
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)"
berghofe@12905
    75
  by (unfold Id_def) blast
berghofe@12905
    76
berghofe@12905
    77
lemma reflexive_Id: "reflexive Id"
berghofe@12905
    78
  by (simp add: refl_def)
berghofe@12905
    79
berghofe@12905
    80
lemma antisym_Id: "antisym Id"
berghofe@12905
    81
  -- {* A strange result, since @{text Id} is also symmetric. *}
berghofe@12905
    82
  by (simp add: antisym_def)
berghofe@12905
    83
huffman@19228
    84
lemma sym_Id: "sym Id"
huffman@19228
    85
  by (simp add: sym_def)
huffman@19228
    86
berghofe@12905
    87
lemma trans_Id: "trans Id"
berghofe@12905
    88
  by (simp add: trans_def)
berghofe@12905
    89
berghofe@12905
    90
wenzelm@12913
    91
subsection {* Diagonal: identity over a set *}
berghofe@12905
    92
paulson@13812
    93
lemma diag_empty [simp]: "diag {} = {}"
paulson@13812
    94
  by (simp add: diag_def) 
paulson@13812
    95
berghofe@12905
    96
lemma diag_eqI: "a = b ==> a : A ==> (a, b) : diag A"
berghofe@12905
    97
  by (simp add: diag_def)
berghofe@12905
    98
berghofe@12905
    99
lemma diagI [intro!]: "a : A ==> (a, a) : diag A"
berghofe@12905
   100
  by (rule diag_eqI) (rule refl)
berghofe@12905
   101
berghofe@12905
   102
lemma diagE [elim!]:
berghofe@12905
   103
  "c : diag A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P"
wenzelm@12913
   104
  -- {* The general elimination rule. *}
nipkow@17589
   105
  by (unfold diag_def) (iprover elim!: UN_E singletonE)
berghofe@12905
   106
berghofe@12905
   107
lemma diag_iff: "((x, y) : diag A) = (x = y & x : A)"
berghofe@12905
   108
  by blast
berghofe@12905
   109
wenzelm@12913
   110
lemma diag_subset_Times: "diag A \<subseteq> A \<times> A"
berghofe@12905
   111
  by blast
berghofe@12905
   112
berghofe@12905
   113
berghofe@12905
   114
subsection {* Composition of two relations *}
berghofe@12905
   115
wenzelm@12913
   116
lemma rel_compI [intro]:
berghofe@12905
   117
  "(a, b) : s ==> (b, c) : r ==> (a, c) : r O s"
berghofe@12905
   118
  by (unfold rel_comp_def) blast
berghofe@12905
   119
wenzelm@12913
   120
lemma rel_compE [elim!]: "xz : r O s ==>
berghofe@12905
   121
  (!!x y z. xz = (x, z) ==> (x, y) : s ==> (y, z) : r  ==> P) ==> P"
nipkow@17589
   122
  by (unfold rel_comp_def) (iprover elim!: CollectE splitE exE conjE)
berghofe@12905
   123
berghofe@12905
   124
lemma rel_compEpair:
berghofe@12905
   125
  "(a, c) : r O s ==> (!!y. (a, y) : s ==> (y, c) : r ==> P) ==> P"
nipkow@17589
   126
  by (iprover elim: rel_compE Pair_inject ssubst)
berghofe@12905
   127
berghofe@12905
   128
lemma R_O_Id [simp]: "R O Id = R"
berghofe@12905
   129
  by fast
berghofe@12905
   130
berghofe@12905
   131
lemma Id_O_R [simp]: "Id O R = R"
berghofe@12905
   132
  by fast
berghofe@12905
   133
berghofe@12905
   134
lemma O_assoc: "(R O S) O T = R O (S O T)"
berghofe@12905
   135
  by blast
berghofe@12905
   136
wenzelm@12913
   137
lemma trans_O_subset: "trans r ==> r O r \<subseteq> r"
berghofe@12905
   138
  by (unfold trans_def) blast
berghofe@12905
   139
wenzelm@12913
   140
lemma rel_comp_mono: "r' \<subseteq> r ==> s' \<subseteq> s ==> (r' O s') \<subseteq> (r O s)"
berghofe@12905
   141
  by blast
berghofe@12905
   142
berghofe@12905
   143
lemma rel_comp_subset_Sigma:
wenzelm@12913
   144
    "s \<subseteq> A \<times> B ==> r \<subseteq> B \<times> C ==> (r O s) \<subseteq> A \<times> C"
berghofe@12905
   145
  by blast
berghofe@12905
   146
wenzelm@12913
   147
wenzelm@12913
   148
subsection {* Reflexivity *}
wenzelm@12913
   149
wenzelm@12913
   150
lemma reflI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl A r"
nipkow@17589
   151
  by (unfold refl_def) (iprover intro!: ballI)
berghofe@12905
   152
berghofe@12905
   153
lemma reflD: "refl A r ==> a : A ==> (a, a) : r"
berghofe@12905
   154
  by (unfold refl_def) blast
berghofe@12905
   155
huffman@19228
   156
lemma reflD1: "refl A r ==> (x, y) : r ==> x : A"
huffman@19228
   157
  by (unfold refl_def) blast
huffman@19228
   158
huffman@19228
   159
lemma reflD2: "refl A r ==> (x, y) : r ==> y : A"
huffman@19228
   160
  by (unfold refl_def) blast
huffman@19228
   161
huffman@19228
   162
lemma refl_Int: "refl A r ==> refl B s ==> refl (A \<inter> B) (r \<inter> s)"
huffman@19228
   163
  by (unfold refl_def) blast
huffman@19228
   164
huffman@19228
   165
lemma refl_Un: "refl A r ==> refl B s ==> refl (A \<union> B) (r \<union> s)"
huffman@19228
   166
  by (unfold refl_def) blast
huffman@19228
   167
huffman@19228
   168
lemma refl_INTER:
huffman@19228
   169
  "ALL x:S. refl (A x) (r x) ==> refl (INTER S A) (INTER S r)"
huffman@19228
   170
  by (unfold refl_def) fast
huffman@19228
   171
huffman@19228
   172
lemma refl_UNION:
huffman@19228
   173
  "ALL x:S. refl (A x) (r x) \<Longrightarrow> refl (UNION S A) (UNION S r)"
huffman@19228
   174
  by (unfold refl_def) blast
huffman@19228
   175
huffman@19228
   176
lemma refl_diag: "refl A (diag A)"
huffman@19228
   177
  by (rule reflI [OF diag_subset_Times diagI])
huffman@19228
   178
wenzelm@12913
   179
wenzelm@12913
   180
subsection {* Antisymmetry *}
berghofe@12905
   181
berghofe@12905
   182
lemma antisymI:
berghofe@12905
   183
  "(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r"
nipkow@17589
   184
  by (unfold antisym_def) iprover
berghofe@12905
   185
berghofe@12905
   186
lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b"
nipkow@17589
   187
  by (unfold antisym_def) iprover
berghofe@12905
   188
huffman@19228
   189
lemma antisym_subset: "r \<subseteq> s ==> antisym s ==> antisym r"
huffman@19228
   190
  by (unfold antisym_def) blast
wenzelm@12913
   191
huffman@19228
   192
lemma antisym_empty [simp]: "antisym {}"
huffman@19228
   193
  by (unfold antisym_def) blast
huffman@19228
   194
huffman@19228
   195
lemma antisym_diag [simp]: "antisym (diag A)"
huffman@19228
   196
  by (unfold antisym_def) blast
huffman@19228
   197
huffman@19228
   198
huffman@19228
   199
subsection {* Symmetry *}
huffman@19228
   200
huffman@19228
   201
lemma symI: "(!!a b. (a, b) : r ==> (b, a) : r) ==> sym r"
huffman@19228
   202
  by (unfold sym_def) iprover
paulson@15177
   203
paulson@15177
   204
lemma symD: "sym r ==> (a, b) : r ==> (b, a) : r"
paulson@15177
   205
  by (unfold sym_def, blast)
berghofe@12905
   206
huffman@19228
   207
lemma sym_Int: "sym r ==> sym s ==> sym (r \<inter> s)"
huffman@19228
   208
  by (fast intro: symI dest: symD)
huffman@19228
   209
huffman@19228
   210
lemma sym_Un: "sym r ==> sym s ==> sym (r \<union> s)"
huffman@19228
   211
  by (fast intro: symI dest: symD)
huffman@19228
   212
huffman@19228
   213
lemma sym_INTER: "ALL x:S. sym (r x) ==> sym (INTER S r)"
huffman@19228
   214
  by (fast intro: symI dest: symD)
huffman@19228
   215
huffman@19228
   216
lemma sym_UNION: "ALL x:S. sym (r x) ==> sym (UNION S r)"
huffman@19228
   217
  by (fast intro: symI dest: symD)
huffman@19228
   218
huffman@19228
   219
lemma sym_diag [simp]: "sym (diag A)"
huffman@19228
   220
  by (rule symI) clarify
huffman@19228
   221
huffman@19228
   222
huffman@19228
   223
subsection {* Transitivity *}
huffman@19228
   224
berghofe@12905
   225
lemma transI:
berghofe@12905
   226
  "(!!x y z. (x, y) : r ==> (y, z) : r ==> (x, z) : r) ==> trans r"
nipkow@17589
   227
  by (unfold trans_def) iprover
berghofe@12905
   228
berghofe@12905
   229
lemma transD: "trans r ==> (a, b) : r ==> (b, c) : r ==> (a, c) : r"
nipkow@17589
   230
  by (unfold trans_def) iprover
berghofe@12905
   231
huffman@19228
   232
lemma trans_Int: "trans r ==> trans s ==> trans (r \<inter> s)"
huffman@19228
   233
  by (fast intro: transI elim: transD)
huffman@19228
   234
huffman@19228
   235
lemma trans_INTER: "ALL x:S. trans (r x) ==> trans (INTER S r)"
huffman@19228
   236
  by (fast intro: transI elim: transD)
huffman@19228
   237
huffman@19228
   238
lemma trans_diag [simp]: "trans (diag A)"
huffman@19228
   239
  by (fast intro: transI elim: transD)
huffman@19228
   240
berghofe@12905
   241
wenzelm@12913
   242
subsection {* Converse *}
wenzelm@12913
   243
wenzelm@12913
   244
lemma converse_iff [iff]: "((a,b): r^-1) = ((b,a) : r)"
berghofe@12905
   245
  by (simp add: converse_def)
berghofe@12905
   246
nipkow@13343
   247
lemma converseI[sym]: "(a, b) : r ==> (b, a) : r^-1"
berghofe@12905
   248
  by (simp add: converse_def)
berghofe@12905
   249
nipkow@13343
   250
lemma converseD[sym]: "(a,b) : r^-1 ==> (b, a) : r"
berghofe@12905
   251
  by (simp add: converse_def)
berghofe@12905
   252
berghofe@12905
   253
lemma converseE [elim!]:
berghofe@12905
   254
  "yx : r^-1 ==> (!!x y. yx = (y, x) ==> (x, y) : r ==> P) ==> P"
wenzelm@12913
   255
    -- {* More general than @{text converseD}, as it ``splits'' the member of the relation. *}
nipkow@17589
   256
  by (unfold converse_def) (iprover elim!: CollectE splitE bexE)
berghofe@12905
   257
berghofe@12905
   258
lemma converse_converse [simp]: "(r^-1)^-1 = r"
berghofe@12905
   259
  by (unfold converse_def) blast
berghofe@12905
   260
berghofe@12905
   261
lemma converse_rel_comp: "(r O s)^-1 = s^-1 O r^-1"
berghofe@12905
   262
  by blast
berghofe@12905
   263
huffman@19228
   264
lemma converse_Int: "(r \<inter> s)^-1 = r^-1 \<inter> s^-1"
huffman@19228
   265
  by blast
huffman@19228
   266
huffman@19228
   267
lemma converse_Un: "(r \<union> s)^-1 = r^-1 \<union> s^-1"
huffman@19228
   268
  by blast
huffman@19228
   269
huffman@19228
   270
lemma converse_INTER: "(INTER S r)^-1 = (INT x:S. (r x)^-1)"
huffman@19228
   271
  by fast
huffman@19228
   272
huffman@19228
   273
lemma converse_UNION: "(UNION S r)^-1 = (UN x:S. (r x)^-1)"
huffman@19228
   274
  by blast
huffman@19228
   275
berghofe@12905
   276
lemma converse_Id [simp]: "Id^-1 = Id"
berghofe@12905
   277
  by blast
berghofe@12905
   278
wenzelm@12913
   279
lemma converse_diag [simp]: "(diag A)^-1 = diag A"
berghofe@12905
   280
  by blast
berghofe@12905
   281
huffman@19228
   282
lemma refl_converse [simp]: "refl A (converse r) = refl A r"
huffman@19228
   283
  by (unfold refl_def) auto
berghofe@12905
   284
huffman@19228
   285
lemma sym_converse [simp]: "sym (converse r) = sym r"
huffman@19228
   286
  by (unfold sym_def) blast
huffman@19228
   287
huffman@19228
   288
lemma antisym_converse [simp]: "antisym (converse r) = antisym r"
berghofe@12905
   289
  by (unfold antisym_def) blast
berghofe@12905
   290
huffman@19228
   291
lemma trans_converse [simp]: "trans (converse r) = trans r"
berghofe@12905
   292
  by (unfold trans_def) blast
berghofe@12905
   293
huffman@19228
   294
lemma sym_conv_converse_eq: "sym r = (r^-1 = r)"
huffman@19228
   295
  by (unfold sym_def) fast
huffman@19228
   296
huffman@19228
   297
lemma sym_Un_converse: "sym (r \<union> r^-1)"
huffman@19228
   298
  by (unfold sym_def) blast
huffman@19228
   299
huffman@19228
   300
lemma sym_Int_converse: "sym (r \<inter> r^-1)"
huffman@19228
   301
  by (unfold sym_def) blast
huffman@19228
   302
wenzelm@12913
   303
berghofe@12905
   304
subsection {* Domain *}
berghofe@12905
   305
berghofe@12905
   306
lemma Domain_iff: "(a : Domain r) = (EX y. (a, y) : r)"
berghofe@12905
   307
  by (unfold Domain_def) blast
berghofe@12905
   308
berghofe@12905
   309
lemma DomainI [intro]: "(a, b) : r ==> a : Domain r"
nipkow@17589
   310
  by (iprover intro!: iffD2 [OF Domain_iff])
berghofe@12905
   311
berghofe@12905
   312
lemma DomainE [elim!]:
berghofe@12905
   313
  "a : Domain r ==> (!!y. (a, y) : r ==> P) ==> P"
nipkow@17589
   314
  by (iprover dest!: iffD1 [OF Domain_iff])
berghofe@12905
   315
berghofe@12905
   316
lemma Domain_empty [simp]: "Domain {} = {}"
berghofe@12905
   317
  by blast
berghofe@12905
   318
berghofe@12905
   319
lemma Domain_insert: "Domain (insert (a, b) r) = insert a (Domain r)"
berghofe@12905
   320
  by blast
berghofe@12905
   321
berghofe@12905
   322
lemma Domain_Id [simp]: "Domain Id = UNIV"
berghofe@12905
   323
  by blast
berghofe@12905
   324
berghofe@12905
   325
lemma Domain_diag [simp]: "Domain (diag A) = A"
berghofe@12905
   326
  by blast
berghofe@12905
   327
paulson@13830
   328
lemma Domain_Un_eq: "Domain(A \<union> B) = Domain(A) \<union> Domain(B)"
berghofe@12905
   329
  by blast
berghofe@12905
   330
paulson@13830
   331
lemma Domain_Int_subset: "Domain(A \<inter> B) \<subseteq> Domain(A) \<inter> Domain(B)"
berghofe@12905
   332
  by blast
berghofe@12905
   333
wenzelm@12913
   334
lemma Domain_Diff_subset: "Domain(A) - Domain(B) \<subseteq> Domain(A - B)"
berghofe@12905
   335
  by blast
berghofe@12905
   336
paulson@13830
   337
lemma Domain_Union: "Domain (Union S) = (\<Union>A\<in>S. Domain A)"
berghofe@12905
   338
  by blast
berghofe@12905
   339
wenzelm@12913
   340
lemma Domain_mono: "r \<subseteq> s ==> Domain r \<subseteq> Domain s"
berghofe@12905
   341
  by blast
berghofe@12905
   342
berghofe@12905
   343
berghofe@12905
   344
subsection {* Range *}
berghofe@12905
   345
berghofe@12905
   346
lemma Range_iff: "(a : Range r) = (EX y. (y, a) : r)"
berghofe@12905
   347
  by (simp add: Domain_def Range_def)
berghofe@12905
   348
berghofe@12905
   349
lemma RangeI [intro]: "(a, b) : r ==> b : Range r"
nipkow@17589
   350
  by (unfold Range_def) (iprover intro!: converseI DomainI)
berghofe@12905
   351
berghofe@12905
   352
lemma RangeE [elim!]: "b : Range r ==> (!!x. (x, b) : r ==> P) ==> P"
nipkow@17589
   353
  by (unfold Range_def) (iprover elim!: DomainE dest!: converseD)
berghofe@12905
   354
berghofe@12905
   355
lemma Range_empty [simp]: "Range {} = {}"
berghofe@12905
   356
  by blast
berghofe@12905
   357
berghofe@12905
   358
lemma Range_insert: "Range (insert (a, b) r) = insert b (Range r)"
berghofe@12905
   359
  by blast
berghofe@12905
   360
berghofe@12905
   361
lemma Range_Id [simp]: "Range Id = UNIV"
berghofe@12905
   362
  by blast
berghofe@12905
   363
berghofe@12905
   364
lemma Range_diag [simp]: "Range (diag A) = A"
berghofe@12905
   365
  by auto
berghofe@12905
   366
paulson@13830
   367
lemma Range_Un_eq: "Range(A \<union> B) = Range(A) \<union> Range(B)"
berghofe@12905
   368
  by blast
berghofe@12905
   369
paulson@13830
   370
lemma Range_Int_subset: "Range(A \<inter> B) \<subseteq> Range(A) \<inter> Range(B)"
berghofe@12905
   371
  by blast
berghofe@12905
   372
wenzelm@12913
   373
lemma Range_Diff_subset: "Range(A) - Range(B) \<subseteq> Range(A - B)"
berghofe@12905
   374
  by blast
berghofe@12905
   375
paulson@13830
   376
lemma Range_Union: "Range (Union S) = (\<Union>A\<in>S. Range A)"
berghofe@12905
   377
  by blast
berghofe@12905
   378
berghofe@12905
   379
berghofe@12905
   380
subsection {* Image of a set under a relation *}
berghofe@12905
   381
wenzelm@12913
   382
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)"
berghofe@12905
   383
  by (simp add: Image_def)
berghofe@12905
   384
wenzelm@12913
   385
lemma Image_singleton: "r``{a} = {b. (a, b) : r}"
berghofe@12905
   386
  by (simp add: Image_def)
berghofe@12905
   387
wenzelm@12913
   388
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)"
berghofe@12905
   389
  by (rule Image_iff [THEN trans]) simp
berghofe@12905
   390
wenzelm@12913
   391
lemma ImageI [intro]: "(a, b) : r ==> a : A ==> b : r``A"
berghofe@12905
   392
  by (unfold Image_def) blast
berghofe@12905
   393
berghofe@12905
   394
lemma ImageE [elim!]:
wenzelm@12913
   395
    "b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P"
nipkow@17589
   396
  by (unfold Image_def) (iprover elim!: CollectE bexE)
berghofe@12905
   397
berghofe@12905
   398
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A"
berghofe@12905
   399
  -- {* This version's more effective when we already have the required @{text a} *}
berghofe@12905
   400
  by blast
berghofe@12905
   401
berghofe@12905
   402
lemma Image_empty [simp]: "R``{} = {}"
berghofe@12905
   403
  by blast
berghofe@12905
   404
berghofe@12905
   405
lemma Image_Id [simp]: "Id `` A = A"
berghofe@12905
   406
  by blast
berghofe@12905
   407
paulson@13830
   408
lemma Image_diag [simp]: "diag A `` B = A \<inter> B"
paulson@13830
   409
  by blast
paulson@13830
   410
paulson@13830
   411
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B"
berghofe@12905
   412
  by blast
berghofe@12905
   413
paulson@13830
   414
lemma Image_Int_eq:
paulson@13830
   415
     "single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B"
paulson@13830
   416
  by (simp add: single_valued_def, blast) 
berghofe@12905
   417
paulson@13830
   418
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B"
berghofe@12905
   419
  by blast
berghofe@12905
   420
paulson@13812
   421
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A"
paulson@13812
   422
  by blast
paulson@13812
   423
wenzelm@12913
   424
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B"
nipkow@17589
   425
  by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2)
berghofe@12905
   426
paulson@13830
   427
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})"
berghofe@12905
   428
  -- {* NOT suitable for rewriting *}
berghofe@12905
   429
  by blast
berghofe@12905
   430
wenzelm@12913
   431
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)"
berghofe@12905
   432
  by blast
berghofe@12905
   433
paulson@13830
   434
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))"
paulson@13830
   435
  by blast
paulson@13830
   436
paulson@13830
   437
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))"
berghofe@12905
   438
  by blast
berghofe@12905
   439
paulson@13830
   440
text{*Converse inclusion requires some assumptions*}
paulson@13830
   441
lemma Image_INT_eq:
paulson@13830
   442
     "[|single_valued (r\<inverse>); A\<noteq>{}|] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)"
paulson@13830
   443
apply (rule equalityI)
paulson@13830
   444
 apply (rule Image_INT_subset) 
paulson@13830
   445
apply  (simp add: single_valued_def, blast)
paulson@13830
   446
done
berghofe@12905
   447
wenzelm@12913
   448
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq> - ((r^-1) `` (-B)))"
berghofe@12905
   449
  by blast
berghofe@12905
   450
berghofe@12905
   451
wenzelm@12913
   452
subsection {* Single valued relations *}
wenzelm@12913
   453
wenzelm@12913
   454
lemma single_valuedI:
berghofe@12905
   455
  "ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r"
berghofe@12905
   456
  by (unfold single_valued_def)
berghofe@12905
   457
berghofe@12905
   458
lemma single_valuedD:
berghofe@12905
   459
  "single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z"
berghofe@12905
   460
  by (simp add: single_valued_def)
berghofe@12905
   461
huffman@19228
   462
lemma single_valued_rel_comp:
huffman@19228
   463
  "single_valued r ==> single_valued s ==> single_valued (r O s)"
huffman@19228
   464
  by (unfold single_valued_def) blast
huffman@19228
   465
huffman@19228
   466
lemma single_valued_subset:
huffman@19228
   467
  "r \<subseteq> s ==> single_valued s ==> single_valued r"
huffman@19228
   468
  by (unfold single_valued_def) blast
huffman@19228
   469
huffman@19228
   470
lemma single_valued_Id [simp]: "single_valued Id"
huffman@19228
   471
  by (unfold single_valued_def) blast
huffman@19228
   472
huffman@19228
   473
lemma single_valued_diag [simp]: "single_valued (diag A)"
huffman@19228
   474
  by (unfold single_valued_def) blast
huffman@19228
   475
berghofe@12905
   476
berghofe@12905
   477
subsection {* Graphs given by @{text Collect} *}
berghofe@12905
   478
berghofe@12905
   479
lemma Domain_Collect_split [simp]: "Domain{(x,y). P x y} = {x. EX y. P x y}"
berghofe@12905
   480
  by auto
berghofe@12905
   481
berghofe@12905
   482
lemma Range_Collect_split [simp]: "Range{(x,y). P x y} = {y. EX x. P x y}"
berghofe@12905
   483
  by auto
berghofe@12905
   484
berghofe@12905
   485
lemma Image_Collect_split [simp]: "{(x,y). P x y} `` A = {y. EX x:A. P x y}"
berghofe@12905
   486
  by auto
berghofe@12905
   487
berghofe@12905
   488
wenzelm@12913
   489
subsection {* Inverse image *}
berghofe@12905
   490
huffman@19228
   491
lemma sym_inv_image: "sym r ==> sym (inv_image r f)"
huffman@19228
   492
  by (unfold sym_def inv_image_def) blast
huffman@19228
   493
wenzelm@12913
   494
lemma trans_inv_image: "trans r ==> trans (inv_image r f)"
berghofe@12905
   495
  apply (unfold trans_def inv_image_def)
berghofe@12905
   496
  apply (simp (no_asm))
berghofe@12905
   497
  apply blast
berghofe@12905
   498
  done
berghofe@12905
   499
nipkow@1128
   500
end