doc-src/Ref/substitution.tex
author wenzelm
Mon Aug 28 13:52:38 2000 +0200 (2000-08-28)
changeset 9695 ec7d7f877712
parent 9524 5721615da108
child 20975 5bfa2e4ed789
permissions -rw-r--r--
proper setup of iman.sty/extra.sty/ttbox.sty;
lcp@104
     1
%% $Id$
lcp@104
     2
\chapter{Substitution Tactics} \label{substitution}
lcp@323
     3
\index{tactics!substitution|(}\index{equality|(}
lcp@323
     4
lcp@104
     5
Replacing equals by equals is a basic form of reasoning.  Isabelle supports
lcp@332
     6
several kinds of equality reasoning.  {\bf Substitution} means replacing
lcp@104
     7
free occurrences of~$t$ by~$u$ in a subgoal.  This is easily done, given an
lcp@332
     8
equality $t=u$, provided the logic possesses the appropriate rule.  The
paulson@4596
     9
tactic \texttt{hyp_subst_tac} performs substitution even in the assumptions.
lcp@332
    10
But it works via object-level implication, and therefore must be specially
lcp@332
    11
set up for each suitable object-logic.
lcp@104
    12
lcp@104
    13
Substitution should not be confused with object-level {\bf rewriting}.
lcp@104
    14
Given equalities of the form $t=u$, rewriting replaces instances of~$t$ by
lcp@104
    15
corresponding instances of~$u$, and continues until it reaches a normal
lcp@104
    16
form.  Substitution handles `one-off' replacements by particular
lcp@332
    17
equalities while rewriting handles general equations.
nipkow@3950
    18
Chapter~\ref{chap:simplification} discusses Isabelle's rewriting tactics.
lcp@104
    19
lcp@104
    20
lcp@323
    21
\section{Substitution rules}
lcp@323
    22
\index{substitution!rules}\index{*subst theorem}
lcp@323
    23
Many logics include a substitution rule of the form
wenzelm@3108
    24
$$
wenzelm@3108
    25
\List{\Var{a}=\Var{b}; \Var{P}(\Var{a})} \Imp 
wenzelm@3108
    26
\Var{P}(\Var{b})  \eqno(subst)
wenzelm@3108
    27
$$
lcp@104
    28
In backward proof, this may seem difficult to use: the conclusion
lcp@104
    29
$\Var{P}(\Var{b})$ admits far too many unifiers.  But, if the theorem {\tt
lcp@104
    30
eqth} asserts $t=u$, then \hbox{\tt eqth RS subst} is the derived rule
lcp@104
    31
\[ \Var{P}(t) \Imp \Var{P}(u). \]
lcp@104
    32
Provided $u$ is not an unknown, resolution with this rule is
lcp@104
    33
well-behaved.\footnote{Unifying $\Var{P}(u)$ with a formula~$Q$
lcp@104
    34
expresses~$Q$ in terms of its dependence upon~$u$.  There are still $2^k$
lcp@104
    35
unifiers, if $Q$ has $k$ occurrences of~$u$, but Isabelle ensures that
lcp@104
    36
the first unifier includes all the occurrences.}  To replace $u$ by~$t$ in
lcp@104
    37
subgoal~$i$, use
lcp@104
    38
\begin{ttbox} 
lcp@332
    39
resolve_tac [eqth RS subst] \(i\){\it.}
lcp@104
    40
\end{ttbox}
lcp@104
    41
To replace $t$ by~$u$ in
lcp@104
    42
subgoal~$i$, use
lcp@104
    43
\begin{ttbox} 
lcp@332
    44
resolve_tac [eqth RS ssubst] \(i\){\it,}
lcp@104
    45
\end{ttbox}
lcp@323
    46
where \tdxbold{ssubst} is the `swapped' substitution rule
wenzelm@3108
    47
$$
wenzelm@3108
    48
\List{\Var{a}=\Var{b}; \Var{P}(\Var{b})} \Imp 
wenzelm@3108
    49
\Var{P}(\Var{a}).  \eqno(ssubst)
wenzelm@3108
    50
$$
lcp@323
    51
If \tdx{sym} denotes the symmetry rule
paulson@4596
    52
\(\Var{a}=\Var{b}\Imp\Var{b}=\Var{a}\), then \texttt{ssubst} is just
lcp@104
    53
\hbox{\tt sym RS subst}.  Many logics with equality include the rules {\tt
paulson@4596
    54
subst} and \texttt{ssubst}, as well as \texttt{refl}, \texttt{sym} and \texttt{trans}
paulson@4596
    55
(for the usual equality laws).  Examples include \texttt{FOL} and \texttt{HOL},
paulson@4596
    56
but not \texttt{CTT} (Constructive Type Theory).
lcp@104
    57
lcp@104
    58
Elim-resolution is well-behaved with assumptions of the form $t=u$.
lcp@104
    59
To replace $u$ by~$t$ or $t$ by~$u$ in subgoal~$i$, use
lcp@104
    60
\begin{ttbox} 
lcp@332
    61
eresolve_tac [subst] \(i\)    {\rm or}    eresolve_tac [ssubst] \(i\){\it.}
lcp@104
    62
\end{ttbox}
lcp@104
    63
wenzelm@9695
    64
Logics HOL, FOL and ZF define the tactic \ttindexbold{stac} by
paulson@2038
    65
\begin{ttbox} 
paulson@2038
    66
fun stac eqth = CHANGED o rtac (eqth RS ssubst);
paulson@2038
    67
\end{ttbox}
paulson@4596
    68
Now \texttt{stac~eqth} is like \texttt{resolve_tac [eqth RS ssubst]} but with the
paulson@2038
    69
valuable property of failing if the substitution has no effect.
paulson@2038
    70
lcp@104
    71
lcp@104
    72
\section{Substitution in the hypotheses}
lcp@323
    73
\index{assumptions!substitution in}
lcp@104
    74
Substitution rules, like other rules of natural deduction, do not affect
lcp@104
    75
the assumptions.  This can be inconvenient.  Consider proving the subgoal
lcp@104
    76
\[ \List{c=a; c=b} \Imp a=b. \]
paulson@4596
    77
Calling \texttt{eresolve_tac\ts[ssubst]\ts\(i\)} simply discards the
lcp@104
    78
assumption~$c=a$, since $c$ does not occur in~$a=b$.  Of course, we can
paulson@4596
    79
work out a solution.  First apply \texttt{eresolve_tac\ts[subst]\ts\(i\)},
lcp@104
    80
replacing~$a$ by~$c$:
wenzelm@4374
    81
\[ c=b \Imp c=b \]
lcp@104
    82
Equality reasoning can be difficult, but this trivial proof requires
lcp@104
    83
nothing more sophisticated than substitution in the assumptions.
lcp@323
    84
Object-logics that include the rule~$(subst)$ provide tactics for this
lcp@104
    85
purpose:
lcp@104
    86
\begin{ttbox} 
lcp@323
    87
hyp_subst_tac       : int -> tactic
lcp@323
    88
bound_hyp_subst_tac : int -> tactic
lcp@104
    89
\end{ttbox}
lcp@323
    90
\begin{ttdescription}
lcp@104
    91
\item[\ttindexbold{hyp_subst_tac} {\it i}] 
lcp@323
    92
  selects an equality assumption of the form $t=u$ or $u=t$, where $t$ is a
lcp@323
    93
  free variable or parameter.  Deleting this assumption, it replaces $t$
lcp@323
    94
  by~$u$ throughout subgoal~$i$, including the other assumptions.
lcp@323
    95
lcp@323
    96
\item[\ttindexbold{bound_hyp_subst_tac} {\it i}] 
lcp@323
    97
  is similar but only substitutes for parameters (bound variables).
lcp@323
    98
  Uses for this are discussed below.
lcp@323
    99
\end{ttdescription}
lcp@104
   100
The term being replaced must be a free variable or parameter.  Substitution
lcp@104
   101
for constants is usually unhelpful, since they may appear in other
lcp@104
   102
theorems.  For instance, the best way to use the assumption $0=1$ is to
lcp@104
   103
contradict a theorem that states $0\not=1$, rather than to replace 0 by~1
lcp@104
   104
in the subgoal!
lcp@104
   105
paulson@2038
   106
Substitution for unknowns, such as $\Var{x}=0$, is a bad idea: we might prove
paulson@2038
   107
the subgoal more easily by instantiating~$\Var{x}$ to~1.
paulson@2038
   108
Substitution for free variables is unhelpful if they appear in the
paulson@2038
   109
premises of a rule being derived: the substitution affects object-level
lcp@104
   110
assumptions, not meta-level assumptions.  For instance, replacing~$a$
lcp@323
   111
by~$b$ could make the premise~$P(a)$ worthless.  To avoid this problem, use
paulson@4596
   112
\texttt{bound_hyp_subst_tac}; alternatively, call \ttindex{cut_facts_tac} to
lcp@323
   113
insert the atomic premises as object-level assumptions.
lcp@104
   114
lcp@104
   115
wenzelm@6618
   116
\section{Setting up the package} 
paulson@4596
   117
Many Isabelle object-logics, such as \texttt{FOL}, \texttt{HOL} and their
paulson@4596
   118
descendants, come with \texttt{hyp_subst_tac} already defined.  A few others,
paulson@4596
   119
such as \texttt{CTT}, do not support this tactic because they lack the
lcp@104
   120
rule~$(subst)$.  When defining a new logic that includes a substitution
paulson@4596
   121
rule and implication, you must set up \texttt{hyp_subst_tac} yourself.  It
lcp@104
   122
is packaged as the \ML{} functor \ttindex{HypsubstFun}, which takes the
paulson@4596
   123
argument signature~\texttt{HYPSUBST_DATA}:
lcp@104
   124
\begin{ttbox} 
lcp@104
   125
signature HYPSUBST_DATA =
lcp@104
   126
  sig
paulson@2038
   127
  structure Simplifier : SIMPLIFIER
paulson@4596
   128
  val dest_Trueprop    : term -> term
paulson@4596
   129
  val dest_eq          : term -> term*term*typ
paulson@4596
   130
  val dest_imp         : term -> term*term
paulson@8136
   131
  val eq_reflection    : thm         (* a=b ==> a==b *)
wenzelm@9524
   132
  val rev_eq_reflection: thm         (* a==b ==> a=b *)
paulson@8136
   133
  val imp_intr         : thm         (*(P ==> Q) ==> P-->Q *)
paulson@8136
   134
  val rev_mp           : thm         (* [| P;  P-->Q |] ==> Q *)
paulson@8136
   135
  val subst            : thm         (* [| a=b;  P(a) |] ==> P(b) *)
paulson@8136
   136
  val sym              : thm         (* a=b ==> b=a *)
paulson@8136
   137
  val thin_refl        : thm         (* [|x=x; P|] ==> P *)
lcp@104
   138
  end;
lcp@104
   139
\end{ttbox}
lcp@104
   140
Thus, the functor requires the following items:
lcp@323
   141
\begin{ttdescription}
paulson@2038
   142
\item[Simplifier] should be an instance of the simplifier (see
nipkow@3950
   143
  Chapter~\ref{chap:simplification}).
paulson@4596
   144
  
paulson@4596
   145
\item[\ttindexbold{dest_Trueprop}] should coerce a meta-level formula to the
paulson@4596
   146
  corresponding object-level one.  Typically, it should return $P$ when
paulson@4596
   147
  applied to the term $\texttt{Trueprop}\,P$ (see example below).
paulson@4596
   148
  
paulson@4596
   149
\item[\ttindexbold{dest_eq}] should return the triple~$(t,u,T)$, where $T$ is
paulson@4596
   150
  the type of~$t$ and~$u$, when applied to the \ML{} term that
paulson@4596
   151
  represents~$t=u$.  For other terms, it should raise an exception.
paulson@4596
   152
  
paulson@4596
   153
\item[\ttindexbold{dest_imp}] should return the pair~$(P,Q)$ when applied to
paulson@4596
   154
  the \ML{} term that represents the implication $P\imp Q$.  For other terms,
paulson@4596
   155
  it should raise an exception.
lcp@104
   156
paulson@2038
   157
\item[\tdxbold{eq_reflection}] is the theorem discussed
wenzelm@9524
   158
  in~\S\ref{sec:setting-up-simp}.
wenzelm@9524
   159
  
wenzelm@9524
   160
\item[\tdxbold{rev_eq_reflection}] is the reverse of \texttt{eq_reflection}.
lcp@104
   161
lcp@323
   162
\item[\tdxbold{imp_intr}] should be the implies introduction
lcp@104
   163
rule $(\Var{P}\Imp\Var{Q})\Imp \Var{P}\imp\Var{Q}$.
lcp@104
   164
lcp@323
   165
\item[\tdxbold{rev_mp}] should be the `reversed' implies elimination
lcp@104
   166
rule $\List{\Var{P};  \;\Var{P}\imp\Var{Q}} \Imp \Var{Q}$.
lcp@104
   167
paulson@2038
   168
\item[\tdxbold{subst}] should be the substitution rule
paulson@2038
   169
$\List{\Var{a}=\Var{b};\; \Var{P}(\Var{a})} \Imp \Var{P}(\Var{b})$.
paulson@2038
   170
paulson@2038
   171
\item[\tdxbold{sym}] should be the symmetry rule
paulson@2038
   172
$\Var{a}=\Var{b}\Imp\Var{b}=\Var{a}$.
paulson@4596
   173
paulson@4596
   174
\item[\tdxbold{thin_refl}] should be the rule
paulson@4596
   175
$\List{\Var{a}=\Var{a};\; \Var{P}} \Imp \Var{P}$, which is used to erase
paulson@4596
   176
trivial equalities.
lcp@323
   177
\end{ttdescription}
paulson@2038
   178
%
paulson@4596
   179
The functor resides in file \texttt{Provers/hypsubst.ML} in the Isabelle
lcp@104
   180
distribution directory.  It is not sensitive to the precise formalization
lcp@104
   181
of the object-logic.  It is not concerned with the names of the equality
paulson@4596
   182
and implication symbols, or the types of formula and terms.  
paulson@4596
   183
paulson@4596
   184
Coding the functions \texttt{dest_Trueprop}, \texttt{dest_eq} and
paulson@4596
   185
\texttt{dest_imp} requires knowledge of Isabelle's representation of terms.
paulson@4596
   186
For \texttt{FOL}, they are declared by
lcp@104
   187
\begin{ttbox} 
paulson@4596
   188
fun dest_Trueprop (Const ("Trueprop", _) $ P) = P
paulson@4596
   189
  | dest_Trueprop t = raise TERM ("dest_Trueprop", [t]);
paulson@4596
   190
paulson@4596
   191
fun dest_eq (Const("op =",T)  $ t $ u) = (t, u, domain_type T)
paulson@4596
   192
paulson@4596
   193
fun dest_imp (Const("op -->",_) $ A $ B) = (A, B)
paulson@4596
   194
  | dest_imp  t = raise TERM ("dest_imp", [t]);
lcp@104
   195
\end{ttbox}
paulson@4596
   196
Recall that \texttt{Trueprop} is the coercion from type~$o$ to type~$prop$,
paulson@4596
   197
while \hbox{\tt op =} is the internal name of the infix operator~\texttt{=}.
paulson@4596
   198
Function \ttindexbold{domain_type}, given the function type $S\To T$, returns
paulson@4596
   199
the type~$S$.  Pattern-matching expresses the function concisely, using
paulson@4596
   200
wildcards~({\tt_}) for the types.
lcp@104
   201
paulson@4596
   202
The tactic \texttt{hyp_subst_tac} works as follows.  First, it identifies a
paulson@4596
   203
suitable equality assumption, possibly re-orienting it using~\texttt{sym}.
paulson@4596
   204
Then it moves other assumptions into the conclusion of the goal, by repeatedly
paulson@4596
   205
calling \texttt{etac~rev_mp}.  Then, it uses \texttt{asm_full_simp_tac} or
paulson@4596
   206
\texttt{ssubst} to substitute throughout the subgoal.  (If the equality
paulson@4596
   207
involves unknowns then it must use \texttt{ssubst}.)  Then, it deletes the
paulson@2038
   208
equality.  Finally, it moves the assumptions back to their original positions
paulson@2038
   209
by calling \hbox{\tt resolve_tac\ts[imp_intr]}.
lcp@104
   210
lcp@323
   211
\index{equality|)}\index{tactics!substitution|)}
wenzelm@5371
   212
wenzelm@5371
   213
wenzelm@5371
   214
%%% Local Variables: 
wenzelm@5371
   215
%%% mode: latex
wenzelm@5371
   216
%%% TeX-master: "ref"
wenzelm@5371
   217
%%% End: