src/Pure/meta_simplifier.ML
author berghofe
Mon Oct 21 17:09:31 2002 +0200 (2002-10-21)
changeset 13661 ec97dfc2bfe0
parent 13614 0b91269c0b13
child 13828 fb6ec40dd291
permissions -rw-r--r--
No more explicit manipulation of flex-flex constraints in goals_conv.
berghofe@10413
     1
(*  Title:      Pure/meta_simplifier.ML
berghofe@10413
     2
    ID:         $Id$
wenzelm@11672
     3
    Author:     Tobias Nipkow and Stefan Berghofer
wenzelm@12783
     4
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
berghofe@10413
     5
wenzelm@11672
     6
Meta-level Simplification.
berghofe@10413
     7
*)
berghofe@10413
     8
wenzelm@11672
     9
signature BASIC_META_SIMPLIFIER =
wenzelm@11672
    10
sig
wenzelm@11672
    11
  val trace_simp: bool ref
wenzelm@11672
    12
  val debug_simp: bool ref
wenzelm@11672
    13
end;
wenzelm@11672
    14
berghofe@10413
    15
signature META_SIMPLIFIER =
berghofe@10413
    16
sig
wenzelm@11672
    17
  include BASIC_META_SIMPLIFIER
berghofe@10413
    18
  exception SIMPLIFIER of string * thm
wenzelm@13486
    19
  exception SIMPROC_FAIL of string * exn
berghofe@10413
    20
  type meta_simpset
wenzelm@12603
    21
  val dest_mss          : meta_simpset ->
berghofe@10413
    22
    {simps: thm list, congs: thm list, procs: (string * cterm list) list}
berghofe@10413
    23
  val empty_mss         : meta_simpset
wenzelm@12603
    24
  val clear_mss         : meta_simpset -> meta_simpset
wenzelm@12603
    25
  val merge_mss         : meta_simpset * meta_simpset -> meta_simpset
berghofe@10413
    26
  val add_simps         : meta_simpset * thm list -> meta_simpset
berghofe@10413
    27
  val del_simps         : meta_simpset * thm list -> meta_simpset
berghofe@10413
    28
  val mss_of            : thm list -> meta_simpset
berghofe@10413
    29
  val add_congs         : meta_simpset * thm list -> meta_simpset
berghofe@10413
    30
  val del_congs         : meta_simpset * thm list -> meta_simpset
wenzelm@12603
    31
  val add_simprocs      : meta_simpset *
berghofe@10413
    32
    (string * cterm list * (Sign.sg -> thm list -> term -> thm option) * stamp) list
berghofe@10413
    33
      -> meta_simpset
wenzelm@12603
    34
  val del_simprocs      : meta_simpset *
berghofe@10413
    35
    (string * cterm list * (Sign.sg -> thm list -> term -> thm option) * stamp) list
berghofe@10413
    36
      -> meta_simpset
berghofe@10413
    37
  val add_prems         : meta_simpset * thm list -> meta_simpset
berghofe@10413
    38
  val prems_of_mss      : meta_simpset -> thm list
berghofe@10413
    39
  val set_mk_rews       : meta_simpset * (thm -> thm list) -> meta_simpset
berghofe@10413
    40
  val set_mk_sym        : meta_simpset * (thm -> thm option) -> meta_simpset
berghofe@10413
    41
  val set_mk_eq_True    : meta_simpset * (thm -> thm option) -> meta_simpset
berghofe@10413
    42
  val set_termless      : meta_simpset * (term * term -> bool) -> meta_simpset
wenzelm@12779
    43
  val beta_eta_conversion: cterm -> thm
wenzelm@11672
    44
  val rewrite_cterm: bool * bool * bool ->
wenzelm@11672
    45
    (meta_simpset -> thm -> thm option) -> meta_simpset -> cterm -> thm
berghofe@11736
    46
  val goals_conv        : (int -> bool) -> (cterm -> thm) -> cterm -> thm
berghofe@11736
    47
  val forall_conv       : (cterm -> thm) -> cterm -> thm
berghofe@11736
    48
  val fconv_rule        : (cterm -> thm) -> thm -> thm
wenzelm@11767
    49
  val rewrite_aux       : (meta_simpset -> thm -> thm option) -> bool -> thm list -> cterm -> thm
wenzelm@11767
    50
  val simplify_aux      : (meta_simpset -> thm -> thm option) -> bool -> thm list -> thm -> thm
berghofe@10413
    51
  val rewrite_thm       : bool * bool * bool
berghofe@10413
    52
                          -> (meta_simpset -> thm -> thm option)
berghofe@10413
    53
                          -> meta_simpset -> thm -> thm
berghofe@10413
    54
  val rewrite_goals_rule_aux: (meta_simpset -> thm -> thm option) -> thm list -> thm -> thm
berghofe@10413
    55
  val rewrite_goal_rule : bool* bool * bool
berghofe@10413
    56
                          -> (meta_simpset -> thm -> thm option)
berghofe@10413
    57
                          -> meta_simpset -> int -> thm -> thm
berghofe@13196
    58
  val rewrite_term: Sign.sg -> thm list -> (term -> term option) list -> term -> term
berghofe@10413
    59
end;
berghofe@10413
    60
berghofe@10413
    61
structure MetaSimplifier : META_SIMPLIFIER =
berghofe@10413
    62
struct
berghofe@10413
    63
berghofe@10413
    64
(** diagnostics **)
berghofe@10413
    65
berghofe@10413
    66
exception SIMPLIFIER of string * thm;
wenzelm@13486
    67
exception SIMPROC_FAIL of string * exn;
berghofe@10413
    68
nipkow@11505
    69
val simp_depth = ref 0;
nipkow@11505
    70
wenzelm@12603
    71
local
wenzelm@12603
    72
wenzelm@12603
    73
fun println a =
wenzelm@12603
    74
  tracing ((case ! simp_depth of 0 => "" | n => "[" ^ string_of_int n ^ "]") ^ a);
nipkow@11505
    75
nipkow@11505
    76
fun prnt warn a = if warn then warning a else println a;
wenzelm@12603
    77
fun prtm warn a sign t = prnt warn (a ^ "\n" ^ Sign.string_of_term sign t);
wenzelm@12603
    78
fun prctm warn a t = prnt warn (a ^ "\n" ^ Display.string_of_cterm t);
berghofe@10413
    79
wenzelm@12603
    80
in
berghofe@10413
    81
wenzelm@12603
    82
fun prthm warn a = prctm warn a o Thm.cprop_of;
berghofe@10413
    83
berghofe@10413
    84
val trace_simp = ref false;
berghofe@10413
    85
val debug_simp = ref false;
berghofe@10413
    86
berghofe@10413
    87
fun trace warn a = if !trace_simp then prnt warn a else ();
berghofe@10413
    88
fun debug warn a = if !debug_simp then prnt warn a else ();
berghofe@10413
    89
berghofe@10413
    90
fun trace_term warn a sign t = if !trace_simp then prtm warn a sign t else ();
berghofe@10413
    91
fun trace_cterm warn a t = if !trace_simp then prctm warn a t else ();
berghofe@10413
    92
fun debug_term warn a sign t = if !debug_simp then prtm warn a sign t else ();
berghofe@10413
    93
nipkow@13569
    94
fun trace_thm a thm =
berghofe@10413
    95
  let val {sign, prop, ...} = rep_thm thm
nipkow@13569
    96
  in trace_term false a sign prop end;
nipkow@13569
    97
berghofe@13607
    98
fun trace_named_thm a (thm, name) =
berghofe@13607
    99
  trace_thm (a ^ (if name = "" then "" else " " ^ quote name) ^ ":") thm;
berghofe@10413
   100
wenzelm@12603
   101
end;
berghofe@10413
   102
berghofe@10413
   103
berghofe@10413
   104
(** meta simp sets **)
berghofe@10413
   105
berghofe@10413
   106
(* basic components *)
berghofe@10413
   107
berghofe@13607
   108
type rrule = {thm: thm, name: string, lhs: term, elhs: cterm, fo: bool, perm: bool};
berghofe@10413
   109
(* thm: the rewrite rule
berghofe@13607
   110
   name: name of theorem from which rewrite rule was extracted
berghofe@10413
   111
   lhs: the left-hand side
berghofe@10413
   112
   elhs: the etac-contracted lhs.
berghofe@10413
   113
   fo:  use first-order matching
berghofe@10413
   114
   perm: the rewrite rule is permutative
wenzelm@12603
   115
Remarks:
berghofe@10413
   116
  - elhs is used for matching,
berghofe@10413
   117
    lhs only for preservation of bound variable names.
berghofe@10413
   118
  - fo is set iff
berghofe@10413
   119
    either elhs is first-order (no Var is applied),
berghofe@10413
   120
           in which case fo-matching is complete,
berghofe@10413
   121
    or elhs is not a pattern,
berghofe@10413
   122
       in which case there is nothing better to do.
berghofe@10413
   123
*)
berghofe@10413
   124
type cong = {thm: thm, lhs: cterm};
berghofe@10413
   125
type simproc =
berghofe@10413
   126
 {name: string, proc: Sign.sg -> thm list -> term -> thm option, lhs: cterm, id: stamp};
berghofe@10413
   127
berghofe@10413
   128
fun eq_rrule ({thm = thm1, ...}: rrule, {thm = thm2, ...}: rrule) =
berghofe@10413
   129
  #prop (rep_thm thm1) aconv #prop (rep_thm thm2);
berghofe@10413
   130
wenzelm@12603
   131
fun eq_cong ({thm = thm1, ...}: cong, {thm = thm2, ...}: cong) =
berghofe@10413
   132
  #prop (rep_thm thm1) aconv #prop (rep_thm thm2);
berghofe@10413
   133
berghofe@10413
   134
fun eq_prem (thm1, thm2) =
berghofe@10413
   135
  #prop (rep_thm thm1) aconv #prop (rep_thm thm2);
berghofe@10413
   136
berghofe@10413
   137
fun eq_simproc ({id = s1, ...}:simproc, {id = s2, ...}:simproc) = (s1 = s2);
berghofe@10413
   138
berghofe@10413
   139
fun mk_simproc (name, proc, lhs, id) =
berghofe@10413
   140
  {name = name, proc = proc, lhs = lhs, id = id};
berghofe@10413
   141
berghofe@10413
   142
berghofe@10413
   143
(* datatype mss *)
berghofe@10413
   144
berghofe@10413
   145
(*
berghofe@10413
   146
  A "mss" contains data needed during conversion:
berghofe@10413
   147
    rules: discrimination net of rewrite rules;
berghofe@10413
   148
    congs: association list of congruence rules and
berghofe@10413
   149
           a list of `weak' congruence constants.
berghofe@10413
   150
           A congruence is `weak' if it avoids normalization of some argument.
berghofe@10413
   151
    procs: discrimination net of simplification procedures
berghofe@10413
   152
      (functions that prove rewrite rules on the fly);
berghofe@10413
   153
    bounds: names of bound variables already used
berghofe@10413
   154
      (for generating new names when rewriting under lambda abstractions);
berghofe@10413
   155
    prems: current premises;
berghofe@10413
   156
    mk_rews: mk: turns simplification thms into rewrite rules;
berghofe@10413
   157
             mk_sym: turns == around; (needs Drule!)
berghofe@10413
   158
             mk_eq_True: turns P into P == True - logic specific;
berghofe@10413
   159
    termless: relation for ordered rewriting;
nipkow@11504
   160
    depth: depth of conditional rewriting;
berghofe@10413
   161
*)
berghofe@10413
   162
berghofe@10413
   163
datatype meta_simpset =
berghofe@10413
   164
  Mss of {
berghofe@10413
   165
    rules: rrule Net.net,
berghofe@10413
   166
    congs: (string * cong) list * string list,
berghofe@10413
   167
    procs: simproc Net.net,
berghofe@10413
   168
    bounds: string list,
berghofe@10413
   169
    prems: thm list,
berghofe@10413
   170
    mk_rews: {mk: thm -> thm list,
berghofe@10413
   171
              mk_sym: thm -> thm option,
berghofe@10413
   172
              mk_eq_True: thm -> thm option},
nipkow@11504
   173
    termless: term * term -> bool,
nipkow@11504
   174
    depth: int};
berghofe@10413
   175
nipkow@11504
   176
fun mk_mss (rules, congs, procs, bounds, prems, mk_rews, termless, depth) =
berghofe@10413
   177
  Mss {rules = rules, congs = congs, procs = procs, bounds = bounds,
nipkow@11504
   178
       prems=prems, mk_rews=mk_rews, termless=termless, depth=depth};
berghofe@10413
   179
nipkow@11504
   180
fun upd_rules(Mss{rules,congs,procs,bounds,prems,mk_rews,termless,depth}, rules') =
nipkow@11504
   181
  mk_mss(rules',congs,procs,bounds,prems,mk_rews,termless,depth);
berghofe@10413
   182
berghofe@10413
   183
val empty_mss =
berghofe@10413
   184
  let val mk_rews = {mk = K [], mk_sym = K None, mk_eq_True = K None}
nipkow@11504
   185
  in mk_mss (Net.empty, ([], []), Net.empty, [], [], mk_rews, Term.termless, 0) end;
berghofe@10413
   186
berghofe@10413
   187
fun clear_mss (Mss {mk_rews, termless, ...}) =
nipkow@11504
   188
  mk_mss (Net.empty, ([], []), Net.empty, [], [], mk_rews, termless,0);
berghofe@10413
   189
nipkow@11504
   190
fun incr_depth(Mss{rules,congs,procs,bounds,prems,mk_rews,termless,depth}) =
nipkow@11504
   191
  mk_mss (rules, congs, procs, bounds, prems, mk_rews, termless, depth+1)
wenzelm@12603
   192
berghofe@10413
   193
berghofe@10413
   194
berghofe@10413
   195
(** simpset operations **)
berghofe@10413
   196
berghofe@10413
   197
(* term variables *)
berghofe@10413
   198
berghofe@10413
   199
val add_term_varnames = foldl_aterms (fn (xs, Var (x, _)) => ins_ix (x, xs) | (xs, _) => xs);
berghofe@10413
   200
fun term_varnames t = add_term_varnames ([], t);
berghofe@10413
   201
berghofe@10413
   202
berghofe@10413
   203
(* dest_mss *)
berghofe@10413
   204
berghofe@10413
   205
fun dest_mss (Mss {rules, congs, procs, ...}) =
berghofe@10413
   206
  {simps = map (fn (_, {thm, ...}) => thm) (Net.dest rules),
berghofe@10413
   207
   congs = map (fn (_, {thm, ...}) => thm) (fst congs),
berghofe@10413
   208
   procs =
berghofe@10413
   209
     map (fn (_, {name, lhs, id, ...}) => ((name, lhs), id)) (Net.dest procs)
berghofe@10413
   210
     |> partition_eq eq_snd
berghofe@10413
   211
     |> map (fn ps => (#1 (#1 (hd ps)), map (#2 o #1) ps))
berghofe@10413
   212
     |> Library.sort_wrt #1};
berghofe@10413
   213
berghofe@10413
   214
wenzelm@12603
   215
(* merge_mss *)       (*NOTE: ignores mk_rews, termless and depth of 2nd mss*)
berghofe@10413
   216
berghofe@10413
   217
fun merge_mss
berghofe@10413
   218
 (Mss {rules = rules1, congs = (congs1,weak1), procs = procs1,
nipkow@11504
   219
       bounds = bounds1, prems = prems1, mk_rews, termless, depth},
berghofe@10413
   220
  Mss {rules = rules2, congs = (congs2,weak2), procs = procs2,
berghofe@10413
   221
       bounds = bounds2, prems = prems2, ...}) =
berghofe@10413
   222
      mk_mss
berghofe@10413
   223
       (Net.merge (rules1, rules2, eq_rrule),
wenzelm@12285
   224
        (gen_merge_lists (eq_cong o pairself snd) congs1 congs2,
berghofe@10413
   225
        merge_lists weak1 weak2),
berghofe@10413
   226
        Net.merge (procs1, procs2, eq_simproc),
berghofe@10413
   227
        merge_lists bounds1 bounds2,
wenzelm@12285
   228
        gen_merge_lists eq_prem prems1 prems2,
nipkow@11504
   229
        mk_rews, termless, depth);
berghofe@10413
   230
berghofe@10413
   231
berghofe@10413
   232
(* add_simps *)
berghofe@10413
   233
berghofe@13607
   234
fun mk_rrule2{thm, name, lhs, elhs, perm} =
berghofe@10413
   235
  let val fo = Pattern.first_order (term_of elhs) orelse not(Pattern.pattern (term_of elhs))
berghofe@13607
   236
  in {thm=thm, name=name, lhs=lhs, elhs=elhs, fo=fo, perm=perm} end
berghofe@10413
   237
berghofe@13607
   238
fun insert_rrule quiet (mss as Mss {rules,...},
berghofe@13607
   239
                 rrule as {thm,name,lhs,elhs,perm}) =
berghofe@13607
   240
  (trace_named_thm "Adding rewrite rule" (thm, name);
berghofe@10413
   241
   let val rrule2 as {elhs,...} = mk_rrule2 rrule
berghofe@10413
   242
       val rules' = Net.insert_term ((term_of elhs, rrule2), rules, eq_rrule)
berghofe@10413
   243
   in upd_rules(mss,rules') end
berghofe@13607
   244
   handle Net.INSERT => if quiet then mss else
berghofe@10413
   245
     (prthm true "Ignoring duplicate rewrite rule:" thm; mss));
berghofe@10413
   246
berghofe@10413
   247
fun vperm (Var _, Var _) = true
berghofe@10413
   248
  | vperm (Abs (_, _, s), Abs (_, _, t)) = vperm (s, t)
berghofe@10413
   249
  | vperm (t1 $ t2, u1 $ u2) = vperm (t1, u1) andalso vperm (t2, u2)
berghofe@10413
   250
  | vperm (t, u) = (t = u);
berghofe@10413
   251
berghofe@10413
   252
fun var_perm (t, u) =
berghofe@10413
   253
  vperm (t, u) andalso eq_set (term_varnames t, term_varnames u);
berghofe@10413
   254
berghofe@10413
   255
(* FIXME: it seems that the conditions on extra variables are too liberal if
berghofe@10413
   256
prems are nonempty: does solving the prems really guarantee instantiation of
berghofe@10413
   257
all its Vars? Better: a dynamic check each time a rule is applied.
berghofe@10413
   258
*)
berghofe@10413
   259
fun rewrite_rule_extra_vars prems elhs erhs =
berghofe@10413
   260
  not (term_varnames erhs subset foldl add_term_varnames (term_varnames elhs, prems))
berghofe@10413
   261
  orelse
berghofe@10413
   262
  not ((term_tvars erhs) subset
berghofe@10413
   263
       (term_tvars elhs  union  List.concat(map term_tvars prems)));
berghofe@10413
   264
berghofe@10413
   265
(*Simple test for looping rewrite rules and stupid orientations*)
berghofe@10413
   266
fun reorient sign prems lhs rhs =
berghofe@10413
   267
   rewrite_rule_extra_vars prems lhs rhs
berghofe@10413
   268
  orelse
berghofe@10413
   269
   is_Var (head_of lhs)
berghofe@10413
   270
  orelse
berghofe@10413
   271
   (exists (apl (lhs, Logic.occs)) (rhs :: prems))
berghofe@10413
   272
  orelse
berghofe@10413
   273
   (null prems andalso
berghofe@10413
   274
    Pattern.matches (#tsig (Sign.rep_sg sign)) (lhs, rhs))
berghofe@10413
   275
    (*the condition "null prems" is necessary because conditional rewrites
berghofe@10413
   276
      with extra variables in the conditions may terminate although
berghofe@10413
   277
      the rhs is an instance of the lhs. Example: ?m < ?n ==> f(?n) == f(?m)*)
berghofe@10413
   278
  orelse
berghofe@10413
   279
   (is_Const lhs andalso not(is_Const rhs))
berghofe@10413
   280
berghofe@10413
   281
fun decomp_simp thm =
berghofe@10413
   282
  let val {sign, prop, ...} = rep_thm thm;
berghofe@10413
   283
      val prems = Logic.strip_imp_prems prop;
berghofe@10413
   284
      val concl = Drule.strip_imp_concl (cprop_of thm);
berghofe@10413
   285
      val (lhs, rhs) = Drule.dest_equals concl handle TERM _ =>
berghofe@10413
   286
        raise SIMPLIFIER ("Rewrite rule not a meta-equality", thm)
berghofe@10413
   287
      val elhs = snd (Drule.dest_equals (cprop_of (Thm.eta_conversion lhs)));
berghofe@10413
   288
      val elhs = if elhs=lhs then lhs else elhs (* try to share *)
berghofe@10413
   289
      val erhs = Pattern.eta_contract (term_of rhs);
berghofe@10413
   290
      val perm = var_perm (term_of elhs, erhs) andalso not (term_of elhs aconv erhs)
berghofe@10413
   291
                 andalso not (is_Var (term_of elhs))
berghofe@10413
   292
  in (sign, prems, term_of lhs, elhs, term_of rhs, perm) end;
berghofe@10413
   293
wenzelm@12783
   294
fun decomp_simp' thm =
wenzelm@12979
   295
  let val (_, _, lhs, _, rhs, _) = decomp_simp thm in
wenzelm@12783
   296
    if Thm.nprems_of thm > 0 then raise SIMPLIFIER ("Bad conditional rewrite rule", thm)
wenzelm@12979
   297
    else (lhs, rhs)
wenzelm@12783
   298
  end;
wenzelm@12783
   299
berghofe@13607
   300
fun mk_eq_True (Mss{mk_rews={mk_eq_True,...},...}) (thm, name) =
berghofe@10413
   301
  case mk_eq_True thm of
berghofe@10413
   302
    None => []
berghofe@13607
   303
  | Some eq_True =>
berghofe@13607
   304
      let val (_,_,lhs,elhs,_,_) = decomp_simp eq_True
berghofe@13607
   305
      in [{thm=eq_True, name=name, lhs=lhs, elhs=elhs, perm=false}] end;
berghofe@10413
   306
berghofe@10413
   307
(* create the rewrite rule and possibly also the ==True variant,
berghofe@10413
   308
   in case there are extra vars on the rhs *)
berghofe@13607
   309
fun rrule_eq_True(thm,name,lhs,elhs,rhs,mss,thm2) =
berghofe@13607
   310
  let val rrule = {thm=thm, name=name, lhs=lhs, elhs=elhs, perm=false}
berghofe@10413
   311
  in if (term_varnames rhs)  subset (term_varnames lhs) andalso
berghofe@10413
   312
        (term_tvars rhs) subset (term_tvars lhs)
berghofe@10413
   313
     then [rrule]
berghofe@13607
   314
     else mk_eq_True mss (thm2, name) @ [rrule]
berghofe@10413
   315
  end;
berghofe@10413
   316
berghofe@13607
   317
fun mk_rrule mss (thm, name) =
berghofe@10413
   318
  let val (_,prems,lhs,elhs,rhs,perm) = decomp_simp thm
berghofe@13607
   319
  in if perm then [{thm=thm, name=name, lhs=lhs, elhs=elhs, perm=true}] else
berghofe@10413
   320
     (* weak test for loops: *)
berghofe@10413
   321
     if rewrite_rule_extra_vars prems lhs rhs orelse
berghofe@10413
   322
        is_Var (term_of elhs)
berghofe@13607
   323
     then mk_eq_True mss (thm, name)
berghofe@13607
   324
     else rrule_eq_True(thm,name,lhs,elhs,rhs,mss,thm)
berghofe@10413
   325
  end;
berghofe@10413
   326
berghofe@13607
   327
fun orient_rrule mss (thm, name) =
berghofe@10413
   328
  let val (sign,prems,lhs,elhs,rhs,perm) = decomp_simp thm
berghofe@13607
   329
  in if perm then [{thm=thm, name=name, lhs=lhs, elhs=elhs, perm=true}]
berghofe@10413
   330
     else if reorient sign prems lhs rhs
berghofe@10413
   331
          then if reorient sign prems rhs lhs
berghofe@13607
   332
               then mk_eq_True mss (thm, name)
berghofe@10413
   333
               else let val Mss{mk_rews={mk_sym,...},...} = mss
berghofe@10413
   334
                    in case mk_sym thm of
berghofe@10413
   335
                         None => []
berghofe@10413
   336
                       | Some thm' =>
berghofe@10413
   337
                           let val (_,_,lhs',elhs',rhs',_) = decomp_simp thm'
berghofe@13607
   338
                           in rrule_eq_True(thm',name,lhs',elhs',rhs',mss,thm) end
berghofe@10413
   339
                    end
berghofe@13607
   340
          else rrule_eq_True(thm,name,lhs,elhs,rhs,mss,thm)
berghofe@10413
   341
  end;
berghofe@10413
   342
berghofe@13607
   343
fun extract_rews(Mss{mk_rews = {mk,...},...},thms) =
berghofe@13607
   344
  flat (map (fn thm => map (rpair (Thm.name_of_thm thm)) (mk thm)) thms);
berghofe@10413
   345
berghofe@10413
   346
fun orient_comb_simps comb mk_rrule (mss,thms) =
berghofe@10413
   347
  let val rews = extract_rews(mss,thms)
berghofe@10413
   348
      val rrules = flat (map mk_rrule rews)
berghofe@10413
   349
  in foldl comb (mss,rrules) end
berghofe@10413
   350
berghofe@10413
   351
(* Add rewrite rules explicitly; do not reorient! *)
berghofe@10413
   352
fun add_simps(mss,thms) =
berghofe@13607
   353
  orient_comb_simps (insert_rrule false) (mk_rrule mss) (mss,thms);
berghofe@10413
   354
berghofe@13607
   355
fun mss_of thms = foldl (insert_rrule false) (empty_mss, flat
berghofe@13607
   356
  (map (fn thm => mk_rrule empty_mss (thm, Thm.name_of_thm thm)) thms));
berghofe@10413
   357
berghofe@10413
   358
fun extract_safe_rrules(mss,thm) =
berghofe@10413
   359
  flat (map (orient_rrule mss) (extract_rews(mss,[thm])));
berghofe@10413
   360
berghofe@10413
   361
(* del_simps *)
berghofe@10413
   362
berghofe@10413
   363
fun del_rrule(mss as Mss {rules,...},
berghofe@10413
   364
              rrule as {thm, elhs, ...}) =
berghofe@10413
   365
  (upd_rules(mss, Net.delete_term ((term_of elhs, rrule), rules, eq_rrule))
berghofe@10413
   366
   handle Net.DELETE =>
berghofe@10413
   367
     (prthm true "Rewrite rule not in simpset:" thm; mss));
berghofe@10413
   368
berghofe@10413
   369
fun del_simps(mss,thms) =
berghofe@10413
   370
  orient_comb_simps del_rrule (map mk_rrule2 o mk_rrule mss) (mss,thms);
berghofe@10413
   371
berghofe@10413
   372
berghofe@10413
   373
(* add_congs *)
berghofe@10413
   374
berghofe@10413
   375
fun is_full_cong_prems [] varpairs = null varpairs
berghofe@10413
   376
  | is_full_cong_prems (p::prems) varpairs =
berghofe@10413
   377
    (case Logic.strip_assums_concl p of
berghofe@10413
   378
       Const("==",_) $ lhs $ rhs =>
berghofe@10413
   379
         let val (x,xs) = strip_comb lhs and (y,ys) = strip_comb rhs
berghofe@10413
   380
         in is_Var x  andalso  forall is_Bound xs  andalso
berghofe@10413
   381
            null(findrep(xs))  andalso xs=ys andalso
berghofe@10413
   382
            (x,y) mem varpairs andalso
berghofe@10413
   383
            is_full_cong_prems prems (varpairs\(x,y))
berghofe@10413
   384
         end
berghofe@10413
   385
     | _ => false);
berghofe@10413
   386
berghofe@10413
   387
fun is_full_cong thm =
berghofe@10413
   388
let val prems = prems_of thm
berghofe@10413
   389
    and concl = concl_of thm
berghofe@10413
   390
    val (lhs,rhs) = Logic.dest_equals concl
berghofe@10413
   391
    val (f,xs) = strip_comb lhs
berghofe@10413
   392
    and (g,ys) = strip_comb rhs
berghofe@10413
   393
in
berghofe@10413
   394
  f=g andalso null(findrep(xs@ys)) andalso length xs = length ys andalso
berghofe@10413
   395
  is_full_cong_prems prems (xs ~~ ys)
berghofe@10413
   396
end
berghofe@10413
   397
nipkow@11504
   398
fun add_cong (Mss {rules,congs,procs,bounds,prems,mk_rews,termless,depth}, thm) =
berghofe@10413
   399
  let
berghofe@10413
   400
    val (lhs, _) = Drule.dest_equals (Drule.strip_imp_concl (cprop_of thm)) handle TERM _ =>
berghofe@10413
   401
      raise SIMPLIFIER ("Congruence not a meta-equality", thm);
berghofe@10413
   402
(*   val lhs = Pattern.eta_contract lhs; *)
berghofe@10413
   403
    val (a, _) = dest_Const (head_of (term_of lhs)) handle TERM _ =>
berghofe@10413
   404
      raise SIMPLIFIER ("Congruence must start with a constant", thm);
berghofe@10413
   405
    val (alist,weak) = congs
berghofe@10413
   406
    val alist2 = overwrite_warn (alist, (a,{lhs=lhs, thm=thm}))
berghofe@10413
   407
           ("Overwriting congruence rule for " ^ quote a);
berghofe@10413
   408
    val weak2 = if is_full_cong thm then weak else a::weak
berghofe@10413
   409
  in
nipkow@11504
   410
    mk_mss (rules,(alist2,weak2),procs,bounds,prems,mk_rews,termless,depth)
berghofe@10413
   411
  end;
berghofe@10413
   412
berghofe@10413
   413
val (op add_congs) = foldl add_cong;
berghofe@10413
   414
berghofe@10413
   415
berghofe@10413
   416
(* del_congs *)
berghofe@10413
   417
nipkow@11504
   418
fun del_cong (Mss {rules,congs,procs,bounds,prems,mk_rews,termless,depth}, thm) =
berghofe@10413
   419
  let
berghofe@10413
   420
    val (lhs, _) = Logic.dest_equals (concl_of thm) handle TERM _ =>
berghofe@10413
   421
      raise SIMPLIFIER ("Congruence not a meta-equality", thm);
berghofe@10413
   422
(*   val lhs = Pattern.eta_contract lhs; *)
berghofe@10413
   423
    val (a, _) = dest_Const (head_of lhs) handle TERM _ =>
berghofe@10413
   424
      raise SIMPLIFIER ("Congruence must start with a constant", thm);
berghofe@10413
   425
    val (alist,_) = congs
berghofe@10413
   426
    val alist2 = filter (fn (x,_)=> x<>a) alist
berghofe@10413
   427
    val weak2 = mapfilter (fn(a,{thm,...}) => if is_full_cong thm then None
berghofe@10413
   428
                                              else Some a)
berghofe@10413
   429
                   alist2
berghofe@10413
   430
  in
nipkow@11504
   431
    mk_mss (rules,(alist2,weak2),procs,bounds,prems,mk_rews,termless,depth)
berghofe@10413
   432
  end;
berghofe@10413
   433
berghofe@10413
   434
val (op del_congs) = foldl del_cong;
berghofe@10413
   435
berghofe@10413
   436
berghofe@10413
   437
(* add_simprocs *)
berghofe@10413
   438
nipkow@11504
   439
fun add_proc (mss as Mss {rules,congs,procs,bounds,prems,mk_rews,termless,depth},
berghofe@10413
   440
    (name, lhs, proc, id)) =
berghofe@10413
   441
  let val {sign, t, ...} = rep_cterm lhs
berghofe@10413
   442
  in (trace_term false ("Adding simplification procedure " ^ quote name ^ " for")
berghofe@10413
   443
      sign t;
berghofe@10413
   444
    mk_mss (rules, congs,
berghofe@10413
   445
      Net.insert_term ((t, mk_simproc (name, proc, lhs, id)), procs, eq_simproc)
wenzelm@12603
   446
        handle Net.INSERT =>
wenzelm@12603
   447
            (warning ("Ignoring duplicate simplification procedure \""
wenzelm@12603
   448
                      ^ name ^ "\"");
wenzelm@12603
   449
             procs),
nipkow@11504
   450
        bounds, prems, mk_rews, termless,depth))
berghofe@10413
   451
  end;
berghofe@10413
   452
berghofe@10413
   453
fun add_simproc (mss, (name, lhss, proc, id)) =
berghofe@10413
   454
  foldl add_proc (mss, map (fn lhs => (name, lhs, proc, id)) lhss);
berghofe@10413
   455
berghofe@10413
   456
val add_simprocs = foldl add_simproc;
berghofe@10413
   457
berghofe@10413
   458
berghofe@10413
   459
(* del_simprocs *)
berghofe@10413
   460
nipkow@11504
   461
fun del_proc (mss as Mss {rules,congs,procs,bounds,prems,mk_rews,termless,depth},
berghofe@10413
   462
    (name, lhs, proc, id)) =
berghofe@10413
   463
  mk_mss (rules, congs,
berghofe@10413
   464
    Net.delete_term ((term_of lhs, mk_simproc (name, proc, lhs, id)), procs, eq_simproc)
wenzelm@12603
   465
      handle Net.DELETE =>
wenzelm@12603
   466
          (warning ("Simplification procedure \"" ^ name ^
wenzelm@12603
   467
                       "\" not in simpset"); procs),
nipkow@11504
   468
      bounds, prems, mk_rews, termless, depth);
berghofe@10413
   469
berghofe@10413
   470
fun del_simproc (mss, (name, lhss, proc, id)) =
berghofe@10413
   471
  foldl del_proc (mss, map (fn lhs => (name, lhs, proc, id)) lhss);
berghofe@10413
   472
berghofe@10413
   473
val del_simprocs = foldl del_simproc;
berghofe@10413
   474
berghofe@10413
   475
berghofe@10413
   476
(* prems *)
berghofe@10413
   477
nipkow@11504
   478
fun add_prems (Mss {rules,congs,procs,bounds,prems,mk_rews,termless,depth}, thms) =
nipkow@11504
   479
  mk_mss (rules, congs, procs, bounds, thms @ prems, mk_rews, termless, depth);
berghofe@10413
   480
berghofe@10413
   481
fun prems_of_mss (Mss {prems, ...}) = prems;
berghofe@10413
   482
berghofe@10413
   483
berghofe@10413
   484
(* mk_rews *)
berghofe@10413
   485
berghofe@10413
   486
fun set_mk_rews
nipkow@11504
   487
  (Mss {rules, congs, procs, bounds, prems, mk_rews, termless, depth}, mk) =
berghofe@10413
   488
    mk_mss (rules, congs, procs, bounds, prems,
berghofe@10413
   489
            {mk=mk, mk_sym= #mk_sym mk_rews, mk_eq_True= #mk_eq_True mk_rews},
nipkow@11504
   490
            termless, depth);
berghofe@10413
   491
berghofe@10413
   492
fun set_mk_sym
nipkow@11504
   493
  (Mss {rules,congs,procs,bounds,prems,mk_rews,termless,depth}, mk_sym) =
berghofe@10413
   494
    mk_mss (rules, congs, procs, bounds, prems,
berghofe@10413
   495
            {mk= #mk mk_rews, mk_sym= mk_sym, mk_eq_True= #mk_eq_True mk_rews},
nipkow@11504
   496
            termless,depth);
berghofe@10413
   497
berghofe@10413
   498
fun set_mk_eq_True
nipkow@11504
   499
  (Mss {rules,congs,procs,bounds,prems,mk_rews,termless,depth}, mk_eq_True) =
berghofe@10413
   500
    mk_mss (rules, congs, procs, bounds, prems,
berghofe@10413
   501
            {mk= #mk mk_rews, mk_sym= #mk_sym mk_rews, mk_eq_True= mk_eq_True},
nipkow@11504
   502
            termless,depth);
berghofe@10413
   503
berghofe@10413
   504
(* termless *)
berghofe@10413
   505
berghofe@10413
   506
fun set_termless
nipkow@11504
   507
  (Mss {rules, congs, procs, bounds, prems, mk_rews, depth, ...}, termless) =
nipkow@11504
   508
    mk_mss (rules, congs, procs, bounds, prems, mk_rews, termless, depth);
berghofe@10413
   509
berghofe@10413
   510
berghofe@10413
   511
berghofe@10413
   512
(** rewriting **)
berghofe@10413
   513
berghofe@10413
   514
(*
berghofe@10413
   515
  Uses conversions, see:
berghofe@10413
   516
    L C Paulson, A higher-order implementation of rewriting,
berghofe@10413
   517
    Science of Computer Programming 3 (1983), pages 119-149.
berghofe@10413
   518
*)
berghofe@10413
   519
berghofe@10413
   520
val dest_eq = Drule.dest_equals o cprop_of;
berghofe@10413
   521
val lhs_of = fst o dest_eq;
berghofe@10413
   522
val rhs_of = snd o dest_eq;
berghofe@10413
   523
berghofe@10413
   524
fun beta_eta_conversion t =
berghofe@10413
   525
  let val thm = beta_conversion true t;
berghofe@10413
   526
  in transitive thm (eta_conversion (rhs_of thm)) end;
berghofe@10413
   527
berghofe@10413
   528
fun check_conv msg thm thm' =
berghofe@10413
   529
  let
berghofe@10413
   530
    val thm'' = transitive thm (transitive
berghofe@10413
   531
      (symmetric (beta_eta_conversion (lhs_of thm'))) thm')
nipkow@13569
   532
  in (if msg then trace_thm "SUCCEEDED" thm' else (); Some thm'') end
berghofe@10413
   533
  handle THM _ =>
berghofe@10413
   534
    let val {sign, prop = _ $ _ $ prop0, ...} = rep_thm thm;
berghofe@10413
   535
    in
nipkow@13569
   536
      (trace_thm "Proved wrong thm (Check subgoaler?)" thm';
berghofe@10413
   537
       trace_term false "Should have proved:" sign prop0;
berghofe@10413
   538
       None)
berghofe@10413
   539
    end;
berghofe@10413
   540
berghofe@10413
   541
berghofe@10413
   542
(* mk_procrule *)
berghofe@10413
   543
berghofe@10413
   544
fun mk_procrule thm =
berghofe@10413
   545
  let val (_,prems,lhs,elhs,rhs,_) = decomp_simp thm
berghofe@10413
   546
  in if rewrite_rule_extra_vars prems lhs rhs
berghofe@10413
   547
     then (prthm true "Extra vars on rhs:" thm; [])
berghofe@13607
   548
     else [mk_rrule2{thm=thm, name="", lhs=lhs, elhs=elhs, perm=false}]
berghofe@10413
   549
  end;
berghofe@10413
   550
berghofe@10413
   551
berghofe@10413
   552
(* conversion to apply the meta simpset to a term *)
berghofe@10413
   553
berghofe@10413
   554
(* Since the rewriting strategy is bottom-up, we avoid re-normalizing already
berghofe@10413
   555
   normalized terms by carrying around the rhs of the rewrite rule just
berghofe@10413
   556
   applied. This is called the `skeleton'. It is decomposed in parallel
berghofe@10413
   557
   with the term. Once a Var is encountered, the corresponding term is
berghofe@10413
   558
   already in normal form.
berghofe@10413
   559
   skel0 is a dummy skeleton that is to enforce complete normalization.
berghofe@10413
   560
*)
berghofe@10413
   561
val skel0 = Bound 0;
berghofe@10413
   562
berghofe@10413
   563
(* Use rhs as skeleton only if the lhs does not contain unnormalized bits.
berghofe@10413
   564
   The latter may happen iff there are weak congruence rules for constants
berghofe@10413
   565
   in the lhs.
berghofe@10413
   566
*)
berghofe@10413
   567
fun uncond_skel((_,weak),(lhs,rhs)) =
berghofe@10413
   568
  if null weak then rhs (* optimization *)
berghofe@10413
   569
  else if exists_Const (fn (c,_) => c mem weak) lhs then skel0
berghofe@10413
   570
       else rhs;
berghofe@10413
   571
berghofe@10413
   572
(* Behaves like unconditional rule if rhs does not contain vars not in the lhs.
berghofe@10413
   573
   Otherwise those vars may become instantiated with unnormalized terms
berghofe@10413
   574
   while the premises are solved.
berghofe@10413
   575
*)
berghofe@10413
   576
fun cond_skel(args as (congs,(lhs,rhs))) =
berghofe@10413
   577
  if term_varnames rhs subset term_varnames lhs then uncond_skel(args)
berghofe@10413
   578
  else skel0;
berghofe@10413
   579
berghofe@10413
   580
(*
berghofe@10413
   581
  we try in order:
berghofe@10413
   582
    (1) beta reduction
berghofe@10413
   583
    (2) unconditional rewrite rules
berghofe@10413
   584
    (3) conditional rewrite rules
berghofe@10413
   585
    (4) simplification procedures
berghofe@10413
   586
berghofe@10413
   587
  IMPORTANT: rewrite rules must not introduce new Vars or TVars!
berghofe@10413
   588
berghofe@10413
   589
*)
berghofe@10413
   590
berghofe@10413
   591
fun rewritec (prover, signt, maxt)
nipkow@11504
   592
             (mss as Mss{rules, procs, termless, prems, congs, depth,...}) t =
berghofe@10413
   593
  let
berghofe@10413
   594
    val eta_thm = Thm.eta_conversion t;
berghofe@10413
   595
    val eta_t' = rhs_of eta_thm;
berghofe@10413
   596
    val eta_t = term_of eta_t';
berghofe@10413
   597
    val tsigt = Sign.tsig_of signt;
berghofe@13607
   598
    fun rew {thm, name, lhs, elhs, fo, perm} =
berghofe@10413
   599
      let
berghofe@10413
   600
        val {sign, prop, maxidx, ...} = rep_thm thm;
berghofe@10413
   601
        val _ = if Sign.subsig (sign, signt) then ()
berghofe@10413
   602
                else (prthm true "Ignoring rewrite rule from different theory:" thm;
berghofe@10413
   603
                      raise Pattern.MATCH);
berghofe@10413
   604
        val (rthm, elhs') = if maxt = ~1 then (thm, elhs)
berghofe@10413
   605
          else (Thm.incr_indexes (maxt+1) thm, Thm.cterm_incr_indexes (maxt+1) elhs);
berghofe@10413
   606
        val insts = if fo then Thm.cterm_first_order_match (elhs', eta_t')
berghofe@10413
   607
                          else Thm.cterm_match (elhs', eta_t');
berghofe@10413
   608
        val thm' = Thm.instantiate insts (Thm.rename_boundvars lhs eta_t rthm);
berghofe@10413
   609
        val prop' = #prop (rep_thm thm');
berghofe@10413
   610
        val unconditional = (Logic.count_prems (prop',0) = 0);
berghofe@10413
   611
        val (lhs', rhs') = Logic.dest_equals (Logic.strip_imp_concl prop')
berghofe@10413
   612
      in
nipkow@11295
   613
        if perm andalso not (termless (rhs', lhs'))
berghofe@13607
   614
        then (trace_named_thm "Cannot apply permutative rewrite rule" (thm, name);
nipkow@13569
   615
              trace_thm "Term does not become smaller:" thm'; None)
berghofe@13607
   616
        else (trace_named_thm "Applying instance of rewrite rule" (thm, name);
berghofe@10413
   617
           if unconditional
berghofe@10413
   618
           then
nipkow@13569
   619
             (trace_thm "Rewriting:" thm';
berghofe@10413
   620
              let val lr = Logic.dest_equals prop;
berghofe@10413
   621
                  val Some thm'' = check_conv false eta_thm thm'
berghofe@10413
   622
              in Some (thm'', uncond_skel (congs, lr)) end)
berghofe@10413
   623
           else
nipkow@13569
   624
             (trace_thm "Trying to rewrite:" thm';
nipkow@11504
   625
              case prover (incr_depth mss) thm' of
nipkow@13569
   626
                None       => (trace_thm "FAILED" thm'; None)
berghofe@10413
   627
              | Some thm2 =>
berghofe@10413
   628
                  (case check_conv true eta_thm thm2 of
berghofe@10413
   629
                     None => None |
berghofe@10413
   630
                     Some thm2' =>
berghofe@10413
   631
                       let val concl = Logic.strip_imp_concl prop
berghofe@10413
   632
                           val lr = Logic.dest_equals concl
nipkow@11505
   633
                       in Some (thm2', cond_skel (congs, lr)) end)))
berghofe@10413
   634
      end
berghofe@10413
   635
berghofe@10413
   636
    fun rews [] = None
berghofe@10413
   637
      | rews (rrule :: rrules) =
berghofe@10413
   638
          let val opt = rew rrule handle Pattern.MATCH => None
berghofe@10413
   639
          in case opt of None => rews rrules | some => some end;
berghofe@10413
   640
berghofe@10413
   641
    fun sort_rrules rrs = let
wenzelm@12603
   642
      fun is_simple({thm, ...}:rrule) = case #prop (rep_thm thm) of
berghofe@10413
   643
                                      Const("==",_) $ _ $ _ => true
wenzelm@12603
   644
                                      | _                   => false
berghofe@10413
   645
      fun sort []        (re1,re2) = re1 @ re2
wenzelm@12603
   646
        | sort (rr::rrs) (re1,re2) = if is_simple rr
berghofe@10413
   647
                                     then sort rrs (rr::re1,re2)
berghofe@10413
   648
                                     else sort rrs (re1,rr::re2)
berghofe@10413
   649
    in sort rrs ([],[]) end
berghofe@10413
   650
berghofe@10413
   651
    fun proc_rews ([]:simproc list) = None
berghofe@10413
   652
      | proc_rews ({name, proc, lhs, ...} :: ps) =
berghofe@10413
   653
          if Pattern.matches tsigt (term_of lhs, term_of t) then
berghofe@10413
   654
            (debug_term false ("Trying procedure " ^ quote name ^ " on:") signt eta_t;
wenzelm@13486
   655
             case transform_failure (curry SIMPROC_FAIL name)
wenzelm@13486
   656
                 (fn () => proc signt prems eta_t) () of
wenzelm@13486
   657
               None => (debug false "FAILED"; proc_rews ps)
wenzelm@13486
   658
             | Some raw_thm =>
nipkow@13569
   659
                 (trace_thm ("Procedure " ^ quote name ^ " produced rewrite rule:") raw_thm;
berghofe@10413
   660
                  (case rews (mk_procrule raw_thm) of
wenzelm@13486
   661
                    None => (trace_cterm true ("IGNORED result of simproc " ^ quote name ^
wenzelm@13486
   662
                      " -- does not match") t; proc_rews ps)
berghofe@10413
   663
                  | some => some)))
berghofe@10413
   664
          else proc_rews ps;
berghofe@10413
   665
  in case eta_t of
berghofe@10413
   666
       Abs _ $ _ => Some (transitive eta_thm
berghofe@12155
   667
         (beta_conversion false eta_t'), skel0)
berghofe@10413
   668
     | _ => (case rews (sort_rrules (Net.match_term rules eta_t)) of
berghofe@10413
   669
               None => proc_rews (Net.match_term procs eta_t)
berghofe@10413
   670
             | some => some)
berghofe@10413
   671
  end;
berghofe@10413
   672
berghofe@10413
   673
berghofe@10413
   674
(* conversion to apply a congruence rule to a term *)
berghofe@10413
   675
berghofe@10413
   676
fun congc (prover,signt,maxt) {thm=cong,lhs=lhs} t =
berghofe@10413
   677
  let val {sign, ...} = rep_thm cong
berghofe@10413
   678
      val _ = if Sign.subsig (sign, signt) then ()
berghofe@10413
   679
                 else error("Congruence rule from different theory")
berghofe@10413
   680
      val rthm = if maxt = ~1 then cong else Thm.incr_indexes (maxt+1) cong;
berghofe@10413
   681
      val rlhs = fst (Drule.dest_equals (Drule.strip_imp_concl (cprop_of rthm)));
berghofe@10413
   682
      val insts = Thm.cterm_match (rlhs, t)
berghofe@10413
   683
      (* Pattern.match can raise Pattern.MATCH;
berghofe@10413
   684
         is handled when congc is called *)
berghofe@10413
   685
      val thm' = Thm.instantiate insts (Thm.rename_boundvars (term_of rlhs) (term_of t) rthm);
nipkow@13569
   686
      val unit = trace_thm "Applying congruence rule:" thm';
berghofe@10413
   687
      fun err (msg, thm) = (prthm false msg thm; error "Failed congruence proof!")
berghofe@10413
   688
  in case prover thm' of
berghofe@10413
   689
       None => err ("Could not prove", thm')
berghofe@10413
   690
     | Some thm2 => (case check_conv true (beta_eta_conversion t) thm2 of
berghofe@10413
   691
          None => err ("Should not have proved", thm2)
berghofe@12155
   692
        | Some thm2' =>
berghofe@12155
   693
            if op aconv (pairself term_of (dest_equals (cprop_of thm2')))
berghofe@12155
   694
            then None else Some thm2')
berghofe@10413
   695
  end;
berghofe@10413
   696
berghofe@10413
   697
val (cA, (cB, cC)) =
berghofe@10413
   698
  apsnd dest_equals (dest_implies (hd (cprems_of Drule.imp_cong)));
berghofe@10413
   699
berghofe@13607
   700
fun transitive1 None None = None
berghofe@13607
   701
  | transitive1 (Some thm1) None = Some thm1
berghofe@13607
   702
  | transitive1 None (Some thm2) = Some thm2
berghofe@13607
   703
  | transitive1 (Some thm1) (Some thm2) = Some (transitive thm1 thm2)
berghofe@10413
   704
berghofe@13607
   705
fun transitive2 thm = transitive1 (Some thm);
berghofe@13607
   706
fun transitive3 thm = transitive1 thm o Some;
berghofe@13607
   707
berghofe@13607
   708
fun imp_cong' e = combination (combination refl_implies e);
berghofe@12155
   709
berghofe@10413
   710
fun bottomc ((simprem,useprem,mutsimp), prover, sign, maxidx) =
berghofe@10413
   711
  let
berghofe@10413
   712
    fun botc skel mss t =
berghofe@10413
   713
          if is_Var skel then None
berghofe@10413
   714
          else
berghofe@10413
   715
          (case subc skel mss t of
berghofe@10413
   716
             some as Some thm1 =>
berghofe@10413
   717
               (case rewritec (prover, sign, maxidx) mss (rhs_of thm1) of
berghofe@10413
   718
                  Some (thm2, skel2) =>
berghofe@13607
   719
                    transitive2 (transitive thm1 thm2)
berghofe@10413
   720
                      (botc skel2 mss (rhs_of thm2))
berghofe@10413
   721
                | None => some)
berghofe@10413
   722
           | None =>
berghofe@10413
   723
               (case rewritec (prover, sign, maxidx) mss t of
berghofe@13607
   724
                  Some (thm2, skel2) => transitive2 thm2
berghofe@10413
   725
                    (botc skel2 mss (rhs_of thm2))
berghofe@10413
   726
                | None => None))
berghofe@10413
   727
berghofe@10413
   728
    and try_botc mss t =
berghofe@10413
   729
          (case botc skel0 mss t of
berghofe@10413
   730
             Some trec1 => trec1 | None => (reflexive t))
berghofe@10413
   731
berghofe@10413
   732
    and subc skel
nipkow@11504
   733
          (mss as Mss{rules,congs,procs,bounds,prems,mk_rews,termless,depth}) t0 =
berghofe@10413
   734
       (case term_of t0 of
berghofe@10413
   735
           Abs (a, T, t) =>
berghofe@10413
   736
             let val b = variant bounds a
wenzelm@10767
   737
                 val (v, t') = Thm.dest_abs (Some ("." ^ b)) t0
nipkow@11504
   738
                 val mss' = mk_mss (rules, congs, procs, b :: bounds, prems, mk_rews, termless,depth)
berghofe@10413
   739
                 val skel' = case skel of Abs (_, _, sk) => sk | _ => skel0
berghofe@10413
   740
             in case botc skel' mss' t' of
berghofe@10413
   741
                  Some thm => Some (abstract_rule a v thm)
berghofe@10413
   742
                | None => None
berghofe@10413
   743
             end
berghofe@10413
   744
         | t $ _ => (case t of
berghofe@13614
   745
             Const ("==>", _) $ _  => impc t0 mss
berghofe@10413
   746
           | Abs _ =>
berghofe@10413
   747
               let val thm = beta_conversion false t0
berghofe@10413
   748
               in case subc skel0 mss (rhs_of thm) of
berghofe@10413
   749
                    None => Some thm
berghofe@10413
   750
                  | Some thm' => Some (transitive thm thm')
berghofe@10413
   751
               end
berghofe@10413
   752
           | _  =>
berghofe@10413
   753
               let fun appc () =
berghofe@10413
   754
                     let
berghofe@10413
   755
                       val (tskel, uskel) = case skel of
berghofe@10413
   756
                           tskel $ uskel => (tskel, uskel)
berghofe@10413
   757
                         | _ => (skel0, skel0);
wenzelm@10767
   758
                       val (ct, cu) = Thm.dest_comb t0
berghofe@10413
   759
                     in
berghofe@10413
   760
                     (case botc tskel mss ct of
berghofe@10413
   761
                        Some thm1 =>
berghofe@10413
   762
                          (case botc uskel mss cu of
berghofe@10413
   763
                             Some thm2 => Some (combination thm1 thm2)
berghofe@10413
   764
                           | None => Some (combination thm1 (reflexive cu)))
berghofe@10413
   765
                      | None =>
berghofe@10413
   766
                          (case botc uskel mss cu of
berghofe@10413
   767
                             Some thm1 => Some (combination (reflexive ct) thm1)
berghofe@10413
   768
                           | None => None))
berghofe@10413
   769
                     end
berghofe@10413
   770
                   val (h, ts) = strip_comb t
berghofe@10413
   771
               in case h of
berghofe@10413
   772
                    Const(a, _) =>
berghofe@10413
   773
                      (case assoc_string (fst congs, a) of
berghofe@10413
   774
                         None => appc ()
berghofe@10413
   775
                       | Some cong =>
berghofe@10413
   776
(* post processing: some partial applications h t1 ... tj, j <= length ts,
berghofe@10413
   777
   may be a redex. Example: map (%x.x) = (%xs.xs) wrt map_cong *)
berghofe@10413
   778
                          (let
berghofe@10413
   779
                             val thm = congc (prover mss, sign, maxidx) cong t0;
berghofe@12155
   780
                             val t = if_none (apsome rhs_of thm) t0;
wenzelm@10767
   781
                             val (cl, cr) = Thm.dest_comb t
berghofe@10413
   782
                             val dVar = Var(("", 0), dummyT)
berghofe@10413
   783
                             val skel =
berghofe@10413
   784
                               list_comb (h, replicate (length ts) dVar)
berghofe@10413
   785
                           in case botc skel mss cl of
berghofe@12155
   786
                                None => thm
berghofe@13607
   787
                              | Some thm' => transitive3 thm
berghofe@12155
   788
                                  (combination thm' (reflexive cr))
berghofe@10413
   789
                           end handle TERM _ => error "congc result"
berghofe@10413
   790
                                    | Pattern.MATCH => appc ()))
berghofe@10413
   791
                  | _ => appc ()
berghofe@10413
   792
               end)
berghofe@10413
   793
         | _ => None)
berghofe@10413
   794
berghofe@13607
   795
    and impc ct mss =
berghofe@13607
   796
      if mutsimp then mut_impc0 [] ct [] [] mss else nonmut_impc ct mss
berghofe@10413
   797
berghofe@13607
   798
    and rules_of_prem mss prem =
berghofe@13607
   799
      if maxidx_of_term (term_of prem) <> ~1
berghofe@13607
   800
      then (trace_cterm true
berghofe@13607
   801
        "Cannot add premise as rewrite rule because it contains (type) unknowns:" prem; ([], None))
berghofe@13607
   802
      else
berghofe@13607
   803
        let val asm = assume prem
berghofe@13607
   804
        in (extract_safe_rrules (mss, asm), Some asm) end
berghofe@10413
   805
berghofe@13607
   806
    and add_rrules (rrss, asms) mss =
berghofe@13607
   807
      add_prems (foldl (insert_rrule true) (mss, flat rrss), mapfilter I asms)
berghofe@10413
   808
berghofe@13607
   809
    and disch r (prem, eq) =
berghofe@13607
   810
      let
berghofe@13607
   811
        val (lhs, rhs) = dest_eq eq;
berghofe@13607
   812
        val eq' = implies_elim (Thm.instantiate
berghofe@13607
   813
          ([], [(cA, prem), (cB, lhs), (cC, rhs)]) Drule.imp_cong)
berghofe@13607
   814
          (implies_intr prem eq)
berghofe@13607
   815
      in if not r then eq' else
berghofe@10413
   816
        let
berghofe@13607
   817
          val (prem', concl) = dest_implies lhs;
berghofe@13607
   818
          val (prem'', _) = dest_implies rhs
berghofe@13607
   819
        in transitive (transitive
berghofe@13607
   820
          (Thm.instantiate ([], [(cA, prem'), (cB, prem), (cC, concl)])
berghofe@13607
   821
             Drule.swap_prems_eq) eq')
berghofe@13607
   822
          (Thm.instantiate ([], [(cA, prem), (cB, prem''), (cC, concl)])
berghofe@13607
   823
             Drule.swap_prems_eq)
berghofe@10413
   824
        end
berghofe@10413
   825
      end
berghofe@10413
   826
berghofe@13607
   827
    and rebuild [] _ _ _ _ eq = eq
berghofe@13607
   828
      | rebuild (prem :: prems) concl (rrs :: rrss) (asm :: asms) mss eq =
berghofe@13607
   829
          let
berghofe@13607
   830
            val mss' = add_rrules (rev rrss, rev asms) mss;
berghofe@13607
   831
            val concl' =
berghofe@13607
   832
              Drule.mk_implies (prem, if_none (apsome rhs_of eq) concl);
berghofe@13607
   833
            val dprem = apsome (curry (disch false) prem)
berghofe@13607
   834
          in case rewritec (prover, sign, maxidx) mss' concl' of
berghofe@13607
   835
              None => rebuild prems concl' rrss asms mss (dprem eq)
berghofe@13607
   836
            | Some (eq', _) => transitive2 (foldl (disch false o swap)
berghofe@13607
   837
                  (the (transitive3 (dprem eq) eq'), prems))
berghofe@13607
   838
                (mut_impc0 (rev prems) (rhs_of eq') (rev rrss) (rev asms) mss)
berghofe@13607
   839
          end
berghofe@13607
   840
          
berghofe@13607
   841
    and mut_impc0 prems concl rrss asms mss =
berghofe@13607
   842
      let
berghofe@13607
   843
        val prems' = strip_imp_prems concl;
berghofe@13607
   844
        val (rrss', asms') = split_list (map (rules_of_prem mss) prems')
berghofe@13607
   845
      in mut_impc (prems @ prems') (strip_imp_concl concl) (rrss @ rrss')
berghofe@13607
   846
        (asms @ asms') [] [] [] [] mss ~1 ~1
berghofe@13607
   847
      end
berghofe@13607
   848
 
berghofe@13607
   849
    and mut_impc [] concl [] [] prems' rrss' asms' eqns mss changed k =
berghofe@13607
   850
        transitive1 (foldl (fn (eq2, (eq1, prem)) => transitive1 eq1
berghofe@13607
   851
            (apsome (curry (disch false) prem) eq2)) (None, eqns ~~ prems'))
berghofe@13607
   852
          (if changed > 0 then
berghofe@13607
   853
             mut_impc (rev prems') concl (rev rrss') (rev asms')
berghofe@13607
   854
               [] [] [] [] mss ~1 changed
berghofe@13607
   855
           else rebuild prems' concl rrss' asms' mss
berghofe@13607
   856
             (botc skel0 (add_rrules (rev rrss', rev asms') mss) concl))
berghofe@13607
   857
berghofe@13607
   858
      | mut_impc (prem :: prems) concl (rrs :: rrss) (asm :: asms)
berghofe@13607
   859
          prems' rrss' asms' eqns mss changed k =
berghofe@13607
   860
        case (if k = 0 then None else botc skel0 (add_rrules
berghofe@13607
   861
          (rev rrss' @ rrss, rev asms' @ asms) mss) prem) of
berghofe@13607
   862
            None => mut_impc prems concl rrss asms (prem :: prems')
berghofe@13607
   863
              (rrs :: rrss') (asm :: asms') (None :: eqns) mss changed
berghofe@13607
   864
              (if k = 0 then 0 else k - 1)
berghofe@13607
   865
          | Some eqn =>
berghofe@13607
   866
            let
berghofe@13607
   867
              val prem' = rhs_of eqn;
berghofe@13607
   868
              val tprems = map term_of prems;
berghofe@13607
   869
              val i = 1 + foldl Int.max (~1, map (fn p =>
berghofe@13607
   870
                find_index_eq p tprems) (#hyps (rep_thm eqn)));
berghofe@13607
   871
              val (rrs', asm') = rules_of_prem mss prem'
berghofe@13607
   872
            in mut_impc prems concl rrss asms (prem' :: prems')
berghofe@13607
   873
              (rrs' :: rrss') (asm' :: asms') (Some (foldr (disch true)
berghofe@13607
   874
                (take (i, prems), imp_cong' eqn (reflexive (Drule.list_implies
berghofe@13607
   875
                  (drop (i, prems), concl))))) :: eqns) mss (length prems') ~1
berghofe@13607
   876
            end
berghofe@13607
   877
berghofe@10413
   878
     (* legacy code - only for backwards compatibility *)
berghofe@13607
   879
     and nonmut_impc ct mss =
berghofe@13607
   880
       let val (prem, conc) = dest_implies ct;
berghofe@13607
   881
           val thm1 = if simprem then botc skel0 mss prem else None;
berghofe@10413
   882
           val prem1 = if_none (apsome rhs_of thm1) prem;
berghofe@13607
   883
           val mss1 = if not useprem then mss else add_rrules
berghofe@13607
   884
             (apsnd single (apfst single (rules_of_prem mss prem1))) mss
berghofe@10413
   885
       in (case botc skel0 mss1 conc of
berghofe@10413
   886
           None => (case thm1 of
berghofe@10413
   887
               None => None
berghofe@13607
   888
             | Some thm1' => Some (imp_cong' thm1' (reflexive conc)))
berghofe@10413
   889
         | Some thm2 =>
berghofe@13607
   890
           let val thm2' = disch false (prem1, thm2)
berghofe@10413
   891
           in (case thm1 of
berghofe@10413
   892
               None => Some thm2'
berghofe@13607
   893
             | Some thm1' =>
berghofe@13607
   894
                 Some (transitive (imp_cong' thm1' (reflexive conc)) thm2'))
berghofe@10413
   895
           end)
berghofe@10413
   896
       end
berghofe@10413
   897
berghofe@10413
   898
 in try_botc end;
berghofe@10413
   899
berghofe@10413
   900
berghofe@10413
   901
(*** Meta-rewriting: rewrites t to u and returns the theorem t==u ***)
berghofe@10413
   902
berghofe@10413
   903
(*
berghofe@10413
   904
  Parameters:
berghofe@10413
   905
    mode = (simplify A,
berghofe@10413
   906
            use A in simplifying B,
berghofe@10413
   907
            use prems of B (if B is again a meta-impl.) to simplify A)
berghofe@10413
   908
           when simplifying A ==> B
berghofe@10413
   909
    mss: contains equality theorems of the form [|p1,...|] ==> t==u
berghofe@10413
   910
    prover: how to solve premises in conditional rewrites and congruences
berghofe@10413
   911
*)
berghofe@10413
   912
berghofe@10413
   913
fun rewrite_cterm mode prover mss ct =
berghofe@10413
   914
  let val {sign, t, maxidx, ...} = rep_cterm ct
nipkow@11505
   915
      val Mss{depth, ...} = mss
nipkow@11505
   916
  in simp_depth := depth;
nipkow@11505
   917
     bottomc (mode, prover, sign, maxidx) mss ct
nipkow@11505
   918
  end
berghofe@10413
   919
  handle THM (s, _, thms) =>
berghofe@10413
   920
    error ("Exception THM was raised in simplifier:\n" ^ s ^ "\n" ^
wenzelm@11886
   921
      Pretty.string_of (Display.pretty_thms thms));
berghofe@10413
   922
berghofe@10413
   923
(*In [A1,...,An]==>B, rewrite the selected A's only -- for rewrite_goals_tac*)
berghofe@10413
   924
fun goals_conv pred cv =
berghofe@10413
   925
  let fun gconv i ct =
berghofe@10413
   926
        let val (A,B) = Drule.dest_implies ct
berghofe@13661
   927
        in imp_cong' (if pred i then cv A else reflexive A) (gconv (i+1) B) end
berghofe@10413
   928
        handle TERM _ => reflexive ct
berghofe@10413
   929
  in gconv 1 end;
berghofe@10413
   930
berghofe@11737
   931
(* Rewrite A in !!x1,...,xn. A *)
berghofe@11736
   932
fun forall_conv cv ct =
berghofe@11736
   933
  let val p as (ct1, ct2) = Thm.dest_comb ct
berghofe@11736
   934
  in (case pairself term_of p of
berghofe@11736
   935
      (Const ("all", _), Abs (s, _, _)) =>
berghofe@11736
   936
         let val (v, ct') = Thm.dest_abs (Some "@") ct2;
berghofe@11736
   937
         in Thm.combination (Thm.reflexive ct1)
berghofe@11736
   938
           (Thm.abstract_rule s v (forall_conv cv ct'))
berghofe@11736
   939
         end
berghofe@11736
   940
    | _ => cv ct)
berghofe@11736
   941
  end handle TERM _ => cv ct;
berghofe@11736
   942
berghofe@10413
   943
(*Use a conversion to transform a theorem*)
berghofe@10413
   944
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
berghofe@10413
   945
wenzelm@11760
   946
(*Rewrite a cterm*)
wenzelm@11767
   947
fun rewrite_aux _ _ [] = (fn ct => Thm.reflexive ct)
wenzelm@11767
   948
  | rewrite_aux prover full thms = rewrite_cterm (full, false, false) prover (mss_of thms);
wenzelm@11672
   949
berghofe@10413
   950
(*Rewrite a theorem*)
wenzelm@11767
   951
fun simplify_aux _ _ [] = (fn th => th)
wenzelm@11767
   952
  | simplify_aux prover full thms =
wenzelm@11767
   953
      fconv_rule (rewrite_cterm (full, false, false) prover (mss_of thms));
berghofe@10413
   954
berghofe@10413
   955
fun rewrite_thm mode prover mss = fconv_rule (rewrite_cterm mode prover mss);
berghofe@10413
   956
berghofe@10413
   957
(*Rewrite the subgoals of a proof state (represented by a theorem) *)
berghofe@10413
   958
fun rewrite_goals_rule_aux _ []   th = th
berghofe@10413
   959
  | rewrite_goals_rule_aux prover thms th =
berghofe@10413
   960
      fconv_rule (goals_conv (K true) (rewrite_cterm (true, true, false) prover
berghofe@10413
   961
        (mss_of thms))) th;
berghofe@10413
   962
berghofe@10413
   963
(*Rewrite the subgoal of a proof state (represented by a theorem) *)
berghofe@10413
   964
fun rewrite_goal_rule mode prover mss i thm =
berghofe@10413
   965
  if 0 < i  andalso  i <= nprems_of thm
berghofe@10413
   966
  then fconv_rule (goals_conv (fn j => j=i) (rewrite_cterm mode prover mss)) thm
berghofe@10413
   967
  else raise THM("rewrite_goal_rule",i,[thm]);
berghofe@10413
   968
wenzelm@12783
   969
wenzelm@12783
   970
(*simple term rewriting -- without proofs*)
berghofe@13196
   971
fun rewrite_term sg rules procs =
berghofe@13196
   972
  Pattern.rewrite_term (Sign.tsig_of sg) (map decomp_simp' rules) procs;
wenzelm@12783
   973
berghofe@10413
   974
end;
berghofe@10413
   975
wenzelm@11672
   976
structure BasicMetaSimplifier: BASIC_META_SIMPLIFIER = MetaSimplifier;
wenzelm@11672
   977
open BasicMetaSimplifier;