src/HOL/NSA/HTranscendental.thy
author huffman
Wed Mar 04 17:12:23 2009 -0800 (2009-03-04)
changeset 30273 ecd6f0ca62ea
parent 27468 0783dd1dc13d
child 31271 0237e5e40b71
permissions -rw-r--r--
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman@27468
     1
(*  Title       : HTranscendental.thy
huffman@27468
     2
    Author      : Jacques D. Fleuriot
huffman@27468
     3
    Copyright   : 2001 University of Edinburgh
huffman@27468
     4
huffman@27468
     5
Converted to Isar and polished by lcp
huffman@27468
     6
*)
huffman@27468
     7
huffman@27468
     8
header{*Nonstandard Extensions of Transcendental Functions*}
huffman@27468
     9
huffman@27468
    10
theory HTranscendental
huffman@27468
    11
imports Transcendental HSeries HDeriv
huffman@27468
    12
begin
huffman@27468
    13
huffman@27468
    14
definition
huffman@27468
    15
  exphr :: "real => hypreal" where
huffman@27468
    16
    --{*define exponential function using standard part *}
huffman@27468
    17
  "exphr x =  st(sumhr (0, whn, %n. inverse(real (fact n)) * (x ^ n)))"
huffman@27468
    18
huffman@27468
    19
definition
huffman@27468
    20
  sinhr :: "real => hypreal" where
huffman@27468
    21
  "sinhr x = st(sumhr (0, whn, %n. (if even(n) then 0 else
huffman@27468
    22
             ((-1) ^ ((n - 1) div 2))/(real (fact n))) * (x ^ n)))"
huffman@27468
    23
  
huffman@27468
    24
definition
huffman@27468
    25
  coshr :: "real => hypreal" where
huffman@27468
    26
  "coshr x = st(sumhr (0, whn, %n. (if even(n) then
huffman@27468
    27
            ((-1) ^ (n div 2))/(real (fact n)) else 0) * x ^ n))"
huffman@27468
    28
huffman@27468
    29
huffman@27468
    30
subsection{*Nonstandard Extension of Square Root Function*}
huffman@27468
    31
huffman@27468
    32
lemma STAR_sqrt_zero [simp]: "( *f* sqrt) 0 = 0"
huffman@27468
    33
by (simp add: starfun star_n_zero_num)
huffman@27468
    34
huffman@27468
    35
lemma STAR_sqrt_one [simp]: "( *f* sqrt) 1 = 1"
huffman@27468
    36
by (simp add: starfun star_n_one_num)
huffman@27468
    37
huffman@27468
    38
lemma hypreal_sqrt_pow2_iff: "(( *f* sqrt)(x) ^ 2 = x) = (0 \<le> x)"
huffman@27468
    39
apply (cases x)
huffman@27468
    40
apply (auto simp add: star_n_le star_n_zero_num starfun hrealpow star_n_eq_iff
huffman@30273
    41
            simp del: hpowr_Suc power_Suc)
huffman@27468
    42
done
huffman@27468
    43
huffman@27468
    44
lemma hypreal_sqrt_gt_zero_pow2: "!!x. 0 < x ==> ( *f* sqrt) (x) ^ 2 = x"
huffman@27468
    45
by (transfer, simp)
huffman@27468
    46
huffman@27468
    47
lemma hypreal_sqrt_pow2_gt_zero: "0 < x ==> 0 < ( *f* sqrt) (x) ^ 2"
huffman@27468
    48
by (frule hypreal_sqrt_gt_zero_pow2, auto)
huffman@27468
    49
huffman@27468
    50
lemma hypreal_sqrt_not_zero: "0 < x ==> ( *f* sqrt) (x) \<noteq> 0"
huffman@27468
    51
apply (frule hypreal_sqrt_pow2_gt_zero)
huffman@27468
    52
apply (auto simp add: numeral_2_eq_2)
huffman@27468
    53
done
huffman@27468
    54
huffman@27468
    55
lemma hypreal_inverse_sqrt_pow2:
huffman@27468
    56
     "0 < x ==> inverse (( *f* sqrt)(x)) ^ 2 = inverse x"
huffman@27468
    57
apply (cut_tac n = 2 and a = "( *f* sqrt) x" in power_inverse [symmetric])
huffman@27468
    58
apply (auto dest: hypreal_sqrt_gt_zero_pow2)
huffman@27468
    59
done
huffman@27468
    60
huffman@27468
    61
lemma hypreal_sqrt_mult_distrib: 
huffman@27468
    62
    "!!x y. [|0 < x; 0 <y |] ==>
huffman@27468
    63
      ( *f* sqrt)(x*y) = ( *f* sqrt)(x) * ( *f* sqrt)(y)"
huffman@27468
    64
apply transfer
huffman@27468
    65
apply (auto intro: real_sqrt_mult_distrib) 
huffman@27468
    66
done
huffman@27468
    67
huffman@27468
    68
lemma hypreal_sqrt_mult_distrib2:
huffman@27468
    69
     "[|0\<le>x; 0\<le>y |] ==>  
huffman@27468
    70
     ( *f* sqrt)(x*y) =  ( *f* sqrt)(x) * ( *f* sqrt)(y)"
huffman@27468
    71
by (auto intro: hypreal_sqrt_mult_distrib simp add: order_le_less)
huffman@27468
    72
huffman@27468
    73
lemma hypreal_sqrt_approx_zero [simp]:
huffman@27468
    74
     "0 < x ==> (( *f* sqrt)(x) @= 0) = (x @= 0)"
huffman@27468
    75
apply (auto simp add: mem_infmal_iff [symmetric])
huffman@27468
    76
apply (rule hypreal_sqrt_gt_zero_pow2 [THEN subst])
huffman@27468
    77
apply (auto intro: Infinitesimal_mult 
huffman@27468
    78
            dest!: hypreal_sqrt_gt_zero_pow2 [THEN ssubst] 
huffman@27468
    79
            simp add: numeral_2_eq_2)
huffman@27468
    80
done
huffman@27468
    81
huffman@27468
    82
lemma hypreal_sqrt_approx_zero2 [simp]:
huffman@27468
    83
     "0 \<le> x ==> (( *f* sqrt)(x) @= 0) = (x @= 0)"
huffman@27468
    84
by (auto simp add: order_le_less)
huffman@27468
    85
huffman@27468
    86
lemma hypreal_sqrt_sum_squares [simp]:
huffman@27468
    87
     "(( *f* sqrt)(x*x + y*y + z*z) @= 0) = (x*x + y*y + z*z @= 0)"
huffman@27468
    88
apply (rule hypreal_sqrt_approx_zero2)
huffman@27468
    89
apply (rule add_nonneg_nonneg)+
huffman@27468
    90
apply (auto)
huffman@27468
    91
done
huffman@27468
    92
huffman@27468
    93
lemma hypreal_sqrt_sum_squares2 [simp]:
huffman@27468
    94
     "(( *f* sqrt)(x*x + y*y) @= 0) = (x*x + y*y @= 0)"
huffman@27468
    95
apply (rule hypreal_sqrt_approx_zero2)
huffman@27468
    96
apply (rule add_nonneg_nonneg)
huffman@27468
    97
apply (auto)
huffman@27468
    98
done
huffman@27468
    99
huffman@27468
   100
lemma hypreal_sqrt_gt_zero: "!!x. 0 < x ==> 0 < ( *f* sqrt)(x)"
huffman@27468
   101
apply transfer
huffman@27468
   102
apply (auto intro: real_sqrt_gt_zero)
huffman@27468
   103
done
huffman@27468
   104
huffman@27468
   105
lemma hypreal_sqrt_ge_zero: "0 \<le> x ==> 0 \<le> ( *f* sqrt)(x)"
huffman@27468
   106
by (auto intro: hypreal_sqrt_gt_zero simp add: order_le_less)
huffman@27468
   107
huffman@27468
   108
lemma hypreal_sqrt_hrabs [simp]: "!!x. ( *f* sqrt)(x ^ 2) = abs(x)"
huffman@27468
   109
by (transfer, simp)
huffman@27468
   110
huffman@27468
   111
lemma hypreal_sqrt_hrabs2 [simp]: "!!x. ( *f* sqrt)(x*x) = abs(x)"
huffman@27468
   112
by (transfer, simp)
huffman@27468
   113
huffman@27468
   114
lemma hypreal_sqrt_hyperpow_hrabs [simp]:
huffman@27468
   115
     "!!x. ( *f* sqrt)(x pow (hypnat_of_nat 2)) = abs(x)"
huffman@27468
   116
by (transfer, simp)
huffman@27468
   117
huffman@27468
   118
lemma star_sqrt_HFinite: "\<lbrakk>x \<in> HFinite; 0 \<le> x\<rbrakk> \<Longrightarrow> ( *f* sqrt) x \<in> HFinite"
huffman@27468
   119
apply (rule HFinite_square_iff [THEN iffD1])
huffman@27468
   120
apply (simp only: hypreal_sqrt_mult_distrib2 [symmetric], simp) 
huffman@27468
   121
done
huffman@27468
   122
huffman@27468
   123
lemma st_hypreal_sqrt:
huffman@27468
   124
     "[| x \<in> HFinite; 0 \<le> x |] ==> st(( *f* sqrt) x) = ( *f* sqrt)(st x)"
huffman@27468
   125
apply (rule power_inject_base [where n=1])
huffman@27468
   126
apply (auto intro!: st_zero_le hypreal_sqrt_ge_zero)
huffman@27468
   127
apply (rule st_mult [THEN subst])
huffman@27468
   128
apply (rule_tac [3] hypreal_sqrt_mult_distrib2 [THEN subst])
huffman@27468
   129
apply (rule_tac [5] hypreal_sqrt_mult_distrib2 [THEN subst])
huffman@27468
   130
apply (auto simp add: st_hrabs st_zero_le star_sqrt_HFinite)
huffman@27468
   131
done
huffman@27468
   132
huffman@27468
   133
lemma hypreal_sqrt_sum_squares_ge1 [simp]: "!!x y. x \<le> ( *f* sqrt)(x ^ 2 + y ^ 2)"
huffman@27468
   134
by transfer (rule real_sqrt_sum_squares_ge1)
huffman@27468
   135
huffman@27468
   136
lemma HFinite_hypreal_sqrt:
huffman@27468
   137
     "[| 0 \<le> x; x \<in> HFinite |] ==> ( *f* sqrt) x \<in> HFinite"
huffman@27468
   138
apply (auto simp add: order_le_less)
huffman@27468
   139
apply (rule HFinite_square_iff [THEN iffD1])
huffman@27468
   140
apply (drule hypreal_sqrt_gt_zero_pow2)
huffman@27468
   141
apply (simp add: numeral_2_eq_2)
huffman@27468
   142
done
huffman@27468
   143
huffman@27468
   144
lemma HFinite_hypreal_sqrt_imp_HFinite:
huffman@27468
   145
     "[| 0 \<le> x; ( *f* sqrt) x \<in> HFinite |] ==> x \<in> HFinite"
huffman@27468
   146
apply (auto simp add: order_le_less)
huffman@27468
   147
apply (drule HFinite_square_iff [THEN iffD2])
huffman@27468
   148
apply (drule hypreal_sqrt_gt_zero_pow2)
huffman@27468
   149
apply (simp add: numeral_2_eq_2 del: HFinite_square_iff)
huffman@27468
   150
done
huffman@27468
   151
huffman@27468
   152
lemma HFinite_hypreal_sqrt_iff [simp]:
huffman@27468
   153
     "0 \<le> x ==> (( *f* sqrt) x \<in> HFinite) = (x \<in> HFinite)"
huffman@27468
   154
by (blast intro: HFinite_hypreal_sqrt HFinite_hypreal_sqrt_imp_HFinite)
huffman@27468
   155
huffman@27468
   156
lemma HFinite_sqrt_sum_squares [simp]:
huffman@27468
   157
     "(( *f* sqrt)(x*x + y*y) \<in> HFinite) = (x*x + y*y \<in> HFinite)"
huffman@27468
   158
apply (rule HFinite_hypreal_sqrt_iff)
huffman@27468
   159
apply (rule add_nonneg_nonneg)
huffman@27468
   160
apply (auto)
huffman@27468
   161
done
huffman@27468
   162
huffman@27468
   163
lemma Infinitesimal_hypreal_sqrt:
huffman@27468
   164
     "[| 0 \<le> x; x \<in> Infinitesimal |] ==> ( *f* sqrt) x \<in> Infinitesimal"
huffman@27468
   165
apply (auto simp add: order_le_less)
huffman@27468
   166
apply (rule Infinitesimal_square_iff [THEN iffD2])
huffman@27468
   167
apply (drule hypreal_sqrt_gt_zero_pow2)
huffman@27468
   168
apply (simp add: numeral_2_eq_2)
huffman@27468
   169
done
huffman@27468
   170
huffman@27468
   171
lemma Infinitesimal_hypreal_sqrt_imp_Infinitesimal:
huffman@27468
   172
     "[| 0 \<le> x; ( *f* sqrt) x \<in> Infinitesimal |] ==> x \<in> Infinitesimal"
huffman@27468
   173
apply (auto simp add: order_le_less)
huffman@27468
   174
apply (drule Infinitesimal_square_iff [THEN iffD1])
huffman@27468
   175
apply (drule hypreal_sqrt_gt_zero_pow2)
huffman@27468
   176
apply (simp add: numeral_2_eq_2 del: Infinitesimal_square_iff [symmetric])
huffman@27468
   177
done
huffman@27468
   178
huffman@27468
   179
lemma Infinitesimal_hypreal_sqrt_iff [simp]:
huffman@27468
   180
     "0 \<le> x ==> (( *f* sqrt) x \<in> Infinitesimal) = (x \<in> Infinitesimal)"
huffman@27468
   181
by (blast intro: Infinitesimal_hypreal_sqrt_imp_Infinitesimal Infinitesimal_hypreal_sqrt)
huffman@27468
   182
huffman@27468
   183
lemma Infinitesimal_sqrt_sum_squares [simp]:
huffman@27468
   184
     "(( *f* sqrt)(x*x + y*y) \<in> Infinitesimal) = (x*x + y*y \<in> Infinitesimal)"
huffman@27468
   185
apply (rule Infinitesimal_hypreal_sqrt_iff)
huffman@27468
   186
apply (rule add_nonneg_nonneg)
huffman@27468
   187
apply (auto)
huffman@27468
   188
done
huffman@27468
   189
huffman@27468
   190
lemma HInfinite_hypreal_sqrt:
huffman@27468
   191
     "[| 0 \<le> x; x \<in> HInfinite |] ==> ( *f* sqrt) x \<in> HInfinite"
huffman@27468
   192
apply (auto simp add: order_le_less)
huffman@27468
   193
apply (rule HInfinite_square_iff [THEN iffD1])
huffman@27468
   194
apply (drule hypreal_sqrt_gt_zero_pow2)
huffman@27468
   195
apply (simp add: numeral_2_eq_2)
huffman@27468
   196
done
huffman@27468
   197
huffman@27468
   198
lemma HInfinite_hypreal_sqrt_imp_HInfinite:
huffman@27468
   199
     "[| 0 \<le> x; ( *f* sqrt) x \<in> HInfinite |] ==> x \<in> HInfinite"
huffman@27468
   200
apply (auto simp add: order_le_less)
huffman@27468
   201
apply (drule HInfinite_square_iff [THEN iffD2])
huffman@27468
   202
apply (drule hypreal_sqrt_gt_zero_pow2)
huffman@27468
   203
apply (simp add: numeral_2_eq_2 del: HInfinite_square_iff)
huffman@27468
   204
done
huffman@27468
   205
huffman@27468
   206
lemma HInfinite_hypreal_sqrt_iff [simp]:
huffman@27468
   207
     "0 \<le> x ==> (( *f* sqrt) x \<in> HInfinite) = (x \<in> HInfinite)"
huffman@27468
   208
by (blast intro: HInfinite_hypreal_sqrt HInfinite_hypreal_sqrt_imp_HInfinite)
huffman@27468
   209
huffman@27468
   210
lemma HInfinite_sqrt_sum_squares [simp]:
huffman@27468
   211
     "(( *f* sqrt)(x*x + y*y) \<in> HInfinite) = (x*x + y*y \<in> HInfinite)"
huffman@27468
   212
apply (rule HInfinite_hypreal_sqrt_iff)
huffman@27468
   213
apply (rule add_nonneg_nonneg)
huffman@27468
   214
apply (auto)
huffman@27468
   215
done
huffman@27468
   216
huffman@27468
   217
lemma HFinite_exp [simp]:
huffman@27468
   218
     "sumhr (0, whn, %n. inverse (real (fact n)) * x ^ n) \<in> HFinite"
huffman@27468
   219
unfolding sumhr_app
huffman@27468
   220
apply (simp only: star_zero_def starfun2_star_of)
huffman@27468
   221
apply (rule NSBseqD2)
huffman@27468
   222
apply (rule NSconvergent_NSBseq)
huffman@27468
   223
apply (rule convergent_NSconvergent_iff [THEN iffD1])
huffman@27468
   224
apply (rule summable_convergent_sumr_iff [THEN iffD1])
huffman@27468
   225
apply (rule summable_exp)
huffman@27468
   226
done
huffman@27468
   227
huffman@27468
   228
lemma exphr_zero [simp]: "exphr 0 = 1"
huffman@27468
   229
apply (simp add: exphr_def sumhr_split_add
huffman@27468
   230
                   [OF hypnat_one_less_hypnat_omega, symmetric])
huffman@27468
   231
apply (rule st_unique, simp)
huffman@27468
   232
apply (rule subst [where P="\<lambda>x. 1 \<approx> x", OF _ approx_refl])
huffman@27468
   233
apply (rule rev_mp [OF hypnat_one_less_hypnat_omega])
huffman@27468
   234
apply (rule_tac x="whn" in spec)
huffman@27468
   235
apply (unfold sumhr_app, transfer, simp)
huffman@27468
   236
done
huffman@27468
   237
huffman@27468
   238
lemma coshr_zero [simp]: "coshr 0 = 1"
huffman@27468
   239
apply (simp add: coshr_def sumhr_split_add
huffman@27468
   240
                   [OF hypnat_one_less_hypnat_omega, symmetric]) 
huffman@27468
   241
apply (rule st_unique, simp)
huffman@27468
   242
apply (rule subst [where P="\<lambda>x. 1 \<approx> x", OF _ approx_refl])
huffman@27468
   243
apply (rule rev_mp [OF hypnat_one_less_hypnat_omega])
huffman@27468
   244
apply (rule_tac x="whn" in spec)
huffman@27468
   245
apply (unfold sumhr_app, transfer, simp)
huffman@27468
   246
done
huffman@27468
   247
huffman@27468
   248
lemma STAR_exp_zero_approx_one [simp]: "( *f* exp) (0::hypreal) @= 1"
huffman@27468
   249
apply (subgoal_tac "( *f* exp) (0::hypreal) = 1", simp)
huffman@27468
   250
apply (transfer, simp)
huffman@27468
   251
done
huffman@27468
   252
huffman@27468
   253
lemma STAR_exp_Infinitesimal: "x \<in> Infinitesimal ==> ( *f* exp) (x::hypreal) @= 1"
huffman@27468
   254
apply (case_tac "x = 0")
huffman@27468
   255
apply (cut_tac [2] x = 0 in DERIV_exp)
huffman@27468
   256
apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)
huffman@27468
   257
apply (drule_tac x = x in bspec, auto)
huffman@27468
   258
apply (drule_tac c = x in approx_mult1)
huffman@27468
   259
apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD] 
huffman@27468
   260
            simp add: mult_assoc)
huffman@27468
   261
apply (rule approx_add_right_cancel [where d="-1"])
huffman@27468
   262
apply (rule approx_sym [THEN [2] approx_trans2])
huffman@27468
   263
apply (auto simp add: diff_def mem_infmal_iff)
huffman@27468
   264
done
huffman@27468
   265
huffman@27468
   266
lemma STAR_exp_epsilon [simp]: "( *f* exp) epsilon @= 1"
huffman@27468
   267
by (auto intro: STAR_exp_Infinitesimal)
huffman@27468
   268
huffman@27468
   269
lemma STAR_exp_add: "!!x y. ( *f* exp)(x + y) = ( *f* exp) x * ( *f* exp) y"
huffman@27468
   270
by transfer (rule exp_add)
huffman@27468
   271
huffman@27468
   272
lemma exphr_hypreal_of_real_exp_eq: "exphr x = hypreal_of_real (exp x)"
huffman@27468
   273
apply (simp add: exphr_def)
huffman@27468
   274
apply (rule st_unique, simp)
huffman@27468
   275
apply (subst starfunNat_sumr [symmetric])
huffman@27468
   276
apply (rule NSLIMSEQ_D [THEN approx_sym])
huffman@27468
   277
apply (rule LIMSEQ_NSLIMSEQ)
huffman@27468
   278
apply (subst sums_def [symmetric])
huffman@27468
   279
apply (cut_tac exp_converges [where x=x], simp)
huffman@27468
   280
apply (rule HNatInfinite_whn)
huffman@27468
   281
done
huffman@27468
   282
huffman@27468
   283
lemma starfun_exp_ge_add_one_self [simp]: "!!x::hypreal. 0 \<le> x ==> (1 + x) \<le> ( *f* exp) x"
huffman@27468
   284
by transfer (rule exp_ge_add_one_self_aux)
huffman@27468
   285
huffman@27468
   286
(* exp (oo) is infinite *)
huffman@27468
   287
lemma starfun_exp_HInfinite:
huffman@27468
   288
     "[| x \<in> HInfinite; 0 \<le> x |] ==> ( *f* exp) (x::hypreal) \<in> HInfinite"
huffman@27468
   289
apply (frule starfun_exp_ge_add_one_self)
huffman@27468
   290
apply (rule HInfinite_ge_HInfinite, assumption)
huffman@27468
   291
apply (rule order_trans [of _ "1+x"], auto) 
huffman@27468
   292
done
huffman@27468
   293
huffman@27468
   294
lemma starfun_exp_minus: "!!x. ( *f* exp) (-x) = inverse(( *f* exp) x)"
huffman@27468
   295
by transfer (rule exp_minus)
huffman@27468
   296
huffman@27468
   297
(* exp (-oo) is infinitesimal *)
huffman@27468
   298
lemma starfun_exp_Infinitesimal:
huffman@27468
   299
     "[| x \<in> HInfinite; x \<le> 0 |] ==> ( *f* exp) (x::hypreal) \<in> Infinitesimal"
huffman@27468
   300
apply (subgoal_tac "\<exists>y. x = - y")
huffman@27468
   301
apply (rule_tac [2] x = "- x" in exI)
huffman@27468
   302
apply (auto intro!: HInfinite_inverse_Infinitesimal starfun_exp_HInfinite
huffman@27468
   303
            simp add: starfun_exp_minus HInfinite_minus_iff)
huffman@27468
   304
done
huffman@27468
   305
huffman@27468
   306
lemma starfun_exp_gt_one [simp]: "!!x::hypreal. 0 < x ==> 1 < ( *f* exp) x"
huffman@27468
   307
by transfer (rule exp_gt_one)
huffman@27468
   308
huffman@27468
   309
lemma starfun_ln_exp [simp]: "!!x. ( *f* ln) (( *f* exp) x) = x"
huffman@27468
   310
by transfer (rule ln_exp)
huffman@27468
   311
huffman@27468
   312
lemma starfun_exp_ln_iff [simp]: "!!x. (( *f* exp)(( *f* ln) x) = x) = (0 < x)"
huffman@27468
   313
by transfer (rule exp_ln_iff)
huffman@27468
   314
huffman@27468
   315
lemma starfun_exp_ln_eq: "!!u x. ( *f* exp) u = x ==> ( *f* ln) x = u"
huffman@27468
   316
by transfer (rule exp_ln_eq)
huffman@27468
   317
huffman@27468
   318
lemma starfun_ln_less_self [simp]: "!!x. 0 < x ==> ( *f* ln) x < x"
huffman@27468
   319
by transfer (rule ln_less_self)
huffman@27468
   320
huffman@27468
   321
lemma starfun_ln_ge_zero [simp]: "!!x. 1 \<le> x ==> 0 \<le> ( *f* ln) x"
huffman@27468
   322
by transfer (rule ln_ge_zero)
huffman@27468
   323
huffman@27468
   324
lemma starfun_ln_gt_zero [simp]: "!!x .1 < x ==> 0 < ( *f* ln) x"
huffman@27468
   325
by transfer (rule ln_gt_zero)
huffman@27468
   326
huffman@27468
   327
lemma starfun_ln_not_eq_zero [simp]: "!!x. [| 0 < x; x \<noteq> 1 |] ==> ( *f* ln) x \<noteq> 0"
huffman@27468
   328
by transfer simp
huffman@27468
   329
huffman@27468
   330
lemma starfun_ln_HFinite: "[| x \<in> HFinite; 1 \<le> x |] ==> ( *f* ln) x \<in> HFinite"
huffman@27468
   331
apply (rule HFinite_bounded)
huffman@27468
   332
apply assumption 
huffman@27468
   333
apply (simp_all add: starfun_ln_less_self order_less_imp_le)
huffman@27468
   334
done
huffman@27468
   335
huffman@27468
   336
lemma starfun_ln_inverse: "!!x. 0 < x ==> ( *f* ln) (inverse x) = -( *f* ln) x"
huffman@27468
   337
by transfer (rule ln_inverse)
huffman@27468
   338
huffman@27468
   339
lemma starfun_abs_exp_cancel: "\<And>x. \<bar>( *f* exp) (x::hypreal)\<bar> = ( *f* exp) x"
huffman@27468
   340
by transfer (rule abs_exp_cancel)
huffman@27468
   341
huffman@27468
   342
lemma starfun_exp_less_mono: "\<And>x y::hypreal. x < y \<Longrightarrow> ( *f* exp) x < ( *f* exp) y"
huffman@27468
   343
by transfer (rule exp_less_mono)
huffman@27468
   344
huffman@27468
   345
lemma starfun_exp_HFinite: "x \<in> HFinite ==> ( *f* exp) (x::hypreal) \<in> HFinite"
huffman@27468
   346
apply (auto simp add: HFinite_def, rename_tac u)
huffman@27468
   347
apply (rule_tac x="( *f* exp) u" in rev_bexI)
huffman@27468
   348
apply (simp add: Reals_eq_Standard)
huffman@27468
   349
apply (simp add: starfun_abs_exp_cancel)
huffman@27468
   350
apply (simp add: starfun_exp_less_mono)
huffman@27468
   351
done
huffman@27468
   352
huffman@27468
   353
lemma starfun_exp_add_HFinite_Infinitesimal_approx:
huffman@27468
   354
     "[|x \<in> Infinitesimal; z \<in> HFinite |] ==> ( *f* exp) (z + x::hypreal) @= ( *f* exp) z"
huffman@27468
   355
apply (simp add: STAR_exp_add)
huffman@27468
   356
apply (frule STAR_exp_Infinitesimal)
huffman@27468
   357
apply (drule approx_mult2)
huffman@27468
   358
apply (auto intro: starfun_exp_HFinite)
huffman@27468
   359
done
huffman@27468
   360
huffman@27468
   361
(* using previous result to get to result *)
huffman@27468
   362
lemma starfun_ln_HInfinite:
huffman@27468
   363
     "[| x \<in> HInfinite; 0 < x |] ==> ( *f* ln) x \<in> HInfinite"
huffman@27468
   364
apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2])
huffman@27468
   365
apply (drule starfun_exp_HFinite)
huffman@27468
   366
apply (simp add: starfun_exp_ln_iff [THEN iffD2] HFinite_HInfinite_iff)
huffman@27468
   367
done
huffman@27468
   368
huffman@27468
   369
lemma starfun_exp_HInfinite_Infinitesimal_disj:
huffman@27468
   370
 "x \<in> HInfinite ==> ( *f* exp) x \<in> HInfinite | ( *f* exp) (x::hypreal) \<in> Infinitesimal"
huffman@27468
   371
apply (insert linorder_linear [of x 0]) 
huffman@27468
   372
apply (auto intro: starfun_exp_HInfinite starfun_exp_Infinitesimal)
huffman@27468
   373
done
huffman@27468
   374
huffman@27468
   375
(* check out this proof!!! *)
huffman@27468
   376
lemma starfun_ln_HFinite_not_Infinitesimal:
huffman@27468
   377
     "[| x \<in> HFinite - Infinitesimal; 0 < x |] ==> ( *f* ln) x \<in> HFinite"
huffman@27468
   378
apply (rule ccontr, drule HInfinite_HFinite_iff [THEN iffD2])
huffman@27468
   379
apply (drule starfun_exp_HInfinite_Infinitesimal_disj)
huffman@27468
   380
apply (simp add: starfun_exp_ln_iff [symmetric] HInfinite_HFinite_iff
huffman@27468
   381
            del: starfun_exp_ln_iff)
huffman@27468
   382
done
huffman@27468
   383
huffman@27468
   384
(* we do proof by considering ln of 1/x *)
huffman@27468
   385
lemma starfun_ln_Infinitesimal_HInfinite:
huffman@27468
   386
     "[| x \<in> Infinitesimal; 0 < x |] ==> ( *f* ln) x \<in> HInfinite"
huffman@27468
   387
apply (drule Infinitesimal_inverse_HInfinite)
huffman@27468
   388
apply (frule positive_imp_inverse_positive)
huffman@27468
   389
apply (drule_tac [2] starfun_ln_HInfinite)
huffman@27468
   390
apply (auto simp add: starfun_ln_inverse HInfinite_minus_iff)
huffman@27468
   391
done
huffman@27468
   392
huffman@27468
   393
lemma starfun_ln_less_zero: "!!x. [| 0 < x; x < 1 |] ==> ( *f* ln) x < 0"
huffman@27468
   394
by transfer (rule ln_less_zero)
huffman@27468
   395
huffman@27468
   396
lemma starfun_ln_Infinitesimal_less_zero:
huffman@27468
   397
     "[| x \<in> Infinitesimal; 0 < x |] ==> ( *f* ln) x < 0"
huffman@27468
   398
by (auto intro!: starfun_ln_less_zero simp add: Infinitesimal_def)
huffman@27468
   399
huffman@27468
   400
lemma starfun_ln_HInfinite_gt_zero:
huffman@27468
   401
     "[| x \<in> HInfinite; 0 < x |] ==> 0 < ( *f* ln) x"
huffman@27468
   402
by (auto intro!: starfun_ln_gt_zero simp add: HInfinite_def)
huffman@27468
   403
huffman@27468
   404
huffman@27468
   405
(*
huffman@27468
   406
Goalw [NSLIM_def] "(%h. ((x powr h) - 1) / h) -- 0 --NS> ln x"
huffman@27468
   407
*)
huffman@27468
   408
huffman@27468
   409
lemma HFinite_sin [simp]:
huffman@27468
   410
     "sumhr (0, whn, %n. (if even(n) then 0 else  
huffman@27468
   411
              (-1 ^ ((n - 1) div 2))/(real (fact n))) * x ^ n)  
huffman@27468
   412
              \<in> HFinite"
huffman@27468
   413
unfolding sumhr_app
huffman@27468
   414
apply (simp only: star_zero_def starfun2_star_of)
huffman@27468
   415
apply (rule NSBseqD2)
huffman@27468
   416
apply (rule NSconvergent_NSBseq)
huffman@27468
   417
apply (rule convergent_NSconvergent_iff [THEN iffD1])
huffman@27468
   418
apply (rule summable_convergent_sumr_iff [THEN iffD1])
huffman@27468
   419
apply (simp only: One_nat_def summable_sin)
huffman@27468
   420
done
huffman@27468
   421
huffman@27468
   422
lemma STAR_sin_zero [simp]: "( *f* sin) 0 = 0"
huffman@27468
   423
by transfer (rule sin_zero)
huffman@27468
   424
huffman@27468
   425
lemma STAR_sin_Infinitesimal [simp]: "x \<in> Infinitesimal ==> ( *f* sin) x @= x"
huffman@27468
   426
apply (case_tac "x = 0")
huffman@27468
   427
apply (cut_tac [2] x = 0 in DERIV_sin)
huffman@27468
   428
apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)
huffman@27468
   429
apply (drule bspec [where x = x], auto)
huffman@27468
   430
apply (drule approx_mult1 [where c = x])
huffman@27468
   431
apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
huffman@27468
   432
           simp add: mult_assoc)
huffman@27468
   433
done
huffman@27468
   434
huffman@27468
   435
lemma HFinite_cos [simp]:
huffman@27468
   436
     "sumhr (0, whn, %n. (if even(n) then  
huffman@27468
   437
            (-1 ^ (n div 2))/(real (fact n)) else  
huffman@27468
   438
            0) * x ^ n) \<in> HFinite"
huffman@27468
   439
unfolding sumhr_app
huffman@27468
   440
apply (simp only: star_zero_def starfun2_star_of)
huffman@27468
   441
apply (rule NSBseqD2)
huffman@27468
   442
apply (rule NSconvergent_NSBseq)
huffman@27468
   443
apply (rule convergent_NSconvergent_iff [THEN iffD1])
huffman@27468
   444
apply (rule summable_convergent_sumr_iff [THEN iffD1])
huffman@27468
   445
apply (rule summable_cos)
huffman@27468
   446
done
huffman@27468
   447
huffman@27468
   448
lemma STAR_cos_zero [simp]: "( *f* cos) 0 = 1"
huffman@27468
   449
by transfer (rule cos_zero)
huffman@27468
   450
huffman@27468
   451
lemma STAR_cos_Infinitesimal [simp]: "x \<in> Infinitesimal ==> ( *f* cos) x @= 1"
huffman@27468
   452
apply (case_tac "x = 0")
huffman@27468
   453
apply (cut_tac [2] x = 0 in DERIV_cos)
huffman@27468
   454
apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)
huffman@27468
   455
apply (drule bspec [where x = x])
huffman@27468
   456
apply auto
huffman@27468
   457
apply (drule approx_mult1 [where c = x])
huffman@27468
   458
apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
huffman@27468
   459
            simp add: mult_assoc)
huffman@27468
   460
apply (rule approx_add_right_cancel [where d = "-1"])
huffman@27468
   461
apply (simp add: diff_def)
huffman@27468
   462
done
huffman@27468
   463
huffman@27468
   464
lemma STAR_tan_zero [simp]: "( *f* tan) 0 = 0"
huffman@27468
   465
by transfer (rule tan_zero)
huffman@27468
   466
huffman@27468
   467
lemma STAR_tan_Infinitesimal: "x \<in> Infinitesimal ==> ( *f* tan) x @= x"
huffman@27468
   468
apply (case_tac "x = 0")
huffman@27468
   469
apply (cut_tac [2] x = 0 in DERIV_tan)
huffman@27468
   470
apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)
huffman@27468
   471
apply (drule bspec [where x = x], auto)
huffman@27468
   472
apply (drule approx_mult1 [where c = x])
huffman@27468
   473
apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
huffman@27468
   474
             simp add: mult_assoc)
huffman@27468
   475
done
huffman@27468
   476
huffman@27468
   477
lemma STAR_sin_cos_Infinitesimal_mult:
huffman@27468
   478
     "x \<in> Infinitesimal ==> ( *f* sin) x * ( *f* cos) x @= x"
huffman@27468
   479
apply (insert approx_mult_HFinite [of "( *f* sin) x" _ "( *f* cos) x" 1]) 
huffman@27468
   480
apply (simp add: Infinitesimal_subset_HFinite [THEN subsetD])
huffman@27468
   481
done
huffman@27468
   482
huffman@27468
   483
lemma HFinite_pi: "hypreal_of_real pi \<in> HFinite"
huffman@27468
   484
by simp
huffman@27468
   485
huffman@27468
   486
(* lemmas *)
huffman@27468
   487
huffman@27468
   488
lemma lemma_split_hypreal_of_real:
huffman@27468
   489
     "N \<in> HNatInfinite  
huffman@27468
   490
      ==> hypreal_of_real a =  
huffman@27468
   491
          hypreal_of_hypnat N * (inverse(hypreal_of_hypnat N) * hypreal_of_real a)"
huffman@27468
   492
by (simp add: mult_assoc [symmetric] zero_less_HNatInfinite)
huffman@27468
   493
huffman@27468
   494
lemma STAR_sin_Infinitesimal_divide:
huffman@27468
   495
     "[|x \<in> Infinitesimal; x \<noteq> 0 |] ==> ( *f* sin) x/x @= 1"
huffman@27468
   496
apply (cut_tac x = 0 in DERIV_sin)
huffman@27468
   497
apply (simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)
huffman@27468
   498
done
huffman@27468
   499
huffman@27468
   500
(*------------------------------------------------------------------------*) 
huffman@27468
   501
(* sin* (1/n) * 1/(1/n) @= 1 for n = oo                                   *)
huffman@27468
   502
(*------------------------------------------------------------------------*)
huffman@27468
   503
huffman@27468
   504
lemma lemma_sin_pi:
huffman@27468
   505
     "n \<in> HNatInfinite  
huffman@27468
   506
      ==> ( *f* sin) (inverse (hypreal_of_hypnat n))/(inverse (hypreal_of_hypnat n)) @= 1"
huffman@27468
   507
apply (rule STAR_sin_Infinitesimal_divide)
huffman@27468
   508
apply (auto simp add: zero_less_HNatInfinite)
huffman@27468
   509
done
huffman@27468
   510
huffman@27468
   511
lemma STAR_sin_inverse_HNatInfinite:
huffman@27468
   512
     "n \<in> HNatInfinite  
huffman@27468
   513
      ==> ( *f* sin) (inverse (hypreal_of_hypnat n)) * hypreal_of_hypnat n @= 1"
huffman@27468
   514
apply (frule lemma_sin_pi)
huffman@27468
   515
apply (simp add: divide_inverse)
huffman@27468
   516
done
huffman@27468
   517
huffman@27468
   518
lemma Infinitesimal_pi_divide_HNatInfinite: 
huffman@27468
   519
     "N \<in> HNatInfinite  
huffman@27468
   520
      ==> hypreal_of_real pi/(hypreal_of_hypnat N) \<in> Infinitesimal"
huffman@27468
   521
apply (simp add: divide_inverse)
huffman@27468
   522
apply (auto intro: Infinitesimal_HFinite_mult2)
huffman@27468
   523
done
huffman@27468
   524
huffman@27468
   525
lemma pi_divide_HNatInfinite_not_zero [simp]:
huffman@27468
   526
     "N \<in> HNatInfinite ==> hypreal_of_real pi/(hypreal_of_hypnat N) \<noteq> 0"
huffman@27468
   527
by (simp add: zero_less_HNatInfinite)
huffman@27468
   528
huffman@27468
   529
lemma STAR_sin_pi_divide_HNatInfinite_approx_pi:
huffman@27468
   530
     "n \<in> HNatInfinite  
huffman@27468
   531
      ==> ( *f* sin) (hypreal_of_real pi/(hypreal_of_hypnat n)) * hypreal_of_hypnat n  
huffman@27468
   532
          @= hypreal_of_real pi"
huffman@27468
   533
apply (frule STAR_sin_Infinitesimal_divide
huffman@27468
   534
               [OF Infinitesimal_pi_divide_HNatInfinite 
huffman@27468
   535
                   pi_divide_HNatInfinite_not_zero])
huffman@27468
   536
apply (auto)
huffman@27468
   537
apply (rule approx_SReal_mult_cancel [of "inverse (hypreal_of_real pi)"])
huffman@27468
   538
apply (auto intro: Reals_inverse simp add: divide_inverse mult_ac)
huffman@27468
   539
done
huffman@27468
   540
huffman@27468
   541
lemma STAR_sin_pi_divide_HNatInfinite_approx_pi2:
huffman@27468
   542
     "n \<in> HNatInfinite  
huffman@27468
   543
      ==> hypreal_of_hypnat n *  
huffman@27468
   544
          ( *f* sin) (hypreal_of_real pi/(hypreal_of_hypnat n))  
huffman@27468
   545
          @= hypreal_of_real pi"
huffman@27468
   546
apply (rule mult_commute [THEN subst])
huffman@27468
   547
apply (erule STAR_sin_pi_divide_HNatInfinite_approx_pi)
huffman@27468
   548
done
huffman@27468
   549
huffman@27468
   550
lemma starfunNat_pi_divide_n_Infinitesimal: 
huffman@27468
   551
     "N \<in> HNatInfinite ==> ( *f* (%x. pi / real x)) N \<in> Infinitesimal"
huffman@27468
   552
by (auto intro!: Infinitesimal_HFinite_mult2 
huffman@27468
   553
         simp add: starfun_mult [symmetric] divide_inverse
huffman@27468
   554
                   starfun_inverse [symmetric] starfunNat_real_of_nat)
huffman@27468
   555
huffman@27468
   556
lemma STAR_sin_pi_divide_n_approx:
huffman@27468
   557
     "N \<in> HNatInfinite ==>  
huffman@27468
   558
      ( *f* sin) (( *f* (%x. pi / real x)) N) @=  
huffman@27468
   559
      hypreal_of_real pi/(hypreal_of_hypnat N)"
huffman@27468
   560
apply (simp add: starfunNat_real_of_nat [symmetric])
huffman@27468
   561
apply (rule STAR_sin_Infinitesimal)
huffman@27468
   562
apply (simp add: divide_inverse)
huffman@27468
   563
apply (rule Infinitesimal_HFinite_mult2)
huffman@27468
   564
apply (subst starfun_inverse)
huffman@27468
   565
apply (erule starfunNat_inverse_real_of_nat_Infinitesimal)
huffman@27468
   566
apply simp
huffman@27468
   567
done
huffman@27468
   568
huffman@27468
   569
lemma NSLIMSEQ_sin_pi: "(%n. real n * sin (pi / real n)) ----NS> pi"
huffman@27468
   570
apply (auto simp add: NSLIMSEQ_def starfun_mult [symmetric] starfunNat_real_of_nat)
huffman@27468
   571
apply (rule_tac f1 = sin in starfun_o2 [THEN subst])
huffman@27468
   572
apply (auto simp add: starfun_mult [symmetric] starfunNat_real_of_nat divide_inverse)
huffman@27468
   573
apply (rule_tac f1 = inverse in starfun_o2 [THEN subst])
huffman@27468
   574
apply (auto dest: STAR_sin_pi_divide_HNatInfinite_approx_pi 
huffman@27468
   575
            simp add: starfunNat_real_of_nat mult_commute divide_inverse)
huffman@27468
   576
done
huffman@27468
   577
huffman@27468
   578
lemma NSLIMSEQ_cos_one: "(%n. cos (pi / real n))----NS> 1"
huffman@27468
   579
apply (simp add: NSLIMSEQ_def, auto)
huffman@27468
   580
apply (rule_tac f1 = cos in starfun_o2 [THEN subst])
huffman@27468
   581
apply (rule STAR_cos_Infinitesimal)
huffman@27468
   582
apply (auto intro!: Infinitesimal_HFinite_mult2 
huffman@27468
   583
            simp add: starfun_mult [symmetric] divide_inverse
huffman@27468
   584
                      starfun_inverse [symmetric] starfunNat_real_of_nat)
huffman@27468
   585
done
huffman@27468
   586
huffman@27468
   587
lemma NSLIMSEQ_sin_cos_pi:
huffman@27468
   588
     "(%n. real n * sin (pi / real n) * cos (pi / real n)) ----NS> pi"
huffman@27468
   589
by (insert NSLIMSEQ_mult [OF NSLIMSEQ_sin_pi NSLIMSEQ_cos_one], simp)
huffman@27468
   590
huffman@27468
   591
huffman@27468
   592
text{*A familiar approximation to @{term "cos x"} when @{term x} is small*}
huffman@27468
   593
huffman@27468
   594
lemma STAR_cos_Infinitesimal_approx:
huffman@27468
   595
     "x \<in> Infinitesimal ==> ( *f* cos) x @= 1 - x ^ 2"
huffman@27468
   596
apply (rule STAR_cos_Infinitesimal [THEN approx_trans])
huffman@27468
   597
apply (auto simp add: Infinitesimal_approx_minus [symmetric] 
huffman@27468
   598
            diff_minus add_assoc [symmetric] numeral_2_eq_2)
huffman@27468
   599
done
huffman@27468
   600
huffman@27468
   601
lemma STAR_cos_Infinitesimal_approx2:
huffman@27468
   602
     "x \<in> Infinitesimal ==> ( *f* cos) x @= 1 - (x ^ 2)/2"
huffman@27468
   603
apply (rule STAR_cos_Infinitesimal [THEN approx_trans])
huffman@27468
   604
apply (auto intro: Infinitesimal_SReal_divide 
huffman@27468
   605
            simp add: Infinitesimal_approx_minus [symmetric] numeral_2_eq_2)
huffman@27468
   606
done
huffman@27468
   607
huffman@27468
   608
end