src/ZF/OrdQuant.thy
author paulson
Fri Jun 28 11:24:36 2002 +0200 (2002-06-28)
changeset 13253 edbf32029d33
parent 13244 7b37e218f298
child 13289 53e201efdaa2
permissions -rw-r--r--
added class quantifiers
paulson@2469
     1
(*  Title:      ZF/AC/OrdQuant.thy
paulson@2469
     2
    ID:         $Id$
paulson@2469
     3
    Authors:    Krzysztof Grabczewski and L C Paulson
paulson@2469
     4
*)
paulson@2469
     5
paulson@13253
     6
header {*Special quantifiers*}
paulson@13253
     7
paulson@12620
     8
theory OrdQuant = Ordinal:
paulson@2469
     9
paulson@13253
    10
subsection {*Quantifiers and union operator for ordinals*}
paulson@13253
    11
paulson@12620
    12
constdefs
paulson@2469
    13
  
paulson@2469
    14
  (* Ordinal Quantifiers *)
paulson@12620
    15
  oall :: "[i, i => o] => o"
paulson@12620
    16
    "oall(A, P) == ALL x. x<A --> P(x)"
paulson@12620
    17
  
paulson@12620
    18
  oex :: "[i, i => o] => o"
paulson@12620
    19
    "oex(A, P)  == EX x. x<A & P(x)"
paulson@2469
    20
paulson@2469
    21
  (* Ordinal Union *)
paulson@12620
    22
  OUnion :: "[i, i => i] => i"
paulson@12620
    23
    "OUnion(i,B) == {z: UN x:i. B(x). Ord(i)}"
paulson@2469
    24
  
paulson@2469
    25
syntax
paulson@12620
    26
  "@oall"     :: "[idt, i, o] => o"        ("(3ALL _<_./ _)" 10)
paulson@12620
    27
  "@oex"      :: "[idt, i, o] => o"        ("(3EX _<_./ _)" 10)
paulson@12620
    28
  "@OUNION"   :: "[idt, i, i] => i"        ("(3UN _<_./ _)" 10)
paulson@2469
    29
paulson@2469
    30
translations
paulson@2469
    31
  "ALL x<a. P"  == "oall(a, %x. P)"
paulson@2469
    32
  "EX x<a. P"   == "oex(a, %x. P)"
paulson@2469
    33
  "UN x<a. B"   == "OUnion(a, %x. B)"
paulson@2469
    34
wenzelm@12114
    35
syntax (xsymbols)
paulson@12620
    36
  "@oall"     :: "[idt, i, o] => o"        ("(3\<forall>_<_./ _)" 10)
paulson@12620
    37
  "@oex"      :: "[idt, i, o] => o"        ("(3\<exists>_<_./ _)" 10)
paulson@12620
    38
  "@OUNION"   :: "[idt, i, i] => i"        ("(3\<Union>_<_./ _)" 10)
paulson@12620
    39
paulson@12620
    40
paulson@12825
    41
(** simplification of the new quantifiers **)
paulson@12825
    42
paulson@12825
    43
paulson@13169
    44
(*MOST IMPORTANT that this is added to the simpset BEFORE Ord_atomize
paulson@13169
    45
  is proved.  Ord_atomize would convert this rule to 
paulson@12825
    46
    x < 0 ==> P(x) == True, which causes dire effects!*)
paulson@12825
    47
lemma [simp]: "(ALL x<0. P(x))"
paulson@12825
    48
by (simp add: oall_def) 
paulson@12825
    49
paulson@12825
    50
lemma [simp]: "~(EX x<0. P(x))"
paulson@12825
    51
by (simp add: oex_def) 
paulson@12825
    52
paulson@12825
    53
lemma [simp]: "(ALL x<succ(i). P(x)) <-> (Ord(i) --> P(i) & (ALL x<i. P(x)))"
paulson@12825
    54
apply (simp add: oall_def le_iff) 
paulson@12825
    55
apply (blast intro: lt_Ord2) 
paulson@12825
    56
done
paulson@12825
    57
paulson@12825
    58
lemma [simp]: "(EX x<succ(i). P(x)) <-> (Ord(i) & (P(i) | (EX x<i. P(x))))"
paulson@12825
    59
apply (simp add: oex_def le_iff) 
paulson@12825
    60
apply (blast intro: lt_Ord2) 
paulson@12825
    61
done
paulson@12825
    62
paulson@13244
    63
(** Union over ordinals **)
paulson@13118
    64
paulson@12620
    65
lemma Ord_OUN [intro,simp]:
paulson@13162
    66
     "[| !!x. x<A ==> Ord(B(x)) |] ==> Ord(\<Union>x<A. B(x))"
paulson@12620
    67
by (simp add: OUnion_def ltI Ord_UN) 
paulson@12620
    68
paulson@12620
    69
lemma OUN_upper_lt:
paulson@13162
    70
     "[| a<A;  i < b(a);  Ord(\<Union>x<A. b(x)) |] ==> i < (\<Union>x<A. b(x))"
paulson@12620
    71
by (unfold OUnion_def lt_def, blast )
paulson@12620
    72
paulson@12620
    73
lemma OUN_upper_le:
paulson@13162
    74
     "[| a<A;  i\<le>b(a);  Ord(\<Union>x<A. b(x)) |] ==> i \<le> (\<Union>x<A. b(x))"
paulson@12820
    75
apply (unfold OUnion_def, auto)
paulson@12620
    76
apply (rule UN_upper_le )
paulson@12620
    77
apply (auto simp add: lt_def) 
paulson@12620
    78
done
paulson@2469
    79
paulson@12620
    80
lemma Limit_OUN_eq: "Limit(i) ==> (UN x<i. x) = i"
paulson@12620
    81
by (simp add: OUnion_def Limit_Union_eq Limit_is_Ord)
paulson@12620
    82
paulson@12620
    83
(* No < version; consider (UN i:nat.i)=nat *)
paulson@12620
    84
lemma OUN_least:
paulson@12620
    85
     "(!!x. x<A ==> B(x) \<subseteq> C) ==> (UN x<A. B(x)) \<subseteq> C"
paulson@12620
    86
by (simp add: OUnion_def UN_least ltI)
paulson@12620
    87
paulson@12620
    88
(* No < version; consider (UN i:nat.i)=nat *)
paulson@12620
    89
lemma OUN_least_le:
paulson@12620
    90
     "[| Ord(i);  !!x. x<A ==> b(x) \<le> i |] ==> (UN x<A. b(x)) \<le> i"
paulson@12620
    91
by (simp add: OUnion_def UN_least_le ltI Ord_0_le)
paulson@12620
    92
paulson@12620
    93
lemma le_implies_OUN_le_OUN:
paulson@12620
    94
     "[| !!x. x<A ==> c(x) \<le> d(x) |] ==> (UN x<A. c(x)) \<le> (UN x<A. d(x))"
paulson@12620
    95
by (blast intro: OUN_least_le OUN_upper_le le_Ord2 Ord_OUN)
paulson@12620
    96
paulson@12620
    97
lemma OUN_UN_eq:
paulson@12620
    98
     "(!!x. x:A ==> Ord(B(x)))
paulson@12620
    99
      ==> (UN z < (UN x:A. B(x)). C(z)) = (UN  x:A. UN z < B(x). C(z))"
paulson@12620
   100
by (simp add: OUnion_def) 
paulson@12620
   101
paulson@12620
   102
lemma OUN_Union_eq:
paulson@12620
   103
     "(!!x. x:X ==> Ord(x))
paulson@12620
   104
      ==> (UN z < Union(X). C(z)) = (UN x:X. UN z < x. C(z))"
paulson@12620
   105
by (simp add: OUnion_def) 
paulson@12620
   106
paulson@12763
   107
(*So that rule_format will get rid of ALL x<A...*)
paulson@12763
   108
lemma atomize_oall [symmetric, rulify]:
paulson@12763
   109
     "(!!x. x<A ==> P(x)) == Trueprop (ALL x<A. P(x))"
paulson@12763
   110
by (simp add: oall_def atomize_all atomize_imp)
paulson@12763
   111
paulson@13169
   112
(*** universal quantifier for ordinals ***)
paulson@13169
   113
paulson@13169
   114
lemma oallI [intro!]:
paulson@13169
   115
    "[| !!x. x<A ==> P(x) |] ==> ALL x<A. P(x)"
paulson@13170
   116
by (simp add: oall_def) 
paulson@13169
   117
paulson@13169
   118
lemma ospec: "[| ALL x<A. P(x);  x<A |] ==> P(x)"
paulson@13170
   119
by (simp add: oall_def) 
paulson@13169
   120
paulson@13169
   121
lemma oallE:
paulson@13169
   122
    "[| ALL x<A. P(x);  P(x) ==> Q;  ~x<A ==> Q |] ==> Q"
paulson@13170
   123
apply (simp add: oall_def, blast) 
paulson@13169
   124
done
paulson@13169
   125
paulson@13169
   126
lemma rev_oallE [elim]:
paulson@13169
   127
    "[| ALL x<A. P(x);  ~x<A ==> Q;  P(x) ==> Q |] ==> Q"
paulson@13170
   128
apply (simp add: oall_def, blast)  
paulson@13169
   129
done
paulson@13169
   130
paulson@13169
   131
paulson@13169
   132
(*Trival rewrite rule;   (ALL x<a.P)<->P holds only if a is not 0!*)
paulson@13169
   133
lemma oall_simp [simp]: "(ALL x<a. True) <-> True"
paulson@13170
   134
by blast
paulson@13169
   135
paulson@13169
   136
(*Congruence rule for rewriting*)
paulson@13169
   137
lemma oall_cong [cong]:
paulson@13169
   138
    "[| a=a';  !!x. x<a' ==> P(x) <-> P'(x) |] ==> oall(a,P) <-> oall(a',P')"
paulson@13169
   139
by (simp add: oall_def)
paulson@13169
   140
paulson@13169
   141
paulson@13169
   142
(*** existential quantifier for ordinals ***)
paulson@13169
   143
paulson@13169
   144
lemma oexI [intro]:
paulson@13169
   145
    "[| P(x);  x<A |] ==> EX x<A. P(x)"
paulson@13170
   146
apply (simp add: oex_def, blast) 
paulson@13169
   147
done
paulson@13169
   148
paulson@13169
   149
(*Not of the general form for such rules; ~EX has become ALL~ *)
paulson@13169
   150
lemma oexCI:
paulson@13169
   151
   "[| ALL x<A. ~P(x) ==> P(a);  a<A |] ==> EX x<A. P(x)"
paulson@13170
   152
apply (simp add: oex_def, blast) 
paulson@13169
   153
done
paulson@13169
   154
paulson@13169
   155
lemma oexE [elim!]:
paulson@13169
   156
    "[| EX x<A. P(x);  !!x. [| x<A; P(x) |] ==> Q |] ==> Q"
paulson@13170
   157
apply (simp add: oex_def, blast) 
paulson@13169
   158
done
paulson@13169
   159
paulson@13169
   160
lemma oex_cong [cong]:
paulson@13169
   161
    "[| a=a';  !!x. x<a' ==> P(x) <-> P'(x) |] ==> oex(a,P) <-> oex(a',P')"
paulson@13169
   162
apply (simp add: oex_def cong add: conj_cong)
paulson@13169
   163
done
paulson@13169
   164
paulson@13169
   165
paulson@13169
   166
(*** Rules for Ordinal-Indexed Unions ***)
paulson@13169
   167
paulson@13169
   168
lemma OUN_I [intro]: "[| a<i;  b: B(a) |] ==> b: (UN z<i. B(z))"
paulson@13170
   169
by (unfold OUnion_def lt_def, blast)
paulson@13169
   170
paulson@13169
   171
lemma OUN_E [elim!]:
paulson@13169
   172
    "[| b : (UN z<i. B(z));  !!a.[| b: B(a);  a<i |] ==> R |] ==> R"
paulson@13170
   173
apply (unfold OUnion_def lt_def, blast)
paulson@13169
   174
done
paulson@13169
   175
paulson@13169
   176
lemma OUN_iff: "b : (UN x<i. B(x)) <-> (EX x<i. b : B(x))"
paulson@13170
   177
by (unfold OUnion_def oex_def lt_def, blast)
paulson@13169
   178
paulson@13169
   179
lemma OUN_cong [cong]:
paulson@13169
   180
    "[| i=j;  !!x. x<j ==> C(x)=D(x) |] ==> (UN x<i. C(x)) = (UN x<j. D(x))"
paulson@13169
   181
by (simp add: OUnion_def lt_def OUN_iff)
paulson@13169
   182
paulson@13169
   183
lemma lt_induct: 
paulson@13169
   184
    "[| i<k;  !!x.[| x<k;  ALL y<x. P(y) |] ==> P(x) |]  ==>  P(i)"
paulson@13169
   185
apply (simp add: lt_def oall_def)
paulson@13169
   186
apply (erule conjE) 
paulson@13170
   187
apply (erule Ord_induct, assumption, blast) 
paulson@13169
   188
done
paulson@13169
   189
paulson@13253
   190
paulson@13253
   191
subsection {*Quantification over a class*}
paulson@13253
   192
paulson@13253
   193
constdefs
paulson@13253
   194
  "rall"     :: "[i=>o, i=>o] => o"
paulson@13253
   195
    "rall(M, P) == ALL x. M(x) --> P(x)"
paulson@13253
   196
paulson@13253
   197
  "rex"      :: "[i=>o, i=>o] => o"
paulson@13253
   198
    "rex(M, P) == EX x. M(x) & P(x)"
paulson@13253
   199
paulson@13253
   200
syntax
paulson@13253
   201
  "@rall"     :: "[pttrn, i=>o, o] => o"        ("(3ALL _[_]./ _)" 10)
paulson@13253
   202
  "@rex"      :: "[pttrn, i=>o, o] => o"        ("(3EX _[_]./ _)" 10)
paulson@13253
   203
paulson@13253
   204
syntax (xsymbols)
paulson@13253
   205
  "@rall"     :: "[pttrn, i=>o, o] => o"        ("(3\<forall>_[_]./ _)" 10)
paulson@13253
   206
  "@rex"      :: "[pttrn, i=>o, o] => o"        ("(3\<exists>_[_]./ _)" 10)
paulson@13253
   207
paulson@13253
   208
translations
paulson@13253
   209
  "ALL x[M]. P"  == "rall(M, %x. P)"
paulson@13253
   210
  "EX x[M]. P"   == "rex(M, %x. P)"
paulson@13253
   211
paulson@13253
   212
(*** Relativized universal quantifier ***)
paulson@13253
   213
paulson@13253
   214
lemma rallI [intro!]: "[| !!x. M(x) ==> P(x) |] ==> ALL x[M]. P(x)"
paulson@13253
   215
by (simp add: rall_def)
paulson@13253
   216
paulson@13253
   217
lemma rspec: "[| ALL x[M]. P(x); M(x) |] ==> P(x)"
paulson@13253
   218
by (simp add: rall_def)
paulson@13253
   219
paulson@13253
   220
(*Instantiates x first: better for automatic theorem proving?*)
paulson@13253
   221
lemma rev_rallE [elim]: 
paulson@13253
   222
    "[| ALL x[M]. P(x);  ~ M(x) ==> Q;  P(x) ==> Q |] ==> Q"
paulson@13253
   223
by (simp add: rall_def, blast) 
paulson@13253
   224
paulson@13253
   225
lemma rallE: "[| ALL x[M]. P(x);  P(x) ==> Q;  ~ M(x) ==> Q |] ==> Q"
paulson@13253
   226
by blast
paulson@13253
   227
paulson@13253
   228
(*Trival rewrite rule;   (ALL x[M].P)<->P holds only if A is nonempty!*)
paulson@13253
   229
lemma rall_triv [simp]: "(ALL x[M]. P) <-> ((EX x. M(x)) --> P)"
paulson@13253
   230
by (simp add: rall_def)
paulson@13253
   231
paulson@13253
   232
(*Congruence rule for rewriting*)
paulson@13253
   233
lemma rall_cong [cong]:
paulson@13253
   234
    "(!!x. M(x) ==> P(x) <-> P'(x)) ==> rall(M,P) <-> rall(M,P')"
paulson@13253
   235
by (simp add: rall_def)
paulson@13253
   236
paulson@13253
   237
(*** Relativized existential quantifier ***)
paulson@13253
   238
paulson@13253
   239
lemma rexI [intro]: "[| P(x); M(x) |] ==> EX x[M]. P(x)"
paulson@13253
   240
by (simp add: rex_def, blast)
paulson@13253
   241
paulson@13253
   242
(*The best argument order when there is only one M(x)*)
paulson@13253
   243
lemma rev_rexI: "[| M(x);  P(x) |] ==> EX x[M]. P(x)"
paulson@13253
   244
by blast
paulson@13253
   245
paulson@13253
   246
(*Not of the general form for such rules; ~EX has become ALL~ *)
paulson@13253
   247
lemma rexCI: "[| ALL x[M]. ~P(x) ==> P(a); M(a) |] ==> EX x[M]. P(x)"
paulson@13253
   248
by blast
paulson@13253
   249
paulson@13253
   250
lemma rexE [elim!]: "[| EX x[M]. P(x);  !!x. [| M(x); P(x) |] ==> Q |] ==> Q"
paulson@13253
   251
by (simp add: rex_def, blast)
paulson@13253
   252
paulson@13253
   253
(*We do not even have (EX x[M]. True) <-> True unless A is nonempty!!*)
paulson@13253
   254
lemma rex_triv [simp]: "(EX x[M]. P) <-> ((EX x. M(x)) & P)"
paulson@13253
   255
by (simp add: rex_def)
paulson@13253
   256
paulson@13253
   257
lemma rex_cong [cong]:
paulson@13253
   258
    "(!!x. M(x) ==> P(x) <-> P'(x)) ==> rex(M,P) <-> rex(M,P')"
paulson@13253
   259
by (simp add: rex_def cong: conj_cong)
paulson@13253
   260
paulson@13253
   261
lemma atomize_rall: "(!!x. M(x) ==> P(x)) == Trueprop (ALL x[M]. P(x))";
paulson@13253
   262
by (simp add: rall_def atomize_all atomize_imp)
paulson@13253
   263
paulson@13253
   264
declare atomize_rall [symmetric, rulify]
paulson@13253
   265
paulson@13253
   266
lemma rall_simps1:
paulson@13253
   267
     "(ALL x[M]. P(x) & Q)   <-> (ALL x[M]. P(x)) & ((ALL x[M]. False) | Q)"
paulson@13253
   268
     "(ALL x[M]. P(x) | Q)   <-> ((ALL x[M]. P(x)) | Q)"
paulson@13253
   269
     "(ALL x[M]. P(x) --> Q) <-> ((EX x[M]. P(x)) --> Q)"
paulson@13253
   270
     "(~(ALL x[M]. P(x))) <-> (EX x[M]. ~P(x))" 
paulson@13253
   271
by blast+
paulson@13253
   272
paulson@13253
   273
lemma rall_simps2:
paulson@13253
   274
     "(ALL x[M]. P & Q(x))   <-> ((ALL x[M]. False) | P) & (ALL x[M]. Q(x))"
paulson@13253
   275
     "(ALL x[M]. P | Q(x))   <-> (P | (ALL x[M]. Q(x)))"
paulson@13253
   276
     "(ALL x[M]. P --> Q(x)) <-> (P --> (ALL x[M]. Q(x)))"
paulson@13253
   277
by blast+
paulson@13253
   278
paulson@13253
   279
lemmas rall_simps = rall_simps1 rall_simps2
paulson@13253
   280
paulson@13253
   281
lemma rall_conj_distrib:
paulson@13253
   282
    "(ALL x[M]. P(x) & Q(x)) <-> ((ALL x[M]. P(x)) & (ALL x[M]. Q(x)))"
paulson@13253
   283
by blast
paulson@13253
   284
paulson@13253
   285
lemma rex_simps1:
paulson@13253
   286
     "(EX x[M]. P(x) & Q) <-> ((EX x[M]. P(x)) & Q)"
paulson@13253
   287
     "(EX x[M]. P(x) | Q) <-> (EX x[M]. P(x)) | ((EX x[M]. True) & Q)"
paulson@13253
   288
     "(EX x[M]. P(x) --> Q) <-> ((ALL x[M]. P(x)) --> ((EX x[M]. True) & Q))"
paulson@13253
   289
     "(~(EX x[M]. P(x))) <-> (ALL x[M]. ~P(x))"
paulson@13253
   290
by blast+
paulson@13253
   291
paulson@13253
   292
lemma rex_simps2:
paulson@13253
   293
     "(EX x[M]. P & Q(x)) <-> (P & (EX x[M]. Q(x)))"
paulson@13253
   294
     "(EX x[M]. P | Q(x)) <-> ((EX x[M]. True) & P) | (EX x[M]. Q(x))"
paulson@13253
   295
     "(EX x[M]. P --> Q(x)) <-> (((ALL x[M]. False) | P) --> (EX x[M]. Q(x)))"
paulson@13253
   296
by blast+
paulson@13253
   297
paulson@13253
   298
lemmas rex_simps = rex_simps1 rex_simps2
paulson@13253
   299
paulson@13253
   300
lemma rex_disj_distrib:
paulson@13253
   301
    "(EX x[M]. P(x) | Q(x)) <-> ((EX x[M]. P(x)) | (EX x[M]. Q(x)))"
paulson@13253
   302
by blast
paulson@13253
   303
paulson@13253
   304
paulson@13253
   305
(** One-point rule for bounded quantifiers: see HOL/Set.ML **)
paulson@13253
   306
paulson@13253
   307
lemma rex_triv_one_point1 [simp]: "(EX x[M]. x=a) <-> ( M(a))"
paulson@13253
   308
by blast
paulson@13253
   309
paulson@13253
   310
lemma rex_triv_one_point2 [simp]: "(EX x[M]. a=x) <-> ( M(a))"
paulson@13253
   311
by blast
paulson@13253
   312
paulson@13253
   313
lemma rex_one_point1 [simp]: "(EX x[M]. x=a & P(x)) <-> ( M(a) & P(a))"
paulson@13253
   314
by blast
paulson@13253
   315
paulson@13253
   316
lemma rex_one_point2 [simp]: "(EX x[M]. a=x & P(x)) <-> ( M(a) & P(a))"
paulson@13253
   317
by blast
paulson@13253
   318
paulson@13253
   319
lemma rall_one_point1 [simp]: "(ALL x[M]. x=a --> P(x)) <-> ( M(a) --> P(a))"
paulson@13253
   320
by blast
paulson@13253
   321
paulson@13253
   322
lemma rall_one_point2 [simp]: "(ALL x[M]. a=x --> P(x)) <-> ( M(a) --> P(a))"
paulson@13253
   323
by blast
paulson@13253
   324
paulson@13253
   325
paulson@13169
   326
ML
paulson@13169
   327
{*
paulson@13169
   328
val oall_def = thm "oall_def"
paulson@13169
   329
val oex_def = thm "oex_def"
paulson@13169
   330
val OUnion_def = thm "OUnion_def"
paulson@13169
   331
paulson@13169
   332
val oallI = thm "oallI";
paulson@13169
   333
val ospec = thm "ospec";
paulson@13169
   334
val oallE = thm "oallE";
paulson@13169
   335
val rev_oallE = thm "rev_oallE";
paulson@13169
   336
val oall_simp = thm "oall_simp";
paulson@13169
   337
val oall_cong = thm "oall_cong";
paulson@13169
   338
val oexI = thm "oexI";
paulson@13169
   339
val oexCI = thm "oexCI";
paulson@13169
   340
val oexE = thm "oexE";
paulson@13169
   341
val oex_cong = thm "oex_cong";
paulson@13169
   342
val OUN_I = thm "OUN_I";
paulson@13169
   343
val OUN_E = thm "OUN_E";
paulson@13169
   344
val OUN_iff = thm "OUN_iff";
paulson@13169
   345
val OUN_cong = thm "OUN_cong";
paulson@13169
   346
val lt_induct = thm "lt_induct";
paulson@13169
   347
paulson@13253
   348
val rall_def = thm "rall_def"
paulson@13253
   349
val rex_def = thm "rex_def"
paulson@13253
   350
paulson@13253
   351
val rallI = thm "rallI";
paulson@13253
   352
val rspec = thm "rspec";
paulson@13253
   353
val rallE = thm "rallE";
paulson@13253
   354
val rev_oallE = thm "rev_oallE";
paulson@13253
   355
val rall_cong = thm "rall_cong";
paulson@13253
   356
val rexI = thm "rexI";
paulson@13253
   357
val rexCI = thm "rexCI";
paulson@13253
   358
val rexE = thm "rexE";
paulson@13253
   359
val rex_cong = thm "rex_cong";
paulson@13253
   360
paulson@13169
   361
val Ord_atomize =
paulson@13253
   362
    atomize ([("OrdQuant.oall", [ospec]),("OrdQuant.rall", [rspec])]@
paulson@13253
   363
                 ZF_conn_pairs, 
paulson@13253
   364
             ZF_mem_pairs);
paulson@13169
   365
simpset_ref() := simpset() setmksimps (map mk_eq o Ord_atomize o gen_all);
paulson@13169
   366
*}
paulson@13169
   367
paulson@13253
   368
text{*Setting up the one-point-rule simproc*}
paulson@13253
   369
ML
paulson@13253
   370
{*
paulson@13253
   371
paulson@13253
   372
let
paulson@13253
   373
val ex_pattern = Thm.read_cterm (Theory.sign_of (the_context ()))
paulson@13253
   374
                                ("EX x[M]. P(x) & Q(x)", FOLogic.oT)
paulson@13253
   375
paulson@13253
   376
val prove_rex_tac = rewtac rex_def THEN
paulson@13253
   377
                    Quantifier1.prove_one_point_ex_tac;
paulson@13253
   378
paulson@13253
   379
val rearrange_bex = Quantifier1.rearrange_bex prove_rex_tac;
paulson@13253
   380
paulson@13253
   381
val all_pattern = Thm.read_cterm (Theory.sign_of (the_context ()))
paulson@13253
   382
                                 ("ALL x[M]. P(x) --> Q(x)", FOLogic.oT)
paulson@13253
   383
paulson@13253
   384
val prove_rall_tac = rewtac rall_def THEN 
paulson@13253
   385
                     Quantifier1.prove_one_point_all_tac;
paulson@13253
   386
paulson@13253
   387
val rearrange_ball = Quantifier1.rearrange_ball prove_rall_tac;
paulson@13253
   388
paulson@13253
   389
val defREX_regroup = mk_simproc "defined REX" [ex_pattern] rearrange_bex;
paulson@13253
   390
val defRALL_regroup = mk_simproc "defined RALL" [all_pattern] rearrange_ball;
paulson@13253
   391
in
paulson@13253
   392
paulson@13253
   393
Addsimprocs [defRALL_regroup,defREX_regroup]
paulson@13253
   394
paulson@13253
   395
end;
paulson@13253
   396
*}
paulson@13253
   397
paulson@2469
   398
end