src/HOL/Auth/Yahalom2.thy
author haftmann
Fri Jan 02 08:12:46 2009 +0100 (2009-01-02)
changeset 29332 edc1e2a56398
parent 23746 a455e69c31cc
child 32960 69916a850301
permissions -rw-r--r--
named code theorem for Fract_norm
paulson@3445
     1
(*  Title:      HOL/Auth/Yahalom2
paulson@2111
     2
    ID:         $Id$
paulson@2111
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@2111
     4
    Copyright   1996  University of Cambridge
paulson@14207
     5
*)
paulson@2111
     6
paulson@14207
     7
header{*The Yahalom Protocol, Variant 2*}
paulson@14207
     8
haftmann@16417
     9
theory Yahalom2 imports Public begin
paulson@14207
    10
paulson@14207
    11
text{*
paulson@2111
    12
This version trades encryption of NB for additional explicitness in YM3.
paulson@3432
    13
Also in YM3, care is taken to make the two certificates distinct.
paulson@2111
    14
paulson@2111
    15
From page 259 of
paulson@14207
    16
  Burrows, Abadi and Needham (1989).  A Logic of Authentication.
paulson@14207
    17
  Proc. Royal Soc. 426
paulson@2111
    18
paulson@14207
    19
This theory has the prototypical example of a secrecy relation, KeyCryptNonce.
paulson@14207
    20
*}
paulson@2111
    21
berghofe@23746
    22
inductive_set yahalom :: "event list set"
berghofe@23746
    23
  where
paulson@2111
    24
         (*Initial trace is empty*)
paulson@11251
    25
   Nil:  "[] \<in> yahalom"
paulson@2111
    26
paulson@2111
    27
         (*The spy MAY say anything he CAN say.  We do not expect him to
paulson@2111
    28
           invent new nonces here, but he can also use NS1.  Common to
paulson@2111
    29
           all similar protocols.*)
berghofe@23746
    30
 | Fake: "[| evsf \<in> yahalom;  X \<in> synth (analz (knows Spy evsf)) |]
paulson@11251
    31
          ==> Says Spy B X  # evsf \<in> yahalom"
paulson@2111
    32
paulson@6335
    33
         (*A message that has been sent can be received by the
paulson@6335
    34
           intended recipient.*)
berghofe@23746
    35
 | Reception: "[| evsr \<in> yahalom;  Says A B X \<in> set evsr |]
paulson@11251
    36
               ==> Gets B X # evsr \<in> yahalom"
paulson@6335
    37
paulson@2111
    38
         (*Alice initiates a protocol run*)
berghofe@23746
    39
 | YM1:  "[| evs1 \<in> yahalom;  Nonce NA \<notin> used evs1 |]
paulson@11251
    40
          ==> Says A B {|Agent A, Nonce NA|} # evs1 \<in> yahalom"
paulson@2111
    41
paulson@6335
    42
         (*Bob's response to Alice's message.*)
berghofe@23746
    43
 | YM2:  "[| evs2 \<in> yahalom;  Nonce NB \<notin> used evs2;
paulson@11251
    44
             Gets B {|Agent A, Nonce NA|} \<in> set evs2 |]
paulson@11251
    45
          ==> Says B Server
paulson@3432
    46
                  {|Agent B, Nonce NB, Crypt (shrK B) {|Agent A, Nonce NA|}|}
paulson@11251
    47
                # evs2 \<in> yahalom"
paulson@2111
    48
paulson@2111
    49
         (*The Server receives Bob's message.  He responds by sending a
paulson@3659
    50
           new session key to Alice, with a certificate for forwarding to Bob.
paulson@5066
    51
           Both agents are quoted in the 2nd certificate to prevent attacks!*)
berghofe@23746
    52
 | YM3:  "[| evs3 \<in> yahalom;  Key KAB \<notin> used evs3;
paulson@6335
    53
             Gets Server {|Agent B, Nonce NB,
paulson@6335
    54
			   Crypt (shrK B) {|Agent A, Nonce NA|}|}
paulson@11251
    55
               \<in> set evs3 |]
paulson@2111
    56
          ==> Says Server A
paulson@11251
    57
               {|Nonce NB,
paulson@2516
    58
                 Crypt (shrK A) {|Agent B, Key KAB, Nonce NA|},
paulson@5066
    59
                 Crypt (shrK B) {|Agent A, Agent B, Key KAB, Nonce NB|}|}
paulson@11251
    60
                 # evs3 \<in> yahalom"
paulson@2111
    61
paulson@2111
    62
         (*Alice receives the Server's (?) message, checks her Nonce, and
paulson@2111
    63
           uses the new session key to send Bob his Nonce.*)
berghofe@23746
    64
 | YM4:  "[| evs4 \<in> yahalom;
paulson@6335
    65
             Gets A {|Nonce NB, Crypt (shrK A) {|Agent B, Key K, Nonce NA|},
paulson@11251
    66
                      X|}  \<in> set evs4;
paulson@11251
    67
             Says A B {|Agent A, Nonce NA|} \<in> set evs4 |]
paulson@11251
    68
          ==> Says A B {|X, Crypt K (Nonce NB)|} # evs4 \<in> yahalom"
paulson@2111
    69
paulson@2155
    70
         (*This message models possible leaks of session keys.  The nonces
paulson@2155
    71
           identify the protocol run.  Quoting Server here ensures they are
paulson@2155
    72
           correct. *)
berghofe@23746
    73
 | Oops: "[| evso \<in> yahalom;
paulson@11251
    74
             Says Server A {|Nonce NB,
paulson@2284
    75
                             Crypt (shrK A) {|Agent B, Key K, Nonce NA|},
paulson@11251
    76
                             X|}  \<in> set evso |]
paulson@11251
    77
          ==> Notes Spy {|Nonce NA, Nonce NB, Key K|} # evso \<in> yahalom"
paulson@11251
    78
paulson@11251
    79
paulson@11251
    80
declare Says_imp_knows_Spy [THEN analz.Inj, dest]
paulson@11251
    81
declare parts.Body  [dest]
paulson@11251
    82
declare Fake_parts_insert_in_Un  [dest]
paulson@11251
    83
declare analz_into_parts [dest]
paulson@11251
    84
paulson@13907
    85
text{*A "possibility property": there are traces that reach the end*}
paulson@14200
    86
lemma "Key K \<notin> used []
paulson@14200
    87
       ==> \<exists>X NB. \<exists>evs \<in> yahalom.
paulson@11251
    88
             Says A B {|X, Crypt K (Nonce NB)|} \<in> set evs"
paulson@11251
    89
apply (intro exI bexI)
paulson@11251
    90
apply (rule_tac [2] yahalom.Nil
paulson@11251
    91
                    [THEN yahalom.YM1, THEN yahalom.Reception,
paulson@11251
    92
                     THEN yahalom.YM2, THEN yahalom.Reception,
paulson@11251
    93
                     THEN yahalom.YM3, THEN yahalom.Reception,
paulson@14200
    94
                     THEN yahalom.YM4])
paulson@14207
    95
apply (possibility, simp add: used_Cons)
paulson@11251
    96
done
paulson@11251
    97
paulson@11251
    98
lemma Gets_imp_Says:
paulson@11251
    99
     "[| Gets B X \<in> set evs; evs \<in> yahalom |] ==> \<exists>A. Says A B X \<in> set evs"
paulson@11251
   100
by (erule rev_mp, erule yahalom.induct, auto)
paulson@11251
   101
paulson@13907
   102
text{*Must be proved separately for each protocol*}
paulson@11251
   103
lemma Gets_imp_knows_Spy:
paulson@11251
   104
     "[| Gets B X \<in> set evs; evs \<in> yahalom |]  ==> X \<in> knows Spy evs"
paulson@11251
   105
by (blast dest!: Gets_imp_Says Says_imp_knows_Spy)
paulson@11251
   106
paulson@11251
   107
declare Gets_imp_knows_Spy [THEN analz.Inj, dest]
paulson@11251
   108
paulson@11251
   109
paulson@13907
   110
subsection{*Inductive Proofs*}
paulson@11251
   111
paulson@13907
   112
text{*Result for reasoning about the encrypted portion of messages.
paulson@13907
   113
Lets us treat YM4 using a similar argument as for the Fake case.*}
paulson@11251
   114
lemma YM4_analz_knows_Spy:
paulson@11251
   115
     "[| Gets A {|NB, Crypt (shrK A) Y, X|} \<in> set evs;  evs \<in> yahalom |]
paulson@11251
   116
      ==> X \<in> analz (knows Spy evs)"
paulson@11251
   117
by blast
paulson@11251
   118
paulson@11251
   119
lemmas YM4_parts_knows_Spy =
paulson@11251
   120
       YM4_analz_knows_Spy [THEN analz_into_parts, standard]
paulson@11251
   121
paulson@11251
   122
paulson@11251
   123
(** Theorems of the form X \<notin> parts (knows Spy evs) imply that NOBODY
paulson@11251
   124
    sends messages containing X! **)
paulson@11251
   125
paulson@13907
   126
text{*Spy never sees a good agent's shared key!*}
paulson@11251
   127
lemma Spy_see_shrK [simp]:
paulson@11251
   128
     "evs \<in> yahalom ==> (Key (shrK A) \<in> parts (knows Spy evs)) = (A \<in> bad)"
paulson@13907
   129
by (erule yahalom.induct, force,
paulson@13907
   130
    drule_tac [6] YM4_parts_knows_Spy, simp_all, blast+)
paulson@11251
   131
paulson@11251
   132
lemma Spy_analz_shrK [simp]:
paulson@11251
   133
     "evs \<in> yahalom ==> (Key (shrK A) \<in> analz (knows Spy evs)) = (A \<in> bad)"
paulson@11251
   134
by auto
paulson@11251
   135
paulson@11251
   136
lemma Spy_see_shrK_D [dest!]:
paulson@11251
   137
     "[|Key (shrK A) \<in> parts (knows Spy evs);  evs \<in> yahalom|] ==> A \<in> bad"
paulson@11251
   138
by (blast dest: Spy_see_shrK)
paulson@11251
   139
paulson@14207
   140
text{*Nobody can have used non-existent keys!  
paulson@14207
   141
    Needed to apply @{text analz_insert_Key}*}
paulson@14207
   142
lemma new_keys_not_used [simp]:
paulson@14207
   143
    "[|Key K \<notin> used evs; K \<in> symKeys; evs \<in> yahalom|]
paulson@14207
   144
     ==> K \<notin> keysFor (parts (spies evs))"
paulson@14207
   145
apply (erule rev_mp)
paulson@11251
   146
apply (erule yahalom.induct, force,
paulson@11251
   147
       frule_tac [6] YM4_parts_knows_Spy, simp_all)
paulson@13926
   148
txt{*Fake*}
paulson@13926
   149
apply (force dest!: keysFor_parts_insert)
paulson@14207
   150
txt{*YM3*}
paulson@14207
   151
apply blast
paulson@14207
   152
txt{*YM4*}
paulson@14207
   153
apply auto
paulson@14207
   154
apply (blast dest!: Gets_imp_knows_Spy [THEN parts.Inj])
paulson@11251
   155
done
paulson@11251
   156
paulson@11251
   157
paulson@14207
   158
text{*Describes the form of K when the Server sends this message.  Useful for
paulson@14207
   159
  Oops as well as main secrecy property.*}
paulson@11251
   160
lemma Says_Server_message_form:
paulson@11251
   161
     "[| Says Server A {|nb', Crypt (shrK A) {|Agent B, Key K, na|}, X|}
paulson@11251
   162
          \<in> set evs;  evs \<in> yahalom |]
paulson@11251
   163
      ==> K \<notin> range shrK"
paulson@11251
   164
by (erule rev_mp, erule yahalom.induct, simp_all)
paulson@11251
   165
paulson@11251
   166
paulson@11251
   167
(****
paulson@11251
   168
 The following is to prove theorems of the form
paulson@11251
   169
paulson@11251
   170
          Key K \<in> analz (insert (Key KAB) (knows Spy evs)) ==>
paulson@11251
   171
          Key K \<in> analz (knows Spy evs)
paulson@11251
   172
paulson@11251
   173
 A more general formula must be proved inductively.
paulson@11251
   174
****)
paulson@11251
   175
paulson@11251
   176
(** Session keys are not used to encrypt other session keys **)
paulson@11251
   177
paulson@11251
   178
lemma analz_image_freshK [rule_format]:
paulson@11251
   179
 "evs \<in> yahalom ==>
paulson@11251
   180
   \<forall>K KK. KK <= - (range shrK) -->
paulson@11251
   181
          (Key K \<in> analz (Key`KK Un (knows Spy evs))) =
paulson@11251
   182
          (K \<in> KK | Key K \<in> analz (knows Spy evs))"
paulson@14207
   183
apply (erule yahalom.induct)
paulson@14207
   184
apply (frule_tac [8] Says_Server_message_form)
paulson@14207
   185
apply (drule_tac [7] YM4_analz_knows_Spy, analz_freshK, spy_analz, blast)
paulson@11251
   186
done
paulson@11251
   187
paulson@11251
   188
lemma analz_insert_freshK:
paulson@11251
   189
     "[| evs \<in> yahalom;  KAB \<notin> range shrK |] ==>
wenzelm@11655
   190
      (Key K \<in> analz (insert (Key KAB) (knows Spy evs))) =
paulson@11251
   191
      (K = KAB | Key K \<in> analz (knows Spy evs))"
paulson@11251
   192
by (simp only: analz_image_freshK analz_image_freshK_simps)
paulson@11251
   193
paulson@11251
   194
paulson@13907
   195
text{*The Key K uniquely identifies the Server's  message*}
paulson@11251
   196
lemma unique_session_keys:
paulson@11251
   197
     "[| Says Server A
paulson@11251
   198
          {|nb, Crypt (shrK A) {|Agent B, Key K, na|}, X|} \<in> set evs;
paulson@11251
   199
        Says Server A'
paulson@11251
   200
          {|nb', Crypt (shrK A') {|Agent B', Key K, na'|}, X'|} \<in> set evs;
paulson@11251
   201
        evs \<in> yahalom |]
paulson@11251
   202
     ==> A=A' & B=B' & na=na' & nb=nb'"
paulson@11251
   203
apply (erule rev_mp, erule rev_mp)
paulson@11251
   204
apply (erule yahalom.induct, simp_all)
paulson@13907
   205
txt{*YM3, by freshness*}
paulson@11251
   206
apply blast
paulson@11251
   207
done
paulson@11251
   208
paulson@11251
   209
paulson@13907
   210
subsection{*Crucial Secrecy Property: Spy Does Not See Key @{term KAB}*}
paulson@11251
   211
paulson@11251
   212
lemma secrecy_lemma:
paulson@11251
   213
     "[| A \<notin> bad;  B \<notin> bad;  evs \<in> yahalom |]
paulson@11251
   214
      ==> Says Server A
paulson@11251
   215
            {|nb, Crypt (shrK A) {|Agent B, Key K, na|},
paulson@11251
   216
                  Crypt (shrK B) {|Agent A, Agent B, Key K, nb|}|}
paulson@11251
   217
           \<in> set evs -->
paulson@11251
   218
          Notes Spy {|na, nb, Key K|} \<notin> set evs -->
paulson@11251
   219
          Key K \<notin> analz (knows Spy evs)"
paulson@11251
   220
apply (erule yahalom.induct, force, frule_tac [7] Says_Server_message_form,
paulson@11251
   221
       drule_tac [6] YM4_analz_knows_Spy)
paulson@13907
   222
apply (simp_all add: pushes analz_insert_eq analz_insert_freshK, spy_analz)
paulson@11251
   223
apply (blast dest: unique_session_keys)+  (*YM3, Oops*)
paulson@11251
   224
done
paulson@11251
   225
paulson@11251
   226
paulson@14207
   227
text{*Final version*}
paulson@11251
   228
lemma Spy_not_see_encrypted_key:
paulson@11251
   229
     "[| Says Server A
paulson@11251
   230
            {|nb, Crypt (shrK A) {|Agent B, Key K, na|},
paulson@11251
   231
                  Crypt (shrK B) {|Agent A, Agent B, Key K, nb|}|}
paulson@11251
   232
         \<in> set evs;
paulson@11251
   233
         Notes Spy {|na, nb, Key K|} \<notin> set evs;
paulson@11251
   234
         A \<notin> bad;  B \<notin> bad;  evs \<in> yahalom |]
paulson@11251
   235
      ==> Key K \<notin> analz (knows Spy evs)"
paulson@11251
   236
by (blast dest: secrecy_lemma Says_Server_message_form)
paulson@11251
   237
paulson@11251
   238
paulson@13907
   239
paulson@14207
   240
text{*This form is an immediate consequence of the previous result.  It is
paulson@13907
   241
similar to the assertions established by other methods.  It is equivalent
paulson@13907
   242
to the previous result in that the Spy already has @{term analz} and
paulson@14207
   243
@{term synth} at his disposal.  However, the conclusion
paulson@13907
   244
@{term "Key K \<notin> knows Spy evs"} appears not to be inductive: all the cases
paulson@14207
   245
other than Fake are trivial, while Fake requires
paulson@13907
   246
@{term "Key K \<notin> analz (knows Spy evs)"}. *}
paulson@13907
   247
lemma Spy_not_know_encrypted_key:
paulson@13907
   248
     "[| Says Server A
paulson@13907
   249
            {|nb, Crypt (shrK A) {|Agent B, Key K, na|},
paulson@13907
   250
                  Crypt (shrK B) {|Agent A, Agent B, Key K, nb|}|}
paulson@13907
   251
         \<in> set evs;
paulson@13907
   252
         Notes Spy {|na, nb, Key K|} \<notin> set evs;
paulson@13907
   253
         A \<notin> bad;  B \<notin> bad;  evs \<in> yahalom |]
paulson@13907
   254
      ==> Key K \<notin> knows Spy evs"
paulson@13907
   255
by (blast dest: Spy_not_see_encrypted_key)
paulson@13907
   256
paulson@13907
   257
paulson@13907
   258
subsection{*Security Guarantee for A upon receiving YM3*}
paulson@11251
   259
paulson@14207
   260
text{*If the encrypted message appears then it originated with the Server.
paulson@14207
   261
  May now apply @{text Spy_not_see_encrypted_key}, subject to its conditions.*}
paulson@11251
   262
lemma A_trusts_YM3:
paulson@11251
   263
     "[| Crypt (shrK A) {|Agent B, Key K, na|} \<in> parts (knows Spy evs);
paulson@11251
   264
         A \<notin> bad;  evs \<in> yahalom |]
paulson@11251
   265
      ==> \<exists>nb. Says Server A
paulson@11251
   266
                    {|nb, Crypt (shrK A) {|Agent B, Key K, na|},
paulson@11251
   267
                          Crypt (shrK B) {|Agent A, Agent B, Key K, nb|}|}
paulson@11251
   268
                  \<in> set evs"
paulson@11251
   269
apply (erule rev_mp)
paulson@11251
   270
apply (erule yahalom.induct, force,
paulson@11251
   271
       frule_tac [6] YM4_parts_knows_Spy, simp_all)
paulson@13907
   272
txt{*Fake, YM3*}
paulson@11251
   273
apply blast+
paulson@11251
   274
done
paulson@11251
   275
paulson@14207
   276
text{*The obvious combination of @{text A_trusts_YM3} with 
paulson@14207
   277
@{text Spy_not_see_encrypted_key}*}
paulson@13907
   278
theorem A_gets_good_key:
paulson@11251
   279
     "[| Crypt (shrK A) {|Agent B, Key K, na|} \<in> parts (knows Spy evs);
paulson@11251
   280
         \<forall>nb. Notes Spy {|na, nb, Key K|} \<notin> set evs;
paulson@11251
   281
         A \<notin> bad;  B \<notin> bad;  evs \<in> yahalom |]
paulson@11251
   282
      ==> Key K \<notin> analz (knows Spy evs)"
paulson@11251
   283
by (blast dest!: A_trusts_YM3 Spy_not_see_encrypted_key)
paulson@11251
   284
paulson@11251
   285
paulson@13907
   286
subsection{*Security Guarantee for B upon receiving YM4*}
paulson@11251
   287
paulson@14207
   288
text{*B knows, by the first part of A's message, that the Server distributed
paulson@14207
   289
  the key for A and B, and has associated it with NB.*}
paulson@11251
   290
lemma B_trusts_YM4_shrK:
paulson@11251
   291
     "[| Crypt (shrK B) {|Agent A, Agent B, Key K, Nonce NB|}
paulson@11251
   292
           \<in> parts (knows Spy evs);
paulson@11251
   293
         B \<notin> bad;  evs \<in> yahalom |]
paulson@11251
   294
  ==> \<exists>NA. Says Server A
paulson@11251
   295
             {|Nonce NB,
paulson@11251
   296
               Crypt (shrK A) {|Agent B, Key K, Nonce NA|},
paulson@11251
   297
               Crypt (shrK B) {|Agent A, Agent B, Key K, Nonce NB|}|}
paulson@11251
   298
             \<in> set evs"
paulson@11251
   299
apply (erule rev_mp)
paulson@11251
   300
apply (erule yahalom.induct, force,
paulson@11251
   301
       frule_tac [6] YM4_parts_knows_Spy, simp_all)
paulson@14207
   302
txt{*Fake, YM3*}
paulson@11251
   303
apply blast+
paulson@11251
   304
done
paulson@11251
   305
paulson@11251
   306
paulson@14207
   307
text{*With this protocol variant, we don't need the 2nd part of YM4 at all:
paulson@14207
   308
  Nonce NB is available in the first part.*}
paulson@11251
   309
paulson@14207
   310
text{*What can B deduce from receipt of YM4?  Stronger and simpler than Yahalom
paulson@14207
   311
  because we do not have to show that NB is secret. *}
paulson@11251
   312
lemma B_trusts_YM4:
paulson@11251
   313
     "[| Gets B {|Crypt (shrK B) {|Agent A, Agent B, Key K, Nonce NB|},  X|}
paulson@11251
   314
           \<in> set evs;
paulson@11251
   315
         A \<notin> bad;  B \<notin> bad;  evs \<in> yahalom |]
paulson@11251
   316
  ==> \<exists>NA. Says Server A
paulson@11251
   317
             {|Nonce NB,
paulson@11251
   318
               Crypt (shrK A) {|Agent B, Key K, Nonce NA|},
paulson@11251
   319
               Crypt (shrK B) {|Agent A, Agent B, Key K, Nonce NB|}|}
paulson@11251
   320
            \<in> set evs"
paulson@11251
   321
by (blast dest!: B_trusts_YM4_shrK)
paulson@11251
   322
paulson@11251
   323
paulson@14207
   324
text{*The obvious combination of @{text B_trusts_YM4} with 
paulson@14207
   325
@{text Spy_not_see_encrypted_key}*}
paulson@13907
   326
theorem B_gets_good_key:
paulson@11251
   327
     "[| Gets B {|Crypt (shrK B) {|Agent A, Agent B, Key K, Nonce NB|}, X|}
paulson@11251
   328
           \<in> set evs;
paulson@11251
   329
         \<forall>na. Notes Spy {|na, Nonce NB, Key K|} \<notin> set evs;
paulson@11251
   330
         A \<notin> bad;  B \<notin> bad;  evs \<in> yahalom |]
paulson@11251
   331
      ==> Key K \<notin> analz (knows Spy evs)"
paulson@11251
   332
by (blast dest!: B_trusts_YM4 Spy_not_see_encrypted_key)
paulson@11251
   333
paulson@11251
   334
paulson@13907
   335
subsection{*Authenticating B to A*}
paulson@11251
   336
paulson@14207
   337
text{*The encryption in message YM2 tells us it cannot be faked.*}
paulson@11251
   338
lemma B_Said_YM2:
paulson@11251
   339
     "[| Crypt (shrK B) {|Agent A, Nonce NA|} \<in> parts (knows Spy evs);
paulson@11251
   340
         B \<notin> bad;  evs \<in> yahalom |]
paulson@11251
   341
      ==> \<exists>NB. Says B Server {|Agent B, Nonce NB,
paulson@11251
   342
                               Crypt (shrK B) {|Agent A, Nonce NA|}|}
paulson@11251
   343
                      \<in> set evs"
paulson@11251
   344
apply (erule rev_mp)
paulson@11251
   345
apply (erule yahalom.induct, force,
paulson@11251
   346
       frule_tac [6] YM4_parts_knows_Spy, simp_all)
paulson@14207
   347
txt{*Fake, YM2*}
paulson@11251
   348
apply blast+
paulson@11251
   349
done
paulson@11251
   350
paulson@11251
   351
paulson@14207
   352
text{*If the server sends YM3 then B sent YM2, perhaps with a different NB*}
paulson@11251
   353
lemma YM3_auth_B_to_A_lemma:
paulson@11251
   354
     "[| Says Server A {|nb, Crypt (shrK A) {|Agent B, Key K, Nonce NA|}, X|}
paulson@11251
   355
           \<in> set evs;
paulson@11251
   356
         B \<notin> bad;  evs \<in> yahalom |]
paulson@11251
   357
      ==> \<exists>nb'. Says B Server {|Agent B, nb',
paulson@11251
   358
                                   Crypt (shrK B) {|Agent A, Nonce NA|}|}
paulson@11251
   359
                       \<in> set evs"
paulson@11251
   360
apply (erule rev_mp)
paulson@11251
   361
apply (erule yahalom.induct, simp_all)
paulson@14207
   362
txt{*Fake, YM2, YM3*}
paulson@11251
   363
apply (blast dest!: B_Said_YM2)+
paulson@11251
   364
done
paulson@11251
   365
paulson@13907
   366
text{*If A receives YM3 then B has used nonce NA (and therefore is alive)*}
paulson@13907
   367
theorem YM3_auth_B_to_A:
paulson@11251
   368
     "[| Gets A {|nb, Crypt (shrK A) {|Agent B, Key K, Nonce NA|}, X|}
paulson@11251
   369
           \<in> set evs;
paulson@11251
   370
         A \<notin> bad;  B \<notin> bad;  evs \<in> yahalom |]
paulson@11251
   371
 ==> \<exists>nb'. Says B Server
paulson@11251
   372
                  {|Agent B, nb', Crypt (shrK B) {|Agent A, Nonce NA|}|}
paulson@11251
   373
               \<in> set evs"
paulson@11251
   374
by (blast dest!: A_trusts_YM3 YM3_auth_B_to_A_lemma)
paulson@11251
   375
paulson@11251
   376
paulson@13907
   377
subsection{*Authenticating A to B*}
paulson@11251
   378
paulson@13907
   379
text{*using the certificate @{term "Crypt K (Nonce NB)"}*}
paulson@11251
   380
paulson@14207
   381
text{*Assuming the session key is secure, if both certificates are present then
paulson@11251
   382
  A has said NB.  We can't be sure about the rest of A's message, but only
paulson@14207
   383
  NB matters for freshness.  Note that @{term "Key K \<notin> analz (knows Spy evs)"}
paulson@14207
   384
  must be the FIRST antecedent of the induction formula.*}
paulson@11251
   385
paulson@14207
   386
text{*This lemma allows a use of @{text unique_session_keys} in the next proof,
paulson@14207
   387
  which otherwise is extremely slow.*}
paulson@11251
   388
lemma secure_unique_session_keys:
paulson@11251
   389
     "[| Crypt (shrK A) {|Agent B, Key K, na|} \<in> analz (spies evs);
paulson@11251
   390
         Crypt (shrK A') {|Agent B', Key K, na'|} \<in> analz (spies evs);
paulson@11251
   391
         Key K \<notin> analz (knows Spy evs);  evs \<in> yahalom |]
paulson@11251
   392
     ==> A=A' & B=B'"
paulson@11251
   393
by (blast dest!: A_trusts_YM3 dest: unique_session_keys Crypt_Spy_analz_bad)
paulson@11251
   394
paulson@11251
   395
paulson@11251
   396
lemma Auth_A_to_B_lemma [rule_format]:
paulson@11251
   397
     "evs \<in> yahalom
paulson@11251
   398
      ==> Key K \<notin> analz (knows Spy evs) -->
paulson@14207
   399
          K \<in> symKeys -->
paulson@11251
   400
          Crypt K (Nonce NB) \<in> parts (knows Spy evs) -->
paulson@11251
   401
          Crypt (shrK B) {|Agent A, Agent B, Key K, Nonce NB|}
paulson@11251
   402
            \<in> parts (knows Spy evs) -->
paulson@11251
   403
          B \<notin> bad -->
paulson@11251
   404
          (\<exists>X. Says A B {|X, Crypt K (Nonce NB)|} \<in> set evs)"
paulson@11251
   405
apply (erule yahalom.induct, force,
paulson@11251
   406
       frule_tac [6] YM4_parts_knows_Spy)
paulson@11251
   407
apply (analz_mono_contra, simp_all)
paulson@14207
   408
txt{*Fake*}
paulson@11251
   409
apply blast
paulson@14207
   410
txt{*YM3: by @{text new_keys_not_used}, the message
paulson@14207
   411
   @{term "Crypt K (Nonce NB)"} could not exist*}
paulson@11251
   412
apply (force dest!: Crypt_imp_keysFor)
paulson@14207
   413
txt{*YM4: was   @{term "Crypt K (Nonce NB)"} the very last message?  If so, 
paulson@14207
   414
    apply unicity of session keys; if not, use the induction hypothesis*}
paulson@14207
   415
apply (blast dest!: B_trusts_YM4_shrK dest: secure_unique_session_keys)
paulson@11251
   416
done
paulson@11251
   417
paulson@11251
   418
paulson@13907
   419
text{*If B receives YM4 then A has used nonce NB (and therefore is alive).
paulson@11251
   420
  Moreover, A associates K with NB (thus is talking about the same run).
paulson@13907
   421
  Other premises guarantee secrecy of K.*}
paulson@13907
   422
theorem YM4_imp_A_Said_YM3 [rule_format]:
paulson@11251
   423
     "[| Gets B {|Crypt (shrK B) {|Agent A, Agent B, Key K, Nonce NB|},
paulson@11251
   424
                  Crypt K (Nonce NB)|} \<in> set evs;
paulson@11251
   425
         (\<forall>NA. Notes Spy {|Nonce NA, Nonce NB, Key K|} \<notin> set evs);
paulson@14207
   426
         K \<in> symKeys;  A \<notin> bad;  B \<notin> bad;  evs \<in> yahalom |]
paulson@11251
   427
      ==> \<exists>X. Says A B {|X, Crypt K (Nonce NB)|} \<in> set evs"
paulson@11251
   428
by (blast intro: Auth_A_to_B_lemma
paulson@11251
   429
          dest: Spy_not_see_encrypted_key B_trusts_YM4_shrK)
paulson@2111
   430
paulson@2111
   431
end