src/HOL/Lattices.thy
author haftmann
Fri Mar 09 08:45:50 2007 +0100 (2007-03-09)
changeset 22422 ee19cdb07528
parent 22384 33a46e6c7f04
child 22454 c3654ba76a09
permissions -rw-r--r--
stepping towards uniform lattice theory development in HOL
haftmann@21249
     1
(*  Title:      HOL/Lattices.thy
haftmann@21249
     2
    ID:         $Id$
haftmann@21249
     3
    Author:     Tobias Nipkow
haftmann@21249
     4
*)
haftmann@21249
     5
nipkow@21733
     6
header {* Lattices via Locales *}
haftmann@21249
     7
haftmann@21249
     8
theory Lattices
haftmann@21249
     9
imports Orderings
haftmann@21249
    10
begin
haftmann@21249
    11
haftmann@21249
    12
subsection{* Lattices *}
haftmann@21249
    13
haftmann@21249
    14
text{* This theory of lattice locales only defines binary sup and inf
haftmann@21249
    15
operations. The extension to finite sets is done in theory @{text
haftmann@21249
    16
Finite_Set}. In the longer term it may be better to define arbitrary
haftmann@21249
    17
sups and infs via @{text THE}. *}
haftmann@21249
    18
haftmann@22422
    19
class lower_semilattice = order +
haftmann@21249
    20
  fixes inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70)
haftmann@22422
    21
  assumes inf_le1 [simp]: "x \<sqinter> y \<sqsubseteq> x" and inf_le2 [simp]: "x \<sqinter> y \<sqsubseteq> y"
nipkow@21733
    22
  and inf_greatest: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z"
haftmann@21249
    23
haftmann@22422
    24
class upper_semilattice = order +
haftmann@21249
    25
  fixes sup :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65)
haftmann@22422
    26
  assumes sup_ge1 [simp]: "x \<sqsubseteq> x \<squnion> y" and sup_ge2 [simp]: "y \<sqsubseteq> x \<squnion> y"
nipkow@21733
    27
  and sup_least: "y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<squnion> z \<sqsubseteq> x"
haftmann@21249
    28
haftmann@22422
    29
class lattice = lower_semilattice + upper_semilattice
haftmann@21249
    30
nipkow@21733
    31
subsubsection{* Intro and elim rules*}
nipkow@21733
    32
nipkow@21733
    33
context lower_semilattice
nipkow@21733
    34
begin
haftmann@21249
    35
haftmann@22422
    36
lemmas antisym_intro [intro!] = antisym
haftmann@22422
    37
lemmas (in -) [rule del] = antisym_intro
haftmann@21249
    38
nipkow@21734
    39
lemma le_infI1[intro]: "a \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x"
nipkow@21733
    40
apply(subgoal_tac "a \<sqinter> b \<sqsubseteq> a")
haftmann@22384
    41
 apply(blast intro: order_trans)
nipkow@21733
    42
apply simp
nipkow@21733
    43
done
haftmann@22422
    44
lemmas (in -) [rule del] = le_infI1
haftmann@21249
    45
nipkow@21734
    46
lemma le_infI2[intro]: "b \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x"
nipkow@21733
    47
apply(subgoal_tac "a \<sqinter> b \<sqsubseteq> b")
haftmann@22384
    48
 apply(blast intro: order_trans)
nipkow@21733
    49
apply simp
nipkow@21733
    50
done
haftmann@22422
    51
lemmas (in -) [rule del] = le_infI2
nipkow@21733
    52
nipkow@21734
    53
lemma le_infI[intro!]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<sqinter> b"
nipkow@21733
    54
by(blast intro: inf_greatest)
haftmann@22422
    55
lemmas (in -) [rule del] = le_infI
haftmann@21249
    56
haftmann@22422
    57
lemma le_infE [elim!]: "x \<sqsubseteq> a \<sqinter> b \<Longrightarrow> (x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> P) \<Longrightarrow> P"
haftmann@22422
    58
  by (blast intro: order_trans)
haftmann@22422
    59
lemmas (in -) [rule del] = le_infE
haftmann@21249
    60
nipkow@21734
    61
lemma le_inf_iff [simp]:
nipkow@21733
    62
 "x \<sqsubseteq> y \<sqinter> z = (x \<sqsubseteq> y \<and> x \<sqsubseteq> z)"
nipkow@21733
    63
by blast
nipkow@21733
    64
nipkow@21734
    65
lemma le_iff_inf: "(x \<sqsubseteq> y) = (x \<sqinter> y = x)"
nipkow@22168
    66
by(blast dest:eq_iff[THEN iffD1])
haftmann@21249
    67
nipkow@21733
    68
end
nipkow@21733
    69
nipkow@21733
    70
nipkow@21733
    71
context upper_semilattice
nipkow@21733
    72
begin
haftmann@21249
    73
haftmann@22422
    74
lemmas antisym_intro [intro!] = antisym
haftmann@22422
    75
lemmas (in -) [rule del] = antisym_intro
haftmann@21249
    76
nipkow@21734
    77
lemma le_supI1[intro]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> a \<squnion> b"
nipkow@21733
    78
apply(subgoal_tac "a \<sqsubseteq> a \<squnion> b")
haftmann@22384
    79
 apply(blast intro: order_trans)
nipkow@21733
    80
apply simp
nipkow@21733
    81
done
haftmann@22422
    82
lemmas (in -) [rule del] = le_supI1
haftmann@21249
    83
nipkow@21734
    84
lemma le_supI2[intro]: "x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<squnion> b"
nipkow@21733
    85
apply(subgoal_tac "b \<sqsubseteq> a \<squnion> b")
haftmann@22384
    86
 apply(blast intro: order_trans)
nipkow@21733
    87
apply simp
nipkow@21733
    88
done
haftmann@22422
    89
lemmas (in -) [rule del] = le_supI2
nipkow@21733
    90
nipkow@21734
    91
lemma le_supI[intro!]: "a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> a \<squnion> b \<sqsubseteq> x"
nipkow@21733
    92
by(blast intro: sup_least)
haftmann@22422
    93
lemmas (in -) [rule del] = le_supI
haftmann@21249
    94
nipkow@21734
    95
lemma le_supE[elim!]: "a \<squnion> b \<sqsubseteq> x \<Longrightarrow> (a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> P) \<Longrightarrow> P"
haftmann@22422
    96
  by (blast intro: order_trans)
haftmann@22422
    97
lemmas (in -) [rule del] = le_supE
haftmann@22422
    98
haftmann@21249
    99
nipkow@21734
   100
lemma ge_sup_conv[simp]:
nipkow@21733
   101
 "x \<squnion> y \<sqsubseteq> z = (x \<sqsubseteq> z \<and> y \<sqsubseteq> z)"
nipkow@21733
   102
by blast
nipkow@21733
   103
nipkow@21734
   104
lemma le_iff_sup: "(x \<sqsubseteq> y) = (x \<squnion> y = y)"
nipkow@22168
   105
by(blast dest:eq_iff[THEN iffD1])
nipkow@21734
   106
nipkow@21733
   107
end
nipkow@21733
   108
nipkow@21733
   109
nipkow@21733
   110
subsubsection{* Equational laws *}
haftmann@21249
   111
haftmann@21249
   112
nipkow@21733
   113
context lower_semilattice
nipkow@21733
   114
begin
nipkow@21733
   115
nipkow@21733
   116
lemma inf_commute: "(x \<sqinter> y) = (y \<sqinter> x)"
nipkow@21733
   117
by blast
nipkow@21733
   118
nipkow@21733
   119
lemma inf_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"
nipkow@21733
   120
by blast
nipkow@21733
   121
nipkow@21733
   122
lemma inf_idem[simp]: "x \<sqinter> x = x"
nipkow@21733
   123
by blast
nipkow@21733
   124
nipkow@21733
   125
lemma inf_left_idem[simp]: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y"
nipkow@21733
   126
by blast
nipkow@21733
   127
nipkow@21733
   128
lemma inf_absorb1: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x"
nipkow@21733
   129
by blast
nipkow@21733
   130
nipkow@21733
   131
lemma inf_absorb2: "y \<sqsubseteq> x \<Longrightarrow> x \<sqinter> y = y"
nipkow@21733
   132
by blast
nipkow@21733
   133
nipkow@21733
   134
lemma inf_left_commute: "x \<sqinter> (y \<sqinter> z) = y \<sqinter> (x \<sqinter> z)"
nipkow@21733
   135
by blast
nipkow@21733
   136
nipkow@21733
   137
lemmas inf_ACI = inf_commute inf_assoc inf_left_commute inf_left_idem
nipkow@21733
   138
nipkow@21733
   139
end
nipkow@21733
   140
nipkow@21733
   141
nipkow@21733
   142
context upper_semilattice
nipkow@21733
   143
begin
haftmann@21249
   144
nipkow@21733
   145
lemma sup_commute: "(x \<squnion> y) = (y \<squnion> x)"
nipkow@21733
   146
by blast
nipkow@21733
   147
nipkow@21733
   148
lemma sup_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"
nipkow@21733
   149
by blast
nipkow@21733
   150
nipkow@21733
   151
lemma sup_idem[simp]: "x \<squnion> x = x"
nipkow@21733
   152
by blast
nipkow@21733
   153
nipkow@21733
   154
lemma sup_left_idem[simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y"
nipkow@21733
   155
by blast
nipkow@21733
   156
nipkow@21733
   157
lemma sup_absorb1: "y \<sqsubseteq> x \<Longrightarrow> x \<squnion> y = x"
nipkow@21733
   158
by blast
nipkow@21733
   159
nipkow@21733
   160
lemma sup_absorb2: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y"
nipkow@21733
   161
by blast
haftmann@21249
   162
nipkow@21733
   163
lemma sup_left_commute: "x \<squnion> (y \<squnion> z) = y \<squnion> (x \<squnion> z)"
nipkow@21733
   164
by blast
nipkow@21733
   165
nipkow@21733
   166
lemmas sup_ACI = sup_commute sup_assoc sup_left_commute sup_left_idem
nipkow@21733
   167
nipkow@21733
   168
end
haftmann@21249
   169
nipkow@21733
   170
context lattice
nipkow@21733
   171
begin
nipkow@21733
   172
nipkow@21733
   173
lemma inf_sup_absorb: "x \<sqinter> (x \<squnion> y) = x"
nipkow@21733
   174
by(blast intro: antisym inf_le1 inf_greatest sup_ge1)
nipkow@21733
   175
nipkow@21733
   176
lemma sup_inf_absorb: "x \<squnion> (x \<sqinter> y) = x"
nipkow@21733
   177
by(blast intro: antisym sup_ge1 sup_least inf_le1)
nipkow@21733
   178
nipkow@21734
   179
lemmas ACI = inf_ACI sup_ACI
nipkow@21734
   180
nipkow@21734
   181
text{* Towards distributivity *}
haftmann@21249
   182
nipkow@21734
   183
lemma distrib_sup_le: "x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> (x \<squnion> z)"
nipkow@21734
   184
by blast
nipkow@21734
   185
nipkow@21734
   186
lemma distrib_inf_le: "(x \<sqinter> y) \<squnion> (x \<sqinter> z) \<sqsubseteq> x \<sqinter> (y \<squnion> z)"
nipkow@21734
   187
by blast
nipkow@21734
   188
nipkow@21734
   189
nipkow@21734
   190
text{* If you have one of them, you have them all. *}
haftmann@21249
   191
nipkow@21733
   192
lemma distrib_imp1:
haftmann@21249
   193
assumes D: "!!x y z. x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"
haftmann@21249
   194
shows "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"
haftmann@21249
   195
proof-
haftmann@21249
   196
  have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)" by(simp add:sup_inf_absorb)
haftmann@21249
   197
  also have "\<dots> = x \<squnion> (z \<sqinter> (x \<squnion> y))" by(simp add:D inf_commute sup_assoc)
haftmann@21249
   198
  also have "\<dots> = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)"
haftmann@21249
   199
    by(simp add:inf_sup_absorb inf_commute)
haftmann@21249
   200
  also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by(simp add:D)
haftmann@21249
   201
  finally show ?thesis .
haftmann@21249
   202
qed
haftmann@21249
   203
nipkow@21733
   204
lemma distrib_imp2:
haftmann@21249
   205
assumes D: "!!x y z. x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"
haftmann@21249
   206
shows "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"
haftmann@21249
   207
proof-
haftmann@21249
   208
  have "x \<sqinter> (y \<squnion> z) = (x \<sqinter> (x \<squnion> z)) \<sqinter> (y \<squnion> z)" by(simp add:inf_sup_absorb)
haftmann@21249
   209
  also have "\<dots> = x \<sqinter> (z \<squnion> (x \<sqinter> y))" by(simp add:D sup_commute inf_assoc)
haftmann@21249
   210
  also have "\<dots> = ((x \<sqinter> y) \<squnion> x) \<sqinter> ((x \<sqinter> y) \<squnion> z)"
haftmann@21249
   211
    by(simp add:sup_inf_absorb sup_commute)
haftmann@21249
   212
  also have "\<dots> = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" by(simp add:D)
haftmann@21249
   213
  finally show ?thesis .
haftmann@21249
   214
qed
haftmann@21249
   215
nipkow@21734
   216
(* seems unused *)
nipkow@21734
   217
lemma modular_le: "x \<sqsubseteq> z \<Longrightarrow> x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> z"
nipkow@21734
   218
by blast
nipkow@21734
   219
nipkow@21733
   220
end
haftmann@21249
   221
haftmann@21249
   222
haftmann@21249
   223
subsection{* Distributive lattices *}
haftmann@21249
   224
haftmann@21249
   225
locale distrib_lattice = lattice +
haftmann@21249
   226
  assumes sup_inf_distrib1: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"
haftmann@21249
   227
nipkow@21733
   228
context distrib_lattice
nipkow@21733
   229
begin
nipkow@21733
   230
nipkow@21733
   231
lemma sup_inf_distrib2:
haftmann@21249
   232
 "(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)"
haftmann@21249
   233
by(simp add:ACI sup_inf_distrib1)
haftmann@21249
   234
nipkow@21733
   235
lemma inf_sup_distrib1:
haftmann@21249
   236
 "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"
haftmann@21249
   237
by(rule distrib_imp2[OF sup_inf_distrib1])
haftmann@21249
   238
nipkow@21733
   239
lemma inf_sup_distrib2:
haftmann@21249
   240
 "(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)"
haftmann@21249
   241
by(simp add:ACI inf_sup_distrib1)
haftmann@21249
   242
nipkow@21733
   243
lemmas distrib =
haftmann@21249
   244
  sup_inf_distrib1 sup_inf_distrib2 inf_sup_distrib1 inf_sup_distrib2
haftmann@21249
   245
nipkow@21733
   246
end
nipkow@21733
   247
haftmann@21249
   248
haftmann@21381
   249
subsection {* min/max on linear orders as special case of inf/sup *}
haftmann@21249
   250
haftmann@21249
   251
interpretation min_max:
haftmann@21381
   252
  distrib_lattice ["op \<le>" "op <" "min \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> 'a" "max"]
haftmann@21249
   253
apply unfold_locales
haftmann@21381
   254
apply (simp add: min_def linorder_not_le order_less_imp_le)
haftmann@21381
   255
apply (simp add: min_def linorder_not_le order_less_imp_le)
haftmann@21381
   256
apply (simp add: min_def linorder_not_le order_less_imp_le)
haftmann@21381
   257
apply (simp add: max_def linorder_not_le order_less_imp_le)
haftmann@21381
   258
apply (simp add: max_def linorder_not_le order_less_imp_le)
haftmann@21381
   259
unfolding min_def max_def by auto
haftmann@21249
   260
haftmann@22422
   261
text {*
haftmann@22422
   262
  Now we have inherited antisymmetry as an intro-rule on all
haftmann@22422
   263
  linear orders. This is a problem because it applies to bool, which is
haftmann@22422
   264
  undesirable.
haftmann@22422
   265
*}
nipkow@21733
   266
haftmann@22422
   267
lemmas [rule del] = min_max.antisym_intro  min_max.le_infI min_max.le_supI
haftmann@22422
   268
  min_max.le_supE min_max.le_infE min_max.le_supI1 min_max.le_supI2
haftmann@22422
   269
  min_max.le_infI1 min_max.le_infI2
nipkow@21733
   270
haftmann@21249
   271
lemmas le_maxI1 = min_max.sup_ge1
haftmann@21249
   272
lemmas le_maxI2 = min_max.sup_ge2
haftmann@21381
   273
 
haftmann@21249
   274
lemmas max_ac = min_max.sup_assoc min_max.sup_commute
haftmann@22422
   275
  mk_left_commute [of max, OF min_max.sup_assoc min_max.sup_commute]
haftmann@21249
   276
haftmann@21249
   277
lemmas min_ac = min_max.inf_assoc min_max.inf_commute
haftmann@22422
   278
  mk_left_commute [of min, OF min_max.inf_assoc min_max.inf_commute]
haftmann@21249
   279
nipkow@21733
   280
text {* ML legacy bindings *}
nipkow@21733
   281
nipkow@21733
   282
ML {*
wenzelm@22139
   283
val Least_def = @{thm Least_def}
wenzelm@22139
   284
val Least_equality = @{thm Least_equality}
wenzelm@22139
   285
val min_def = @{thm min_def}
wenzelm@22139
   286
val min_of_mono = @{thm min_of_mono}
wenzelm@22139
   287
val max_def = @{thm max_def}
wenzelm@22139
   288
val max_of_mono = @{thm max_of_mono}
wenzelm@22139
   289
val min_leastL = @{thm min_leastL}
wenzelm@22139
   290
val max_leastL = @{thm max_leastL}
wenzelm@22139
   291
val min_leastR = @{thm min_leastR}
wenzelm@22139
   292
val max_leastR = @{thm max_leastR}
wenzelm@22139
   293
val le_max_iff_disj = @{thm le_max_iff_disj}
wenzelm@22139
   294
val le_maxI1 = @{thm le_maxI1}
wenzelm@22139
   295
val le_maxI2 = @{thm le_maxI2}
wenzelm@22139
   296
val less_max_iff_disj = @{thm less_max_iff_disj}
wenzelm@22139
   297
val max_less_iff_conj = @{thm max_less_iff_conj}
wenzelm@22139
   298
val min_less_iff_conj = @{thm min_less_iff_conj}
wenzelm@22139
   299
val min_le_iff_disj = @{thm min_le_iff_disj}
wenzelm@22139
   300
val min_less_iff_disj = @{thm min_less_iff_disj}
wenzelm@22139
   301
val split_min = @{thm split_min}
wenzelm@22139
   302
val split_max = @{thm split_max}
nipkow@21733
   303
*}
nipkow@21733
   304
haftmann@21249
   305
end