hoelzl@30439
|
1 |
(* Title: HOL/Decision_Procs/cooper_tac.ML
|
haftmann@29788
|
2 |
Author: Amine Chaieb, TU Muenchen
|
haftmann@29788
|
3 |
*)
|
haftmann@29788
|
4 |
|
haftmann@29788
|
5 |
structure Cooper_Tac =
|
chaieb@23274
|
6 |
struct
|
chaieb@23274
|
7 |
|
chaieb@23274
|
8 |
val trace = ref false;
|
chaieb@23274
|
9 |
fun trace_msg s = if !trace then tracing s else ();
|
chaieb@23274
|
10 |
|
chaieb@23274
|
11 |
val cooper_ss = @{simpset};
|
chaieb@23274
|
12 |
|
chaieb@23274
|
13 |
val nT = HOLogic.natT;
|
huffman@26075
|
14 |
val binarith = @{thms normalize_bin_simps};
|
chaieb@23318
|
15 |
val comp_arith = binarith @ simp_thms
|
chaieb@23274
|
16 |
|
haftmann@27651
|
17 |
val zdvd_int = @{thm zdvd_int};
|
haftmann@27651
|
18 |
val zdiff_int_split = @{thm zdiff_int_split};
|
haftmann@27651
|
19 |
val all_nat = @{thm all_nat};
|
haftmann@27651
|
20 |
val ex_nat = @{thm ex_nat};
|
haftmann@27651
|
21 |
val number_of1 = @{thm number_of1};
|
haftmann@27651
|
22 |
val number_of2 = @{thm number_of2};
|
haftmann@27651
|
23 |
val split_zdiv = @{thm split_zdiv};
|
haftmann@27651
|
24 |
val split_zmod = @{thm split_zmod};
|
haftmann@27651
|
25 |
val mod_div_equality' = @{thm mod_div_equality'};
|
haftmann@27651
|
26 |
val split_div' = @{thm split_div'};
|
haftmann@27651
|
27 |
val Suc_plus1 = @{thm Suc_plus1};
|
haftmann@27651
|
28 |
val imp_le_cong = @{thm imp_le_cong};
|
haftmann@27651
|
29 |
val conj_le_cong = @{thm conj_le_cong};
|
nipkow@30034
|
30 |
val mod_add_left_eq = @{thm mod_add_left_eq} RS sym;
|
nipkow@30034
|
31 |
val mod_add_right_eq = @{thm mod_add_right_eq} RS sym;
|
nipkow@30224
|
32 |
val mod_add_eq = @{thm mod_add_eq} RS sym;
|
haftmann@27651
|
33 |
val nat_div_add_eq = @{thm div_add1_eq} RS sym;
|
haftmann@27651
|
34 |
val int_div_add_eq = @{thm zdiv_zadd1_eq} RS sym;
|
chaieb@23274
|
35 |
|
chaieb@23274
|
36 |
fun prepare_for_linz q fm =
|
chaieb@23274
|
37 |
let
|
chaieb@23274
|
38 |
val ps = Logic.strip_params fm
|
chaieb@23274
|
39 |
val hs = map HOLogic.dest_Trueprop (Logic.strip_assums_hyp fm)
|
chaieb@23274
|
40 |
val c = HOLogic.dest_Trueprop (Logic.strip_assums_concl fm)
|
chaieb@23274
|
41 |
fun mk_all ((s, T), (P,n)) =
|
chaieb@23274
|
42 |
if 0 mem loose_bnos P then
|
chaieb@23274
|
43 |
(HOLogic.all_const T $ Abs (s, T, P), n)
|
chaieb@23274
|
44 |
else (incr_boundvars ~1 P, n-1)
|
chaieb@23274
|
45 |
fun mk_all2 (v, t) = HOLogic.all_const (fastype_of v) $ lambda v t;
|
haftmann@27651
|
46 |
val rhs = hs
|
chaieb@23274
|
47 |
val np = length ps
|
chaieb@23274
|
48 |
val (fm',np) = foldr (fn ((x, T), (fm,n)) => mk_all ((x, T), (fm,n)))
|
chaieb@23274
|
49 |
(foldr HOLogic.mk_imp c rhs, np) ps
|
chaieb@23274
|
50 |
val (vs, _) = List.partition (fn t => q orelse (type_of t) = nT)
|
wenzelm@29265
|
51 |
(OldTerm.term_frees fm' @ OldTerm.term_vars fm');
|
chaieb@23274
|
52 |
val fm2 = foldr mk_all2 fm' vs
|
chaieb@23274
|
53 |
in (fm2, np + length vs, length rhs) end;
|
chaieb@23274
|
54 |
|
chaieb@23274
|
55 |
(*Object quantifier to meta --*)
|
chaieb@23274
|
56 |
fun spec_step n th = if (n=0) then th else (spec_step (n-1) th) RS spec ;
|
chaieb@23274
|
57 |
|
chaieb@23274
|
58 |
(* object implication to meta---*)
|
chaieb@23274
|
59 |
fun mp_step n th = if (n=0) then th else (mp_step (n-1) th) RS mp;
|
chaieb@23274
|
60 |
|
chaieb@23274
|
61 |
|
wenzelm@23590
|
62 |
fun linz_tac ctxt q i = ObjectLogic.atomize_prems_tac i THEN (fn st =>
|
chaieb@23274
|
63 |
let
|
chaieb@23274
|
64 |
val g = List.nth (prems_of st, i - 1)
|
chaieb@23274
|
65 |
val thy = ProofContext.theory_of ctxt
|
chaieb@23274
|
66 |
(* Transform the term*)
|
chaieb@23274
|
67 |
val (t,np,nh) = prepare_for_linz q g
|
chaieb@23274
|
68 |
(* Some simpsets for dealing with mod div abs and nat*)
|
chaieb@23274
|
69 |
val mod_div_simpset = HOL_basic_ss
|
nipkow@30224
|
70 |
addsimps [refl,mod_add_eq, mod_add_left_eq,
|
nipkow@30224
|
71 |
mod_add_right_eq,
|
chaieb@23274
|
72 |
nat_div_add_eq, int_div_add_eq,
|
huffman@23469
|
73 |
@{thm mod_self}, @{thm "zmod_self"},
|
haftmann@27651
|
74 |
@{thm mod_by_0}, @{thm div_by_0},
|
chaieb@23274
|
75 |
@{thm "zdiv_zero"}, @{thm "zmod_zero"}, @{thm "div_0"}, @{thm "mod_0"},
|
nipkow@30031
|
76 |
@{thm "div_by_1"}, @{thm "mod_by_1"}, @{thm "div_1"}, @{thm "mod_1"},
|
chaieb@23274
|
77 |
Suc_plus1]
|
haftmann@23880
|
78 |
addsimps @{thms add_ac}
|
haftmann@30939
|
79 |
addsimprocs [cancel_div_mod_nat_proc, cancel_div_mod_int_proc]
|
chaieb@23274
|
80 |
val simpset0 = HOL_basic_ss
|
chaieb@23274
|
81 |
addsimps [mod_div_equality', Suc_plus1]
|
chaieb@23274
|
82 |
addsimps comp_arith
|
chaieb@23274
|
83 |
addsplits [split_zdiv, split_zmod, split_div', @{thm "split_min"}, @{thm "split_max"}]
|
chaieb@23274
|
84 |
(* Simp rules for changing (n::int) to int n *)
|
chaieb@23274
|
85 |
val simpset1 = HOL_basic_ss
|
haftmann@31070
|
86 |
addsimps [@{thm nat_number_of_def}, zdvd_int] @ map (fn r => r RS sym)
|
huffman@23364
|
87 |
[@{thm int_int_eq}, @{thm zle_int}, @{thm zless_int}, @{thm zadd_int}, @{thm zmult_int}]
|
chaieb@23274
|
88 |
addsplits [zdiff_int_split]
|
chaieb@23274
|
89 |
(*simp rules for elimination of int n*)
|
chaieb@23274
|
90 |
|
chaieb@23274
|
91 |
val simpset2 = HOL_basic_ss
|
huffman@23364
|
92 |
addsimps [@{thm nat_0_le}, @{thm all_nat}, @{thm ex_nat}, @{thm number_of1}, @{thm number_of2}, @{thm int_0}, @{thm int_1}]
|
huffman@23364
|
93 |
addcongs [@{thm conj_le_cong}, @{thm imp_le_cong}]
|
chaieb@23274
|
94 |
(* simp rules for elimination of abs *)
|
huffman@23364
|
95 |
val simpset3 = HOL_basic_ss addsplits [@{thm abs_split}]
|
chaieb@23274
|
96 |
val ct = cterm_of thy (HOLogic.mk_Trueprop t)
|
chaieb@23274
|
97 |
(* Theorem for the nat --> int transformation *)
|
chaieb@23274
|
98 |
val pre_thm = Seq.hd (EVERY
|
chaieb@23274
|
99 |
[simp_tac mod_div_simpset 1, simp_tac simpset0 1,
|
chaieb@23274
|
100 |
TRY (simp_tac simpset1 1), TRY (simp_tac simpset2 1),
|
chaieb@23274
|
101 |
TRY (simp_tac simpset3 1), TRY (simp_tac cooper_ss 1)]
|
chaieb@23274
|
102 |
(trivial ct))
|
chaieb@23274
|
103 |
fun assm_tac i = REPEAT_DETERM_N nh (assume_tac i)
|
chaieb@23274
|
104 |
(* The result of the quantifier elimination *)
|
chaieb@23274
|
105 |
val (th, tac) = case (prop_of pre_thm) of
|
chaieb@23274
|
106 |
Const ("==>", _) $ (Const ("Trueprop", _) $ t1) $ _ =>
|
wenzelm@28290
|
107 |
let val pth = linzqe_oracle (cterm_of thy (Pattern.eta_long [] t1))
|
chaieb@23274
|
108 |
in
|
chaieb@23274
|
109 |
((pth RS iffD2) RS pre_thm,
|
chaieb@23274
|
110 |
assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i))
|
chaieb@23274
|
111 |
end
|
chaieb@23274
|
112 |
| _ => (pre_thm, assm_tac i)
|
chaieb@23274
|
113 |
in (rtac (((mp_step nh) o (spec_step np)) th) i
|
chaieb@23274
|
114 |
THEN tac) st
|
chaieb@23274
|
115 |
end handle Subscript => no_tac st);
|
chaieb@23274
|
116 |
|
chaieb@23274
|
117 |
fun linz_args meth =
|
chaieb@23274
|
118 |
let val parse_flag =
|
chaieb@23274
|
119 |
Args.$$$ "no_quantify" >> (K (K false));
|
chaieb@23274
|
120 |
in
|
chaieb@23274
|
121 |
Method.simple_args
|
chaieb@23274
|
122 |
(Scan.optional (Args.$$$ "(" |-- Scan.repeat1 parse_flag --| Args.$$$ ")") [] >>
|
chaieb@23274
|
123 |
curry (Library.foldl op |>) true)
|
wenzelm@30509
|
124 |
(fn q => fn ctxt => meth ctxt q)
|
chaieb@23274
|
125 |
end;
|
chaieb@23274
|
126 |
|
wenzelm@30509
|
127 |
fun linz_method ctxt q = SIMPLE_METHOD' (linz_tac ctxt q);
|
chaieb@23274
|
128 |
|
chaieb@23274
|
129 |
val setup =
|
chaieb@23274
|
130 |
Method.add_method ("cooper",
|
chaieb@23274
|
131 |
linz_args linz_method,
|
chaieb@23274
|
132 |
"decision procedure for linear integer arithmetic");
|
chaieb@23274
|
133 |
|
wenzelm@23590
|
134 |
end
|