src/HOL/Tools/Predicate_Compile/predicate_compile_aux.ML
author blanchet
Wed Sep 25 16:43:46 2013 +0200 (2013-09-25)
changeset 53887 ee91bd2a506a
parent 52230 1105b3b5aa77
child 54742 7a86358a3c0b
permissions -rw-r--r--
filled in gap in library offering
wenzelm@33265
     1
(*  Title:      HOL/Tools/Predicate_Compile/predicate_compile_aux.ML
wenzelm@33265
     2
    Author:     Lukas Bulwahn, TU Muenchen
bulwahn@33250
     3
wenzelm@33265
     4
Auxilary functions for predicate compiler.
bulwahn@33250
     5
*)
bulwahn@33250
     6
bulwahn@36047
     7
signature PREDICATE_COMPILE_AUX =
bulwahn@36047
     8
sig
bulwahn@36047
     9
  (* general functions *)
bulwahn@36047
    10
  val apfst3 : ('a -> 'd) -> 'a * 'b * 'c -> 'd * 'b * 'c
bulwahn@36047
    11
  val apsnd3 : ('b -> 'd) -> 'a * 'b * 'c -> 'a * 'd * 'c
bulwahn@36047
    12
  val aptrd3 : ('c -> 'd) -> 'a * 'b * 'c -> 'a * 'b * 'd
bulwahn@36047
    13
  val find_indices : ('a -> bool) -> 'a list -> int list
bulwahn@36047
    14
  (* mode *)
bulwahn@36047
    15
  datatype mode = Bool | Input | Output | Pair of mode * mode | Fun of mode * mode
bulwahn@36047
    16
  val eq_mode : mode * mode -> bool
bulwahn@39311
    17
  val mode_ord: mode * mode -> order
bulwahn@36047
    18
  val list_fun_mode : mode list -> mode
bulwahn@36047
    19
  val strip_fun_mode : mode -> mode list
bulwahn@36047
    20
  val dest_fun_mode : mode -> mode list
bulwahn@36047
    21
  val dest_tuple_mode : mode -> mode list
bulwahn@36047
    22
  val all_modes_of_typ : typ -> mode list
bulwahn@36047
    23
  val all_smodes_of_typ : typ -> mode list
bulwahn@36047
    24
  val fold_map_aterms_prodT : ('a -> 'a -> 'a) -> (typ -> 'b -> 'a * 'b) -> typ -> 'b -> 'a * 'b
bulwahn@36047
    25
  val map_filter_prod : (term -> term option) -> term -> term option
bulwahn@36047
    26
  val replace_ho_args : mode -> term list -> term list -> term list
bulwahn@36047
    27
  val ho_arg_modes_of : mode -> mode list
bulwahn@36047
    28
  val ho_argsT_of : mode -> typ list -> typ list
bulwahn@36047
    29
  val ho_args_of : mode -> term list -> term list
bulwahn@39299
    30
  val ho_args_of_typ : typ -> term list -> term list
bulwahn@39299
    31
  val ho_argsT_of_typ : typ list -> typ list
bulwahn@36047
    32
  val split_map_mode : (mode -> term -> term option * term option)
bulwahn@36047
    33
    -> mode -> term list -> term list * term list
bulwahn@36047
    34
  val split_map_modeT : (mode -> typ -> typ option * typ option)
bulwahn@36047
    35
    -> mode -> typ list -> typ list * typ list
bulwahn@36047
    36
  val split_mode : mode -> term list -> term list * term list
bulwahn@40139
    37
  val split_modeT : mode -> typ list -> typ list * typ list
bulwahn@36047
    38
  val string_of_mode : mode -> string
bulwahn@36047
    39
  val ascii_string_of_mode : mode -> string
bulwahn@36047
    40
  (* premises *)
bulwahn@36047
    41
  datatype indprem = Prem of term | Negprem of term | Sidecond of term
bulwahn@36047
    42
    | Generator of (string * typ)
bulwahn@36251
    43
  val dest_indprem : indprem -> term
bulwahn@36254
    44
  val map_indprem : (term -> term) -> indprem -> indprem
bulwahn@36047
    45
  (* general syntactic functions *)
bulwahn@36047
    46
  val is_equationlike : thm -> bool
bulwahn@36047
    47
  val is_pred_equation : thm -> bool
bulwahn@36047
    48
  val is_intro : string -> thm -> bool
bulwahn@36047
    49
  val is_predT : typ -> bool
bulwahn@36047
    50
  val is_constrt : theory -> term -> bool
bulwahn@36047
    51
  val is_constr : Proof.context -> string -> bool
bulwahn@42094
    52
  val strip_ex : term -> (string * typ) list * term
bulwahn@36047
    53
  val focus_ex : term -> Name.context -> ((string * typ) list * term) * Name.context
bulwahn@36047
    54
  val strip_all : term -> (string * typ) list * term
bulwahn@40101
    55
  val strip_intro_concl : thm -> term * term list
bulwahn@36047
    56
  (* introduction rule combinators *)
bulwahn@36047
    57
  val map_atoms : (term -> term) -> term -> term
bulwahn@36047
    58
  val fold_atoms : (term -> 'a -> 'a) -> term -> 'a -> 'a
bulwahn@36047
    59
  val fold_map_atoms : (term -> 'a -> term * 'a) -> term -> 'a -> term * 'a
bulwahn@36047
    60
  val maps_premises : (term -> term list) -> term -> term
bulwahn@36047
    61
  val map_concl : (term -> term) -> term -> term
bulwahn@36047
    62
  val map_term : theory -> (term -> term) -> thm -> thm
bulwahn@36047
    63
  (* split theorems of case expressions *)
bulwahn@36047
    64
  val prepare_split_thm : Proof.context -> thm -> thm
bulwahn@36047
    65
  val find_split_thm : theory -> term -> thm option
bulwahn@36047
    66
  (* datastructures and setup for generic compilation *)
bulwahn@36047
    67
  datatype compilation_funs = CompilationFuns of {
bulwahn@45461
    68
    mk_monadT : typ -> typ,
bulwahn@45461
    69
    dest_monadT : typ -> typ,
bulwahn@45461
    70
    mk_empty : typ -> term,
bulwahn@36047
    71
    mk_single : term -> term,
bulwahn@36047
    72
    mk_bind : term * term -> term,
bulwahn@45461
    73
    mk_plus : term * term -> term,
bulwahn@36047
    74
    mk_if : term -> term,
bulwahn@36049
    75
    mk_iterate_upto : typ -> term * term * term -> term,
bulwahn@36047
    76
    mk_not : term -> term,
bulwahn@36047
    77
    mk_map : typ -> typ -> term -> term -> term
bulwahn@36047
    78
  };
bulwahn@45461
    79
  val mk_monadT : compilation_funs -> typ -> typ
bulwahn@45461
    80
  val dest_monadT : compilation_funs -> typ -> typ
bulwahn@45461
    81
  val mk_empty : compilation_funs -> typ -> term
bulwahn@36047
    82
  val mk_single : compilation_funs -> term -> term
bulwahn@36047
    83
  val mk_bind : compilation_funs -> term * term -> term
bulwahn@45461
    84
  val mk_plus : compilation_funs -> term * term -> term
bulwahn@36047
    85
  val mk_if : compilation_funs -> term -> term
bulwahn@36049
    86
  val mk_iterate_upto : compilation_funs -> typ -> term * term * term -> term
bulwahn@36047
    87
  val mk_not : compilation_funs -> term -> term
bulwahn@36047
    88
  val mk_map : compilation_funs -> typ -> typ -> term -> term -> term
bulwahn@36047
    89
  val funT_of : compilation_funs -> mode -> typ -> typ
bulwahn@36047
    90
  (* Different compilations *)
bulwahn@36047
    91
  datatype compilation = Pred | Depth_Limited | Random | Depth_Limited_Random | DSeq | Annotated
bulwahn@45450
    92
    | Pos_Random_DSeq | Neg_Random_DSeq | New_Pos_Random_DSeq | New_Neg_Random_DSeq 
bulwahn@45450
    93
    | Pos_Generator_DSeq | Neg_Generator_DSeq | Pos_Generator_CPS | Neg_Generator_CPS
bulwahn@36047
    94
  val negative_compilation_of : compilation -> compilation
bulwahn@36047
    95
  val compilation_for_polarity : bool -> compilation -> compilation
bulwahn@40049
    96
  val is_depth_limited_compilation : compilation -> bool 
bulwahn@36047
    97
  val string_of_compilation : compilation -> string
bulwahn@36047
    98
  val compilation_names : (string * compilation) list
bulwahn@36047
    99
  val non_random_compilations : compilation list
bulwahn@36047
   100
  val random_compilations : compilation list
bulwahn@36047
   101
  (* Different options for compiler *)
bulwahn@36047
   102
  datatype options = Options of {  
bulwahn@36047
   103
    expected_modes : (string * mode list) option,
bulwahn@39382
   104
    proposed_modes : (string * mode list) list,
bulwahn@36047
   105
    proposed_names : ((string * mode) * string) list,
bulwahn@36047
   106
    show_steps : bool,
bulwahn@36047
   107
    show_proof_trace : bool,
bulwahn@36047
   108
    show_intermediate_results : bool,
bulwahn@36047
   109
    show_mode_inference : bool,
bulwahn@36047
   110
    show_modes : bool,
bulwahn@36047
   111
    show_compilation : bool,
bulwahn@36047
   112
    show_caught_failures : bool,
bulwahn@39383
   113
    show_invalid_clauses : bool,
bulwahn@36047
   114
    skip_proof : bool,
bulwahn@36047
   115
    no_topmost_reordering : bool,
bulwahn@36047
   116
    function_flattening : bool,
bulwahn@36047
   117
    fail_safe_function_flattening : bool,
bulwahn@36248
   118
    specialise : bool,
bulwahn@36047
   119
    no_higher_order_predicate : string list,
bulwahn@36047
   120
    inductify : bool,
bulwahn@36254
   121
    detect_switches : bool,
bulwahn@40048
   122
    smart_depth_limiting : bool,
bulwahn@36047
   123
    compilation : compilation
bulwahn@36047
   124
  };
bulwahn@36047
   125
  val expected_modes : options -> (string * mode list) option
bulwahn@39382
   126
  val proposed_modes : options -> string -> mode list option
bulwahn@36047
   127
  val proposed_names : options -> string -> mode -> string option
bulwahn@36047
   128
  val show_steps : options -> bool
bulwahn@36047
   129
  val show_proof_trace : options -> bool
bulwahn@36047
   130
  val show_intermediate_results : options -> bool
bulwahn@36047
   131
  val show_mode_inference : options -> bool
bulwahn@36047
   132
  val show_modes : options -> bool
bulwahn@36047
   133
  val show_compilation : options -> bool
bulwahn@36047
   134
  val show_caught_failures : options -> bool
bulwahn@39383
   135
  val show_invalid_clauses : options -> bool
bulwahn@36047
   136
  val skip_proof : options -> bool
bulwahn@36047
   137
  val no_topmost_reordering : options -> bool
bulwahn@36047
   138
  val function_flattening : options -> bool
bulwahn@36047
   139
  val fail_safe_function_flattening : options -> bool
bulwahn@36248
   140
  val specialise : options -> bool
bulwahn@36047
   141
  val no_higher_order_predicate : options -> string list
bulwahn@36047
   142
  val is_inductify : options -> bool
bulwahn@36254
   143
  val detect_switches : options -> bool
bulwahn@40048
   144
  val smart_depth_limiting : options -> bool
bulwahn@36047
   145
  val compilation : options -> compilation
bulwahn@36047
   146
  val default_options : options
bulwahn@36047
   147
  val bool_options : string list
bulwahn@36047
   148
  val print_step : options -> string -> unit
bulwahn@39657
   149
  (* conversions *)
bulwahn@39657
   150
  val imp_prems_conv : conv -> conv
bulwahn@36047
   151
  (* simple transformations *)
bulwahn@39787
   152
  val split_conjuncts_in_assms : Proof.context -> thm -> thm
bulwahn@40052
   153
  val dest_conjunct_prem : thm -> thm list
bulwahn@36047
   154
  val expand_tuples : theory -> thm -> thm
bulwahn@39802
   155
  val case_betapply : theory -> term -> term
bulwahn@36047
   156
  val eta_contract_ho_arguments : theory -> thm -> thm
bulwahn@36047
   157
  val remove_equalities : theory -> thm -> thm
bulwahn@36246
   158
  val remove_pointless_clauses : thm -> thm list
bulwahn@36246
   159
  val peephole_optimisation : theory -> thm -> thm option
bulwahn@40101
   160
  (* auxillary *)
bulwahn@40101
   161
  val unify_consts : theory -> term list -> term list -> (term list * term list)
bulwahn@40101
   162
  val mk_casesrule : Proof.context -> term -> thm list -> term
bulwahn@40101
   163
  val preprocess_intro : theory -> thm -> thm
bulwahn@40101
   164
  
bulwahn@39541
   165
  val define_quickcheck_predicate :
bulwahn@40052
   166
    term -> theory -> (((string * typ) * (string * typ) list) * thm) * theory
bulwahn@36047
   167
end;
bulwahn@34948
   168
bulwahn@36047
   169
structure Predicate_Compile_Aux : PREDICATE_COMPILE_AUX =
bulwahn@33250
   170
struct
bulwahn@33250
   171
bulwahn@34948
   172
(* general functions *)
bulwahn@34948
   173
bulwahn@34948
   174
fun apfst3 f (x, y, z) = (f x, y, z)
bulwahn@34948
   175
fun apsnd3 f (x, y, z) = (x, f y, z)
bulwahn@34948
   176
fun aptrd3 f (x, y, z) = (x, y, f z)
bulwahn@34948
   177
bulwahn@34948
   178
fun comb_option f (SOME x1, SOME x2) = SOME (f (x1, x2))
bulwahn@34948
   179
  | comb_option f (NONE, SOME x2) = SOME x2
bulwahn@34948
   180
  | comb_option f (SOME x1, NONE) = SOME x1
bulwahn@34948
   181
  | comb_option f (NONE, NONE) = NONE
bulwahn@34948
   182
bulwahn@35885
   183
fun map2_optional f (x :: xs) (y :: ys) = f x (SOME y) :: (map2_optional f xs ys)
bulwahn@34948
   184
  | map2_optional f (x :: xs) [] = (f x NONE) :: (map2_optional f xs [])
bulwahn@34948
   185
  | map2_optional f [] [] = []
bulwahn@34948
   186
bulwahn@34948
   187
fun find_indices f xs =
haftmann@46662
   188
  map_filter (fn (i, true) => SOME i | (_, false) => NONE) (map_index (apsnd f) xs)
bulwahn@33328
   189
bulwahn@33328
   190
(* mode *)
bulwahn@33328
   191
bulwahn@34948
   192
datatype mode = Bool | Input | Output | Pair of mode * mode | Fun of mode * mode
bulwahn@33619
   193
bulwahn@33623
   194
(* equality of instantiatedness with respect to equivalences:
bulwahn@33623
   195
  Pair Input Input == Input and Pair Output Output == Output *)
bulwahn@34948
   196
fun eq_mode (Fun (m1, m2), Fun (m3, m4)) = eq_mode (m1, m3) andalso eq_mode (m2, m4)
bulwahn@34948
   197
  | eq_mode (Pair (m1, m2), Pair (m3, m4)) = eq_mode (m1, m3) andalso eq_mode (m2, m4)
bulwahn@34948
   198
  | eq_mode (Pair (m1, m2), Input) = eq_mode (m1, Input) andalso eq_mode (m2, Input)
bulwahn@34948
   199
  | eq_mode (Pair (m1, m2), Output) = eq_mode (m1, Output) andalso eq_mode (m2, Output)
bulwahn@34948
   200
  | eq_mode (Input, Pair (m1, m2)) = eq_mode (Input, m1) andalso eq_mode (Input, m2)
bulwahn@34948
   201
  | eq_mode (Output, Pair (m1, m2)) = eq_mode (Output, m1) andalso eq_mode (Output, m2)
bulwahn@34948
   202
  | eq_mode (Input, Input) = true
bulwahn@34948
   203
  | eq_mode (Output, Output) = true
bulwahn@34948
   204
  | eq_mode (Bool, Bool) = true
bulwahn@34948
   205
  | eq_mode _ = false
bulwahn@33623
   206
bulwahn@39311
   207
fun mode_ord (Input, Output) = LESS
bulwahn@39311
   208
  | mode_ord (Output, Input) = GREATER
bulwahn@39311
   209
  | mode_ord (Input, Input) = EQUAL
bulwahn@39311
   210
  | mode_ord (Output, Output) = EQUAL
bulwahn@39311
   211
  | mode_ord (Bool, Bool) = EQUAL
bulwahn@39311
   212
  | mode_ord (Pair (m1, m2), Pair (m3, m4)) = prod_ord mode_ord mode_ord ((m1, m2), (m3, m4))
bulwahn@39311
   213
  | mode_ord (Fun (m1, m2), Fun (m3, m4)) = prod_ord mode_ord mode_ord ((m1, m2), (m3, m4))
bulwahn@39311
   214
 
bulwahn@36035
   215
fun list_fun_mode [] = Bool
bulwahn@36035
   216
  | list_fun_mode (m :: ms) = Fun (m, list_fun_mode ms)
bulwahn@36035
   217
bulwahn@33619
   218
(* name: binder_modes? *)
bulwahn@33619
   219
fun strip_fun_mode (Fun (mode, mode')) = mode :: strip_fun_mode mode'
bulwahn@33619
   220
  | strip_fun_mode Bool = []
bulwahn@35885
   221
  | strip_fun_mode _ = raise Fail "Bad mode for strip_fun_mode"
bulwahn@33619
   222
bulwahn@36047
   223
(* name: strip_fun_mode? *)
bulwahn@33619
   224
fun dest_fun_mode (Fun (mode, mode')) = mode :: dest_fun_mode mode'
bulwahn@33619
   225
  | dest_fun_mode mode = [mode]
bulwahn@33619
   226
bulwahn@33619
   227
fun dest_tuple_mode (Pair (mode, mode')) = mode :: dest_tuple_mode mode'
bulwahn@33619
   228
  | dest_tuple_mode _ = []
bulwahn@33619
   229
bulwahn@35324
   230
fun all_modes_of_typ' (T as Type ("fun", _)) = 
bulwahn@35324
   231
  let
bulwahn@35324
   232
    val (S, U) = strip_type T
bulwahn@35324
   233
  in
bulwahn@35324
   234
    if U = HOLogic.boolT then
bulwahn@35324
   235
      fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2)
bulwahn@35324
   236
        (map all_modes_of_typ' S) [Bool]
bulwahn@35324
   237
    else
bulwahn@35324
   238
      [Input, Output]
bulwahn@35324
   239
  end
haftmann@37678
   240
  | all_modes_of_typ' (Type (@{type_name Product_Type.prod}, [T1, T2])) = 
bulwahn@35324
   241
    map_product (curry Pair) (all_modes_of_typ' T1) (all_modes_of_typ' T2)
bulwahn@35324
   242
  | all_modes_of_typ' _ = [Input, Output]
bulwahn@35324
   243
bulwahn@35324
   244
fun all_modes_of_typ (T as Type ("fun", _)) =
bulwahn@35885
   245
    let
bulwahn@35885
   246
      val (S, U) = strip_type T
bulwahn@35885
   247
    in
bulwahn@35885
   248
      if U = @{typ bool} then
bulwahn@35885
   249
        fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2)
bulwahn@35885
   250
          (map all_modes_of_typ' S) [Bool]
bulwahn@35885
   251
      else
bulwahn@39192
   252
        raise Fail "Invocation of all_modes_of_typ with a non-predicate type"
bulwahn@35885
   253
    end
bulwahn@35885
   254
  | all_modes_of_typ @{typ bool} = [Bool]
haftmann@46662
   255
  | all_modes_of_typ _ =
bulwahn@39192
   256
    raise Fail "Invocation of all_modes_of_typ with a non-predicate type"
bulwahn@34948
   257
bulwahn@35324
   258
fun all_smodes_of_typ (T as Type ("fun", _)) =
bulwahn@35324
   259
  let
bulwahn@35324
   260
    val (S, U) = strip_type T
haftmann@37678
   261
    fun all_smodes (Type (@{type_name Product_Type.prod}, [T1, T2])) = 
bulwahn@35324
   262
      map_product (curry Pair) (all_smodes T1) (all_smodes T2)
bulwahn@35324
   263
      | all_smodes _ = [Input, Output]
bulwahn@35324
   264
  in
bulwahn@35324
   265
    if U = HOLogic.boolT then
bulwahn@35324
   266
      fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2) (map all_smodes S) [Bool]
bulwahn@35324
   267
    else
bulwahn@36047
   268
      raise Fail "invalid type for predicate"
bulwahn@35324
   269
  end
bulwahn@35885
   270
bulwahn@34948
   271
fun ho_arg_modes_of mode =
bulwahn@34948
   272
  let
bulwahn@34948
   273
    fun ho_arg_mode (m as Fun _) =  [m]
bulwahn@34948
   274
      | ho_arg_mode (Pair (m1, m2)) = ho_arg_mode m1 @ ho_arg_mode m2
bulwahn@34948
   275
      | ho_arg_mode _ = []
bulwahn@34948
   276
  in
bulwahn@34948
   277
    maps ho_arg_mode (strip_fun_mode mode)
bulwahn@34948
   278
  end
bulwahn@34948
   279
bulwahn@34948
   280
fun ho_args_of mode ts =
bulwahn@34948
   281
  let
bulwahn@34948
   282
    fun ho_arg (Fun _) (SOME t) = [t]
bulwahn@36047
   283
      | ho_arg (Fun _) NONE = raise Fail "mode and term do not match"
bulwahn@35885
   284
      | ho_arg (Pair (m1, m2)) (SOME (Const (@{const_name Pair}, _) $ t1 $ t2)) =
bulwahn@34948
   285
          ho_arg m1 (SOME t1) @ ho_arg m2 (SOME t2)
bulwahn@34948
   286
      | ho_arg (Pair (m1, m2)) NONE = ho_arg m1 NONE @ ho_arg m2 NONE
bulwahn@34948
   287
      | ho_arg _ _ = []
bulwahn@34948
   288
  in
bulwahn@34948
   289
    flat (map2_optional ho_arg (strip_fun_mode mode) ts)
bulwahn@34948
   290
  end
bulwahn@34948
   291
bulwahn@39299
   292
fun ho_args_of_typ T ts =
bulwahn@39299
   293
  let
bulwahn@39312
   294
    fun ho_arg (T as Type("fun", [_,_])) (SOME t) = if body_type T = @{typ bool} then [t] else []
bulwahn@39299
   295
      | ho_arg (Type("fun", [_,_])) NONE = raise Fail "mode and term do not match"
bulwahn@39299
   296
      | ho_arg (Type(@{type_name "Product_Type.prod"}, [T1, T2]))
bulwahn@39299
   297
         (SOME (Const (@{const_name Pair}, _) $ t1 $ t2)) =
bulwahn@39299
   298
          ho_arg T1 (SOME t1) @ ho_arg T2 (SOME t2)
bulwahn@39299
   299
      | ho_arg (Type(@{type_name "Product_Type.prod"}, [T1, T2])) NONE =
bulwahn@39299
   300
          ho_arg T1 NONE @ ho_arg T2 NONE
bulwahn@39299
   301
      | ho_arg _ _ = []
bulwahn@39299
   302
  in
bulwahn@39299
   303
    flat (map2_optional ho_arg (binder_types T) ts)
bulwahn@39299
   304
  end
bulwahn@39299
   305
bulwahn@39299
   306
fun ho_argsT_of_typ Ts =
bulwahn@39299
   307
  let
bulwahn@39312
   308
    fun ho_arg (T as Type("fun", [_,_])) = if body_type T = @{typ bool} then [T] else []
bulwahn@39299
   309
      | ho_arg (Type(@{type_name "Product_Type.prod"}, [T1, T2])) =
bulwahn@39299
   310
          ho_arg T1 @ ho_arg T2
bulwahn@39299
   311
      | ho_arg _ = []
bulwahn@39299
   312
  in
bulwahn@39299
   313
    maps ho_arg Ts
bulwahn@39299
   314
  end
bulwahn@39299
   315
  
bulwahn@39299
   316
bulwahn@34948
   317
(* temporary function should be replaced by unsplit_input or so? *)
bulwahn@34948
   318
fun replace_ho_args mode hoargs ts =
bulwahn@34948
   319
  let
bulwahn@34948
   320
    fun replace (Fun _, _) (arg' :: hoargs') = (arg', hoargs')
haftmann@37391
   321
      | replace (Pair (m1, m2), Const (@{const_name Pair}, T) $ t1 $ t2) hoargs =
bulwahn@34948
   322
        let
bulwahn@34948
   323
          val (t1', hoargs') = replace (m1, t1) hoargs
bulwahn@34948
   324
          val (t2', hoargs'') = replace (m2, t2) hoargs'
bulwahn@34948
   325
        in
haftmann@37391
   326
          (Const (@{const_name Pair}, T) $ t1' $ t2', hoargs'')
bulwahn@34948
   327
        end
bulwahn@34948
   328
      | replace (_, t) hoargs = (t, hoargs)
bulwahn@34948
   329
  in
bulwahn@35885
   330
    fst (fold_map replace (strip_fun_mode mode ~~ ts) hoargs)
bulwahn@34948
   331
  end
bulwahn@34948
   332
bulwahn@34948
   333
fun ho_argsT_of mode Ts =
bulwahn@34948
   334
  let
bulwahn@34948
   335
    fun ho_arg (Fun _) T = [T]
haftmann@37678
   336
      | ho_arg (Pair (m1, m2)) (Type (@{type_name Product_Type.prod}, [T1, T2])) = ho_arg m1 T1 @ ho_arg m2 T2
bulwahn@34948
   337
      | ho_arg _ _ = []
bulwahn@34948
   338
  in
bulwahn@34948
   339
    flat (map2 ho_arg (strip_fun_mode mode) Ts)
bulwahn@34948
   340
  end
bulwahn@34948
   341
bulwahn@34948
   342
(* splits mode and maps function to higher-order argument types *)
bulwahn@34948
   343
fun split_map_mode f mode ts =
bulwahn@34948
   344
  let
bulwahn@34948
   345
    fun split_arg_mode' (m as Fun _) t = f m t
haftmann@37391
   346
      | split_arg_mode' (Pair (m1, m2)) (Const (@{const_name Pair}, _) $ t1 $ t2) =
bulwahn@34948
   347
        let
bulwahn@34948
   348
          val (i1, o1) = split_arg_mode' m1 t1
bulwahn@34948
   349
          val (i2, o2) = split_arg_mode' m2 t2
bulwahn@34948
   350
        in
bulwahn@34948
   351
          (comb_option HOLogic.mk_prod (i1, i2), comb_option HOLogic.mk_prod (o1, o2))
bulwahn@34948
   352
        end
bulwahn@35324
   353
      | split_arg_mode' m t =
bulwahn@35324
   354
        if eq_mode (m, Input) then (SOME t, NONE)
bulwahn@35324
   355
        else if eq_mode (m, Output) then (NONE,  SOME t)
bulwahn@35885
   356
        else raise Fail "split_map_mode: mode and term do not match"
bulwahn@34948
   357
  in
bulwahn@34948
   358
    (pairself (map_filter I) o split_list) (map2 split_arg_mode' (strip_fun_mode mode) ts)
bulwahn@34948
   359
  end
bulwahn@34948
   360
bulwahn@34948
   361
(* splits mode and maps function to higher-order argument types *)
bulwahn@34948
   362
fun split_map_modeT f mode Ts =
bulwahn@34948
   363
  let
bulwahn@34948
   364
    fun split_arg_mode' (m as Fun _) T = f m T
haftmann@37678
   365
      | split_arg_mode' (Pair (m1, m2)) (Type (@{type_name Product_Type.prod}, [T1, T2])) =
bulwahn@34948
   366
        let
bulwahn@34948
   367
          val (i1, o1) = split_arg_mode' m1 T1
bulwahn@34948
   368
          val (i2, o2) = split_arg_mode' m2 T2
bulwahn@34948
   369
        in
bulwahn@34948
   370
          (comb_option HOLogic.mk_prodT (i1, i2), comb_option HOLogic.mk_prodT (o1, o2))
bulwahn@34948
   371
        end
bulwahn@34948
   372
      | split_arg_mode' Input T = (SOME T, NONE)
bulwahn@34948
   373
      | split_arg_mode' Output T = (NONE,  SOME T)
bulwahn@35885
   374
      | split_arg_mode' _ _ = raise Fail "split_modeT': mode and type do not match"
bulwahn@34948
   375
  in
bulwahn@34948
   376
    (pairself (map_filter I) o split_list) (map2 split_arg_mode' (strip_fun_mode mode) Ts)
bulwahn@34948
   377
  end
bulwahn@34948
   378
bulwahn@34948
   379
fun split_mode mode ts = split_map_mode (fn _ => fn _ => (NONE, NONE)) mode ts
bulwahn@34948
   380
haftmann@37678
   381
fun fold_map_aterms_prodT comb f (Type (@{type_name Product_Type.prod}, [T1, T2])) s =
bulwahn@34948
   382
  let
bulwahn@34948
   383
    val (x1, s') = fold_map_aterms_prodT comb f T1 s
bulwahn@34948
   384
    val (x2, s'') = fold_map_aterms_prodT comb f T2 s'
bulwahn@34948
   385
  in
bulwahn@34948
   386
    (comb x1 x2, s'')
bulwahn@34948
   387
  end
bulwahn@34948
   388
  | fold_map_aterms_prodT comb f T s = f T s
bulwahn@34948
   389
haftmann@37391
   390
fun map_filter_prod f (Const (@{const_name Pair}, _) $ t1 $ t2) =
bulwahn@34948
   391
  comb_option HOLogic.mk_prod (map_filter_prod f t1, map_filter_prod f t2)
bulwahn@34948
   392
  | map_filter_prod f t = f t
bulwahn@34948
   393
  
bulwahn@40139
   394
fun split_modeT mode Ts =
bulwahn@34948
   395
  let
haftmann@46662
   396
    fun split_arg_mode (Fun _) _ = ([], [])
bulwahn@40139
   397
      | split_arg_mode (Pair (m1, m2)) (Type (@{type_name Product_Type.prod}, [T1, T2])) =
bulwahn@34948
   398
        let
bulwahn@40139
   399
          val (i1, o1) = split_arg_mode m1 T1
bulwahn@40139
   400
          val (i2, o2) = split_arg_mode m2 T2
bulwahn@34948
   401
        in
bulwahn@34948
   402
          (i1 @ i2, o1 @ o2)
bulwahn@34948
   403
        end
bulwahn@40139
   404
      | split_arg_mode Input T = ([T], [])
bulwahn@40139
   405
      | split_arg_mode Output T = ([], [T])
bulwahn@40139
   406
      | split_arg_mode _ _ = raise Fail "split_modeT: mode and type do not match"
bulwahn@34948
   407
  in
bulwahn@40139
   408
    (pairself flat o split_list) (map2 split_arg_mode (strip_fun_mode mode) Ts)
bulwahn@34948
   409
  end
bulwahn@34948
   410
bulwahn@34948
   411
fun string_of_mode mode =
bulwahn@33619
   412
  let
bulwahn@33619
   413
    fun string_of_mode1 Input = "i"
bulwahn@33619
   414
      | string_of_mode1 Output = "o"
bulwahn@33619
   415
      | string_of_mode1 Bool = "bool"
bulwahn@33619
   416
      | string_of_mode1 mode = "(" ^ (string_of_mode3 mode) ^ ")"
bulwahn@33626
   417
    and string_of_mode2 (Pair (m1, m2)) = string_of_mode3 m1 ^ " * " ^  string_of_mode2 m2
bulwahn@33619
   418
      | string_of_mode2 mode = string_of_mode1 mode
bulwahn@33619
   419
    and string_of_mode3 (Fun (m1, m2)) = string_of_mode2 m1 ^ " => " ^ string_of_mode3 m2
bulwahn@33619
   420
      | string_of_mode3 mode = string_of_mode2 mode
bulwahn@34948
   421
  in string_of_mode3 mode end
bulwahn@33619
   422
bulwahn@34948
   423
fun ascii_string_of_mode mode' =
bulwahn@33626
   424
  let
bulwahn@33626
   425
    fun ascii_string_of_mode' Input = "i"
bulwahn@33626
   426
      | ascii_string_of_mode' Output = "o"
bulwahn@33626
   427
      | ascii_string_of_mode' Bool = "b"
bulwahn@33626
   428
      | ascii_string_of_mode' (Pair (m1, m2)) =
bulwahn@33626
   429
          "P" ^ ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Pair m2
bulwahn@33626
   430
      | ascii_string_of_mode' (Fun (m1, m2)) = 
bulwahn@33626
   431
          "F" ^ ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Fun m2 ^ "B"
bulwahn@33626
   432
    and ascii_string_of_mode'_Fun (Fun (m1, m2)) =
bulwahn@33626
   433
          ascii_string_of_mode' m1 ^ (if m2 = Bool then "" else "_" ^ ascii_string_of_mode'_Fun m2)
bulwahn@33626
   434
      | ascii_string_of_mode'_Fun Bool = "B"
bulwahn@33626
   435
      | ascii_string_of_mode'_Fun m = ascii_string_of_mode' m
bulwahn@33626
   436
    and ascii_string_of_mode'_Pair (Pair (m1, m2)) =
bulwahn@33626
   437
          ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Pair m2
bulwahn@33626
   438
      | ascii_string_of_mode'_Pair m = ascii_string_of_mode' m
bulwahn@33626
   439
  in ascii_string_of_mode'_Fun mode' end
bulwahn@33626
   440
bulwahn@34948
   441
(* premises *)
bulwahn@33619
   442
bulwahn@34948
   443
datatype indprem = Prem of term | Negprem of term | Sidecond of term
bulwahn@34948
   444
  | Generator of (string * typ);
bulwahn@33619
   445
bulwahn@36251
   446
fun dest_indprem (Prem t) = t
bulwahn@36251
   447
  | dest_indprem (Negprem t) = t
bulwahn@36251
   448
  | dest_indprem (Sidecond t) = t
bulwahn@36251
   449
  | dest_indprem (Generator _) = raise Fail "cannot destruct generator"
bulwahn@36251
   450
bulwahn@36254
   451
fun map_indprem f (Prem t) = Prem (f t)
bulwahn@36254
   452
  | map_indprem f (Negprem t) = Negprem (f t)
bulwahn@36254
   453
  | map_indprem f (Sidecond t) = Sidecond (f t)
bulwahn@36254
   454
  | map_indprem f (Generator (v, T)) = Generator (dest_Free (f (Free (v, T))))
bulwahn@36254
   455
bulwahn@33250
   456
(* general syntactic functions *)
bulwahn@33250
   457
bulwahn@33250
   458
fun is_equationlike_term (Const ("==", _) $ _ $ _) = true
haftmann@38864
   459
  | is_equationlike_term (Const (@{const_name Trueprop}, _) $ (Const (@{const_name HOL.eq}, _) $ _ $ _)) = true
bulwahn@33250
   460
  | is_equationlike_term _ = false
bulwahn@33250
   461
  
bulwahn@33250
   462
val is_equationlike = is_equationlike_term o prop_of 
bulwahn@33250
   463
bulwahn@33250
   464
fun is_pred_equation_term (Const ("==", _) $ u $ v) =
bulwahn@33250
   465
  (fastype_of u = @{typ bool}) andalso (fastype_of v = @{typ bool})
bulwahn@33250
   466
  | is_pred_equation_term _ = false
bulwahn@33250
   467
  
bulwahn@33250
   468
val is_pred_equation = is_pred_equation_term o prop_of 
bulwahn@33250
   469
bulwahn@33250
   470
fun is_intro_term constname t =
bulwahn@34948
   471
  the_default false (try (fn t => case fst (strip_comb (HOLogic.dest_Trueprop (Logic.strip_imp_concl t))) of
bulwahn@33250
   472
    Const (c, _) => c = constname
bulwahn@34948
   473
  | _ => false) t)
bulwahn@33250
   474
  
bulwahn@33250
   475
fun is_intro constname t = is_intro_term constname (prop_of t)
bulwahn@33250
   476
wenzelm@40844
   477
fun is_predT (T as Type("fun", [_, _])) = (body_type T = @{typ bool})
bulwahn@33250
   478
  | is_predT _ = false
bulwahn@33250
   479
bulwahn@33250
   480
(*** check if a term contains only constructor functions ***)
bulwahn@34948
   481
(* TODO: another copy in the core! *)
bulwahn@33623
   482
(* FIXME: constructor terms are supposed to be seen in the way the code generator
bulwahn@33623
   483
  sees constructors.*)
bulwahn@33250
   484
fun is_constrt thy =
bulwahn@33250
   485
  let
bulwahn@33250
   486
    val cnstrs = flat (maps
bulwahn@33250
   487
      (map (fn (_, (Tname, _, cs)) => map (apsnd (rpair Tname o length)) cs) o #descr o snd)
bulwahn@33250
   488
      (Symtab.dest (Datatype.get_all thy)));
bulwahn@33250
   489
    fun check t = (case strip_comb t of
bulwahn@36032
   490
        (Var _, []) => true
bulwahn@36032
   491
      | (Free _, []) => true
bulwahn@33250
   492
      | (Const (s, T), ts) => (case (AList.lookup (op =) cnstrs s, body_type T) of
bulwahn@33250
   493
            (SOME (i, Tname), Type (Tname', _)) => length ts = i andalso Tname = Tname' andalso forall check ts
bulwahn@33250
   494
          | _ => false)
bulwahn@33250
   495
      | _ => false)
bulwahn@36032
   496
  in check end;
bulwahn@34948
   497
bulwahn@34948
   498
(* returns true if t is an application of an datatype constructor *)
bulwahn@34948
   499
(* which then consequently would be splitted *)
bulwahn@34948
   500
(* else false *)
bulwahn@34948
   501
(*
bulwahn@34948
   502
fun is_constructor thy t =
bulwahn@34948
   503
  if (is_Type (fastype_of t)) then
bulwahn@34948
   504
    (case DatatypePackage.get_datatype thy ((fst o dest_Type o fastype_of) t) of
bulwahn@34948
   505
      NONE => false
bulwahn@34948
   506
    | SOME info => (let
bulwahn@34948
   507
      val constr_consts = maps (fn (_, (_, _, constrs)) => map fst constrs) (#descr info)
bulwahn@34948
   508
      val (c, _) = strip_comb t
bulwahn@34948
   509
      in (case c of
bulwahn@34948
   510
        Const (name, _) => name mem_string constr_consts
bulwahn@34948
   511
        | _ => false) end))
bulwahn@34948
   512
  else false
bulwahn@34948
   513
*)
bulwahn@34948
   514
wenzelm@42361
   515
val is_constr = Code.is_constr o Proof_Context.theory_of;
bulwahn@34948
   516
bulwahn@36047
   517
fun strip_all t = (Term.strip_all_vars t, Term.strip_all_body t)
bulwahn@36047
   518
haftmann@38558
   519
fun strip_ex (Const (@{const_name Ex}, _) $ Abs (x, T, t)) =
bulwahn@33250
   520
  let
bulwahn@33250
   521
    val (xTs, t') = strip_ex t
bulwahn@33250
   522
  in
bulwahn@33250
   523
    ((x, T) :: xTs, t')
bulwahn@33250
   524
  end
bulwahn@33250
   525
  | strip_ex t = ([], t)
bulwahn@33250
   526
bulwahn@33250
   527
fun focus_ex t nctxt =
bulwahn@33250
   528
  let
bulwahn@33250
   529
    val ((xs, Ts), t') = apfst split_list (strip_ex t) 
wenzelm@43326
   530
    val (xs', nctxt') = fold_map Name.variant xs nctxt;
bulwahn@33250
   531
    val ps' = xs' ~~ Ts;
bulwahn@33250
   532
    val vs = map Free ps';
bulwahn@33250
   533
    val t'' = Term.subst_bounds (rev vs, t');
bulwahn@33250
   534
  in ((ps', t''), nctxt') end;
bulwahn@33250
   535
bulwahn@40101
   536
val strip_intro_concl = (strip_comb o HOLogic.dest_Trueprop o Logic.strip_imp_concl o prop_of)
bulwahn@40101
   537
  
bulwahn@33250
   538
(* introduction rule combinators *)
bulwahn@33250
   539
bulwahn@33250
   540
fun map_atoms f intro = 
bulwahn@33250
   541
  let
bulwahn@33250
   542
    val (literals, head) = Logic.strip_horn intro
bulwahn@33250
   543
    fun appl t = (case t of
bulwahn@35885
   544
        (@{term Not} $ t') => HOLogic.mk_not (f t')
bulwahn@33250
   545
      | _ => f t)
bulwahn@33250
   546
  in
bulwahn@33250
   547
    Logic.list_implies
bulwahn@33250
   548
      (map (HOLogic.mk_Trueprop o appl o HOLogic.dest_Trueprop) literals, head)
bulwahn@33250
   549
  end
bulwahn@33250
   550
bulwahn@33250
   551
fun fold_atoms f intro s =
bulwahn@33250
   552
  let
haftmann@46662
   553
    val (literals, _) = Logic.strip_horn intro
bulwahn@33250
   554
    fun appl t s = (case t of
bulwahn@35885
   555
      (@{term Not} $ t') => f t' s
bulwahn@33250
   556
      | _ => f t s)
bulwahn@33250
   557
  in fold appl (map HOLogic.dest_Trueprop literals) s end
bulwahn@33250
   558
bulwahn@33250
   559
fun fold_map_atoms f intro s =
bulwahn@33250
   560
  let
bulwahn@33250
   561
    val (literals, head) = Logic.strip_horn intro
bulwahn@33250
   562
    fun appl t s = (case t of
bulwahn@35885
   563
      (@{term Not} $ t') => apfst HOLogic.mk_not (f t' s)
bulwahn@33250
   564
      | _ => f t s)
bulwahn@33250
   565
    val (literals', s') = fold_map appl (map HOLogic.dest_Trueprop literals) s
bulwahn@33250
   566
  in
bulwahn@33250
   567
    (Logic.list_implies (map HOLogic.mk_Trueprop literals', head), s')
bulwahn@33250
   568
  end;
bulwahn@33250
   569
bulwahn@36246
   570
fun map_filter_premises f intro =
bulwahn@36246
   571
  let
bulwahn@36246
   572
    val (premises, head) = Logic.strip_horn intro
bulwahn@36246
   573
  in
bulwahn@36246
   574
    Logic.list_implies (map_filter f premises, head)
bulwahn@36246
   575
  end
bulwahn@36246
   576
bulwahn@33250
   577
fun maps_premises f intro =
bulwahn@33250
   578
  let
bulwahn@33250
   579
    val (premises, head) = Logic.strip_horn intro
bulwahn@33250
   580
  in
bulwahn@33250
   581
    Logic.list_implies (maps f premises, head)
bulwahn@33250
   582
  end
bulwahn@35324
   583
bulwahn@35875
   584
fun map_concl f intro =
bulwahn@35875
   585
  let
bulwahn@35875
   586
    val (premises, head) = Logic.strip_horn intro
bulwahn@35875
   587
  in
bulwahn@35875
   588
    Logic.list_implies (premises, f head)
bulwahn@35875
   589
  end
bulwahn@35875
   590
bulwahn@35875
   591
(* combinators to apply a function to all basic parts of nested products *)
bulwahn@35875
   592
haftmann@37391
   593
fun map_products f (Const (@{const_name Pair}, T) $ t1 $ t2) =
haftmann@37391
   594
  Const (@{const_name Pair}, T) $ map_products f t1 $ map_products f t2
bulwahn@35875
   595
  | map_products f t = f t
bulwahn@35324
   596
bulwahn@35324
   597
(* split theorems of case expressions *)
bulwahn@35324
   598
bulwahn@35324
   599
fun prepare_split_thm ctxt split_thm =
bulwahn@35324
   600
    (split_thm RS @{thm iffD2})
wenzelm@35624
   601
    |> Local_Defs.unfold ctxt [@{thm atomize_conjL[symmetric]},
bulwahn@35324
   602
      @{thm atomize_all[symmetric]}, @{thm atomize_imp[symmetric]}]
bulwahn@35324
   603
haftmann@46662
   604
fun find_split_thm thy (Const (name, _)) = Option.map #split (Datatype.info_of_case thy name)
bulwahn@36029
   605
  | find_split_thm thy _ = NONE
bulwahn@35324
   606
bulwahn@33250
   607
(* lifting term operations to theorems *)
bulwahn@33250
   608
bulwahn@33250
   609
fun map_term thy f th =
bulwahn@33250
   610
  Skip_Proof.make_thm thy (f (prop_of th))
bulwahn@33250
   611
bulwahn@33250
   612
(*
bulwahn@33250
   613
fun equals_conv lhs_cv rhs_cv ct =
bulwahn@33250
   614
  case Thm.term_of ct of
bulwahn@33250
   615
    Const ("==", _) $ _ $ _ => Conv.arg_conv cv ct  
bulwahn@33250
   616
  | _ => error "equals_conv"  
bulwahn@33250
   617
*)
bulwahn@33250
   618
bulwahn@36038
   619
(* Different compilations *)
bulwahn@33250
   620
bulwahn@35881
   621
datatype compilation = Pred | Depth_Limited | Random | Depth_Limited_Random | DSeq | Annotated
bulwahn@40051
   622
  | Pos_Random_DSeq | Neg_Random_DSeq | New_Pos_Random_DSeq | New_Neg_Random_DSeq |
bulwahn@45450
   623
    Pos_Generator_DSeq | Neg_Generator_DSeq | Pos_Generator_CPS | Neg_Generator_CPS
bulwahn@35324
   624
bulwahn@35324
   625
fun negative_compilation_of Pos_Random_DSeq = Neg_Random_DSeq
bulwahn@35324
   626
  | negative_compilation_of Neg_Random_DSeq = Pos_Random_DSeq
bulwahn@36018
   627
  | negative_compilation_of New_Pos_Random_DSeq = New_Neg_Random_DSeq
bulwahn@36018
   628
  | negative_compilation_of New_Neg_Random_DSeq = New_Pos_Random_DSeq
bulwahn@40051
   629
  | negative_compilation_of Pos_Generator_DSeq = Neg_Generator_DSeq
bulwahn@45450
   630
  | negative_compilation_of Neg_Generator_DSeq = Pos_Generator_DSeq
bulwahn@45450
   631
  | negative_compilation_of Pos_Generator_CPS = Neg_Generator_CPS
bulwahn@45450
   632
  | negative_compilation_of Neg_Generator_CPS = Pos_Generator_CPS  
bulwahn@35324
   633
  | negative_compilation_of c = c
bulwahn@35324
   634
  
bulwahn@35324
   635
fun compilation_for_polarity false Pos_Random_DSeq = Neg_Random_DSeq
bulwahn@36018
   636
  | compilation_for_polarity false New_Pos_Random_DSeq = New_Neg_Random_DSeq
bulwahn@35324
   637
  | compilation_for_polarity _ c = c
bulwahn@34948
   638
bulwahn@40049
   639
fun is_depth_limited_compilation c =
bulwahn@40051
   640
  (c = New_Pos_Random_DSeq) orelse (c = New_Neg_Random_DSeq) orelse
bulwahn@40051
   641
  (c = Pos_Generator_DSeq) orelse (c = Pos_Generator_DSeq)
bulwahn@40049
   642
bulwahn@35885
   643
fun string_of_compilation c =
bulwahn@35885
   644
  case c of
bulwahn@34948
   645
    Pred => ""
bulwahn@34948
   646
  | Random => "random"
bulwahn@34948
   647
  | Depth_Limited => "depth limited"
bulwahn@35881
   648
  | Depth_Limited_Random => "depth limited random"
bulwahn@34948
   649
  | DSeq => "dseq"
bulwahn@34948
   650
  | Annotated => "annotated"
bulwahn@35324
   651
  | Pos_Random_DSeq => "pos_random dseq"
bulwahn@35324
   652
  | Neg_Random_DSeq => "neg_random_dseq"
bulwahn@36018
   653
  | New_Pos_Random_DSeq => "new_pos_random dseq"
bulwahn@36018
   654
  | New_Neg_Random_DSeq => "new_neg_random_dseq"
bulwahn@40051
   655
  | Pos_Generator_DSeq => "pos_generator_dseq"
bulwahn@40051
   656
  | Neg_Generator_DSeq => "neg_generator_dseq"
bulwahn@45450
   657
  | Pos_Generator_CPS => "pos_generator_cps"
bulwahn@45450
   658
  | Neg_Generator_CPS => "neg_generator_cps"
bulwahn@45450
   659
  
bulwahn@36018
   660
val compilation_names = [("pred", Pred),
bulwahn@36018
   661
  ("random", Random),
bulwahn@36018
   662
  ("depth_limited", Depth_Limited),
bulwahn@36018
   663
  ("depth_limited_random", Depth_Limited_Random),
bulwahn@36018
   664
  (*("annotated", Annotated),*)
bulwahn@40054
   665
  ("dseq", DSeq),
bulwahn@40054
   666
  ("random_dseq", Pos_Random_DSeq),
bulwahn@40051
   667
  ("new_random_dseq", New_Pos_Random_DSeq),
bulwahn@45450
   668
  ("generator_dseq", Pos_Generator_DSeq),
bulwahn@45450
   669
  ("generator_cps", Pos_Generator_CPS)]
bulwahn@36038
   670
bulwahn@36038
   671
val non_random_compilations = [Pred, Depth_Limited, DSeq, Annotated]
bulwahn@36038
   672
bulwahn@36038
   673
bulwahn@36038
   674
val random_compilations = [Random, Depth_Limited_Random,
bulwahn@48221
   675
  Pos_Random_DSeq, Neg_Random_DSeq, New_Pos_Random_DSeq, New_Neg_Random_DSeq,
bulwahn@48221
   676
  Pos_Generator_CPS, Neg_Generator_CPS]
bulwahn@36038
   677
bulwahn@36046
   678
(* datastructures and setup for generic compilation *)
bulwahn@36046
   679
bulwahn@36046
   680
datatype compilation_funs = CompilationFuns of {
bulwahn@45461
   681
  mk_monadT : typ -> typ,
bulwahn@45461
   682
  dest_monadT : typ -> typ,
bulwahn@45461
   683
  mk_empty : typ -> term,
bulwahn@36046
   684
  mk_single : term -> term,
bulwahn@36046
   685
  mk_bind : term * term -> term,
bulwahn@45461
   686
  mk_plus : term * term -> term,
bulwahn@36046
   687
  mk_if : term -> term,
bulwahn@36049
   688
  mk_iterate_upto : typ -> term * term * term -> term,
bulwahn@36046
   689
  mk_not : term -> term,
bulwahn@36046
   690
  mk_map : typ -> typ -> term -> term -> term
bulwahn@36046
   691
};
bulwahn@36038
   692
bulwahn@45461
   693
fun mk_monadT (CompilationFuns funs) = #mk_monadT funs
bulwahn@45461
   694
fun dest_monadT (CompilationFuns funs) = #dest_monadT funs
bulwahn@45461
   695
fun mk_empty (CompilationFuns funs) = #mk_empty funs
bulwahn@36046
   696
fun mk_single (CompilationFuns funs) = #mk_single funs
bulwahn@36046
   697
fun mk_bind (CompilationFuns funs) = #mk_bind funs
bulwahn@45461
   698
fun mk_plus (CompilationFuns funs) = #mk_plus funs
bulwahn@36046
   699
fun mk_if (CompilationFuns funs) = #mk_if funs
bulwahn@36049
   700
fun mk_iterate_upto (CompilationFuns funs) = #mk_iterate_upto funs
bulwahn@36046
   701
fun mk_not (CompilationFuns funs) = #mk_not funs
bulwahn@36046
   702
fun mk_map (CompilationFuns funs) = #mk_map funs
bulwahn@36046
   703
bulwahn@36046
   704
(** function types and names of different compilations **)
bulwahn@36046
   705
bulwahn@36046
   706
fun funT_of compfuns mode T =
bulwahn@36046
   707
  let
bulwahn@36046
   708
    val Ts = binder_types T
bulwahn@36046
   709
    val (inTs, outTs) = split_map_modeT (fn m => fn T => (SOME (funT_of compfuns m T), NONE)) mode Ts
bulwahn@36046
   710
  in
bulwahn@45461
   711
    inTs ---> (mk_monadT compfuns (HOLogic.mk_tupleT outTs))
bulwahn@36046
   712
  end;
bulwahn@36046
   713
bulwahn@36046
   714
(* Different options for compiler *)
bulwahn@34948
   715
bulwahn@33250
   716
datatype options = Options of {  
bulwahn@34948
   717
  expected_modes : (string * mode list) option,
bulwahn@39382
   718
  proposed_modes : (string * mode list) list,
bulwahn@34948
   719
  proposed_names : ((string * mode) * string) list,
bulwahn@33250
   720
  show_steps : bool,
bulwahn@33250
   721
  show_proof_trace : bool,
bulwahn@33250
   722
  show_intermediate_results : bool,
bulwahn@33251
   723
  show_mode_inference : bool,
bulwahn@33251
   724
  show_modes : bool,
bulwahn@33250
   725
  show_compilation : bool,
bulwahn@35324
   726
  show_caught_failures : bool,
bulwahn@39383
   727
  show_invalid_clauses : bool,
bulwahn@33250
   728
  skip_proof : bool,
bulwahn@35324
   729
  no_topmost_reordering : bool,
bulwahn@35324
   730
  function_flattening : bool,
bulwahn@36248
   731
  specialise : bool,
bulwahn@35324
   732
  fail_safe_function_flattening : bool,
bulwahn@35324
   733
  no_higher_order_predicate : string list,
bulwahn@33250
   734
  inductify : bool,
bulwahn@36254
   735
  detect_switches : bool,
bulwahn@40048
   736
  smart_depth_limiting : bool,
bulwahn@34948
   737
  compilation : compilation
bulwahn@33250
   738
};
bulwahn@33250
   739
bulwahn@33250
   740
fun expected_modes (Options opt) = #expected_modes opt
bulwahn@39382
   741
fun proposed_modes (Options opt) = AList.lookup (op =) (#proposed_modes opt)
bulwahn@34948
   742
fun proposed_names (Options opt) name mode = AList.lookup (eq_pair (op =) eq_mode)
bulwahn@33623
   743
  (#proposed_names opt) (name, mode)
bulwahn@33620
   744
bulwahn@33250
   745
fun show_steps (Options opt) = #show_steps opt
bulwahn@33250
   746
fun show_intermediate_results (Options opt) = #show_intermediate_results opt
bulwahn@33250
   747
fun show_proof_trace (Options opt) = #show_proof_trace opt
bulwahn@33251
   748
fun show_modes (Options opt) = #show_modes opt
bulwahn@33251
   749
fun show_mode_inference (Options opt) = #show_mode_inference opt
bulwahn@33250
   750
fun show_compilation (Options opt) = #show_compilation opt
bulwahn@35324
   751
fun show_caught_failures (Options opt) = #show_caught_failures opt
bulwahn@39383
   752
fun show_invalid_clauses (Options opt) = #show_invalid_clauses opt
bulwahn@33250
   753
fun skip_proof (Options opt) = #skip_proof opt
bulwahn@33250
   754
bulwahn@35324
   755
fun function_flattening (Options opt) = #function_flattening opt
bulwahn@35324
   756
fun fail_safe_function_flattening (Options opt) = #fail_safe_function_flattening opt
bulwahn@36248
   757
fun specialise (Options opt) = #specialise opt
bulwahn@35324
   758
fun no_topmost_reordering (Options opt) = #no_topmost_reordering opt
bulwahn@35324
   759
fun no_higher_order_predicate (Options opt) = #no_higher_order_predicate opt
bulwahn@35324
   760
bulwahn@33250
   761
fun is_inductify (Options opt) = #inductify opt
bulwahn@34948
   762
bulwahn@34948
   763
fun compilation (Options opt) = #compilation opt
bulwahn@33250
   764
bulwahn@36254
   765
fun detect_switches (Options opt) = #detect_switches opt
bulwahn@36254
   766
bulwahn@40048
   767
fun smart_depth_limiting (Options opt) = #smart_depth_limiting opt
bulwahn@40048
   768
bulwahn@33250
   769
val default_options = Options {
bulwahn@33250
   770
  expected_modes = NONE,
bulwahn@39382
   771
  proposed_modes = [],
bulwahn@33623
   772
  proposed_names = [],
bulwahn@33250
   773
  show_steps = false,
bulwahn@33250
   774
  show_intermediate_results = false,
bulwahn@33250
   775
  show_proof_trace = false,
bulwahn@33251
   776
  show_modes = false,
bulwahn@33250
   777
  show_mode_inference = false,
bulwahn@33250
   778
  show_compilation = false,
bulwahn@35324
   779
  show_caught_failures = false,
bulwahn@39383
   780
  show_invalid_clauses = false,
bulwahn@34948
   781
  skip_proof = true,
bulwahn@35324
   782
  no_topmost_reordering = false,
bulwahn@35324
   783
  function_flattening = false,
bulwahn@36248
   784
  specialise = false,
bulwahn@35324
   785
  fail_safe_function_flattening = false,
bulwahn@35324
   786
  no_higher_order_predicate = [],
bulwahn@33250
   787
  inductify = false,
bulwahn@36254
   788
  detect_switches = true,
bulwahn@40048
   789
  smart_depth_limiting = false,
bulwahn@34948
   790
  compilation = Pred
bulwahn@33250
   791
}
bulwahn@33250
   792
bulwahn@34948
   793
val bool_options = ["show_steps", "show_intermediate_results", "show_proof_trace", "show_modes",
bulwahn@39383
   794
  "show_mode_inference", "show_compilation", "show_invalid_clauses", "skip_proof", "inductify",
bulwahn@40048
   795
  "no_function_flattening", "detect_switches", "specialise", "no_topmost_reordering",
bulwahn@40048
   796
  "smart_depth_limiting"]
bulwahn@34948
   797
bulwahn@33250
   798
fun print_step options s =
bulwahn@33250
   799
  if show_steps options then tracing s else ()
bulwahn@33250
   800
bulwahn@36047
   801
(* simple transformations *)
bulwahn@36047
   802
bulwahn@36047
   803
(** tuple processing **)
bulwahn@33250
   804
bulwahn@39657
   805
fun rewrite_args [] (pats, intro_t, ctxt) = (pats, intro_t, ctxt)
bulwahn@39657
   806
  | rewrite_args (arg::args) (pats, intro_t, ctxt) = 
bulwahn@39657
   807
    (case HOLogic.strip_tupleT (fastype_of arg) of
haftmann@46662
   808
      (_ :: _ :: _) =>
bulwahn@39657
   809
      let
bulwahn@39657
   810
        fun rewrite_arg' (Const (@{const_name Pair}, _) $ _ $ t2, Type (@{type_name Product_Type.prod}, [_, T2]))
bulwahn@39657
   811
          (args, (pats, intro_t, ctxt)) = rewrite_arg' (t2, T2) (args, (pats, intro_t, ctxt))
bulwahn@39657
   812
          | rewrite_arg' (t, Type (@{type_name Product_Type.prod}, [T1, T2])) (args, (pats, intro_t, ctxt)) =
bulwahn@39657
   813
            let
wenzelm@42361
   814
              val thy = Proof_Context.theory_of ctxt
bulwahn@39657
   815
              val ([x, y], ctxt') = Variable.variant_fixes ["x", "y"] ctxt
bulwahn@39657
   816
              val pat = (t, HOLogic.mk_prod (Free (x, T1), Free (y, T2)))
bulwahn@39657
   817
              val intro_t' = Pattern.rewrite_term thy [pat] [] intro_t
bulwahn@39657
   818
              val args' = map (Pattern.rewrite_term thy [pat] []) args
bulwahn@39657
   819
            in
bulwahn@39657
   820
              rewrite_arg' (Free (y, T2), T2) (args', (pat::pats, intro_t', ctxt'))
bulwahn@39657
   821
            end
bulwahn@39657
   822
          | rewrite_arg' _ (args, (pats, intro_t, ctxt)) = (args, (pats, intro_t, ctxt))
bulwahn@39657
   823
        val (args', (pats, intro_t', ctxt')) = rewrite_arg' (arg, fastype_of arg)
bulwahn@39657
   824
          (args, (pats, intro_t, ctxt))
bulwahn@39657
   825
      in
bulwahn@39657
   826
        rewrite_args args' (pats, intro_t', ctxt')
bulwahn@39657
   827
      end
bulwahn@39657
   828
  | _ => rewrite_args args (pats, intro_t, ctxt))
bulwahn@39657
   829
bulwahn@39657
   830
fun rewrite_prem atom =
bulwahn@39657
   831
  let
bulwahn@39657
   832
    val (_, args) = strip_comb atom
bulwahn@39657
   833
  in rewrite_args args end
bulwahn@39657
   834
bulwahn@39787
   835
fun split_conjuncts_in_assms ctxt th =
bulwahn@39787
   836
  let
bulwahn@39787
   837
    val ((_, [fixed_th]), ctxt') = Variable.import false [th] ctxt 
bulwahn@39787
   838
    fun split_conjs i nprems th =
bulwahn@39787
   839
      if i > nprems then th
bulwahn@39787
   840
      else
bulwahn@39787
   841
        case try Drule.RSN (@{thm conjI}, (i, th)) of
bulwahn@39787
   842
          SOME th' => split_conjs i (nprems+1) th'
bulwahn@39787
   843
        | NONE => split_conjs (i+1) nprems th
bulwahn@39787
   844
  in
bulwahn@39787
   845
    singleton (Variable.export ctxt' ctxt) (split_conjs 1 (Thm.nprems_of fixed_th) fixed_th)
bulwahn@39787
   846
  end
bulwahn@40052
   847
bulwahn@40052
   848
fun dest_conjunct_prem th =
bulwahn@40052
   849
  case HOLogic.dest_Trueprop (prop_of th) of
haftmann@46662
   850
    (Const (@{const_name HOL.conj}, _) $ _ $ _) =>
bulwahn@40052
   851
      dest_conjunct_prem (th RS @{thm conjunct1})
bulwahn@40052
   852
        @ dest_conjunct_prem (th RS @{thm conjunct2})
bulwahn@40052
   853
    | _ => [th]
bulwahn@40052
   854
bulwahn@33250
   855
fun expand_tuples thy intro =
bulwahn@33250
   856
  let
wenzelm@42361
   857
    val ctxt = Proof_Context.init_global thy
bulwahn@33250
   858
    val (((T_insts, t_insts), [intro']), ctxt1) = Variable.import false [intro] ctxt
bulwahn@33250
   859
    val intro_t = prop_of intro'
bulwahn@33250
   860
    val concl = Logic.strip_imp_concl intro_t
haftmann@46662
   861
    val (_, args) = strip_comb (HOLogic.dest_Trueprop concl)
bulwahn@33250
   862
    val (pats', intro_t', ctxt2) = rewrite_args args ([], intro_t, ctxt1)
haftmann@46662
   863
    val (pats', _, ctxt3) = fold_atoms rewrite_prem intro_t' (pats', intro_t', ctxt2)
bulwahn@33250
   864
    fun rewrite_pat (ct1, ct2) =
bulwahn@33250
   865
      (ct1, cterm_of thy (Pattern.rewrite_term thy pats' [] (term_of ct2)))
bulwahn@33250
   866
    val t_insts' = map rewrite_pat t_insts
bulwahn@33250
   867
    val intro'' = Thm.instantiate (T_insts, t_insts') intro
bulwahn@33250
   868
    val [intro'''] = Variable.export ctxt3 ctxt [intro'']
wenzelm@51717
   869
    val intro'''' =
wenzelm@51717
   870
      Simplifier.full_simplify
wenzelm@51717
   871
        (put_simpset HOL_basic_ss ctxt
wenzelm@51717
   872
          addsimps [@{thm fst_conv}, @{thm snd_conv}, @{thm Pair_eq}])
bulwahn@33250
   873
      intro'''
bulwahn@33250
   874
    (* splitting conjunctions introduced by Pair_eq*)
bulwahn@39787
   875
    val intro''''' = split_conjuncts_in_assms ctxt intro''''
bulwahn@33250
   876
  in
bulwahn@33250
   877
    intro'''''
bulwahn@33250
   878
  end
bulwahn@33250
   879
bulwahn@39802
   880
(** making case distributivity rules **)
bulwahn@39802
   881
(*** this should be part of the datatype package ***)
bulwahn@39802
   882
bulwahn@39802
   883
fun datatype_names_of_case_name thy case_name =
wenzelm@45906
   884
  map (#1 o #2) (#descr (the (Datatype.info_of_case thy case_name)))
bulwahn@39802
   885
wenzelm@45879
   886
fun make_case_distribs case_names descr thy =
bulwahn@39802
   887
  let
wenzelm@45879
   888
    val case_combs = Datatype_Prop.make_case_combs case_names descr thy "f";
bulwahn@39802
   889
    fun make comb =
bulwahn@39802
   890
      let
bulwahn@39802
   891
        val Type ("fun", [T, T']) = fastype_of comb;
bulwahn@39802
   892
        val (Const (case_name, _), fs) = strip_comb comb
bulwahn@39802
   893
        val used = Term.add_tfree_names comb []
wenzelm@43324
   894
        val U = TFree (singleton (Name.variant_list used) "'t", HOLogic.typeS)
bulwahn@39802
   895
        val x = Free ("x", T)
bulwahn@39802
   896
        val f = Free ("f", T' --> U)
bulwahn@39802
   897
        fun apply_f f' =
bulwahn@39802
   898
          let
bulwahn@39802
   899
            val Ts = binder_types (fastype_of f')
bulwahn@39802
   900
            val bs = map Bound ((length Ts - 1) downto 0)
bulwahn@39802
   901
          in
wenzelm@44241
   902
            fold_rev absdummy Ts (f $ (list_comb (f', bs)))
bulwahn@39802
   903
          end
bulwahn@39802
   904
        val fs' = map apply_f fs
bulwahn@39802
   905
        val case_c' = Const (case_name, (map fastype_of fs') @ [T] ---> U)
bulwahn@39802
   906
      in
bulwahn@39802
   907
        HOLogic.mk_eq (f $ (comb $ x), list_comb (case_c', fs') $ x)
bulwahn@39802
   908
      end
bulwahn@39802
   909
  in
bulwahn@39802
   910
    map make case_combs
bulwahn@39802
   911
  end
bulwahn@39802
   912
bulwahn@39802
   913
fun case_rewrites thy Tcon =
bulwahn@39802
   914
  let
wenzelm@45879
   915
    val {descr, case_name, ...} = Datatype.the_info thy Tcon
bulwahn@39802
   916
  in
bulwahn@39802
   917
    map (Drule.export_without_context o Skip_Proof.make_thm thy o HOLogic.mk_Trueprop)
wenzelm@45879
   918
      (make_case_distribs [case_name] [descr] thy)
bulwahn@39802
   919
  end
bulwahn@39802
   920
bulwahn@39802
   921
fun instantiated_case_rewrites thy Tcon =
bulwahn@39802
   922
  let
bulwahn@39802
   923
    val rew_ths = case_rewrites thy Tcon
wenzelm@42361
   924
    val ctxt = Proof_Context.init_global thy
bulwahn@39802
   925
    fun instantiate th =
bulwahn@39802
   926
    let
bulwahn@39802
   927
      val f = (fst (strip_comb (fst (HOLogic.dest_eq (HOLogic.dest_Trueprop (prop_of th))))))
bulwahn@39802
   928
      val Type ("fun", [uninst_T, uninst_T']) = fastype_of f
haftmann@50056
   929
      val ([_, tname', uname, yname], ctxt') = Variable.add_fixes ["'t", "'t'", "'u", "y"] ctxt
bulwahn@39802
   930
      val T' = TFree (tname', HOLogic.typeS)
bulwahn@39802
   931
      val U = TFree (uname, HOLogic.typeS)
bulwahn@39802
   932
      val y = Free (yname, U)
wenzelm@44241
   933
      val f' = absdummy (U --> T') (Bound 0 $ y)
bulwahn@39802
   934
      val th' = Thm.certify_instantiate
bulwahn@39802
   935
        ([(dest_TVar uninst_T, U --> T'), (dest_TVar uninst_T', T')],
bulwahn@39802
   936
         [((fst (dest_Var f), (U --> T') --> T'), f')]) th
bulwahn@39802
   937
      val [th'] = Variable.export ctxt' ctxt [th']
bulwahn@39802
   938
   in
bulwahn@39802
   939
     th'
bulwahn@39802
   940
   end
bulwahn@39802
   941
 in
bulwahn@39802
   942
   map instantiate rew_ths
bulwahn@39802
   943
 end
bulwahn@39802
   944
bulwahn@39802
   945
fun case_betapply thy t =
bulwahn@39802
   946
  let
bulwahn@39802
   947
    val case_name = fst (dest_Const (fst (strip_comb t)))
bulwahn@39802
   948
    val Tcons = datatype_names_of_case_name thy case_name
bulwahn@39802
   949
    val ths = maps (instantiated_case_rewrites thy) Tcons
bulwahn@39802
   950
  in
wenzelm@41228
   951
    Raw_Simplifier.rewrite_term thy
bulwahn@39802
   952
      (map (fn th => th RS @{thm eq_reflection}) ths) [] t
bulwahn@39802
   953
  end
bulwahn@39802
   954
bulwahn@39657
   955
(*** conversions ***)
bulwahn@39657
   956
bulwahn@39657
   957
fun imp_prems_conv cv ct =
bulwahn@39657
   958
  case Thm.term_of ct of
bulwahn@39657
   959
    Const ("==>", _) $ _ $ _ => Conv.combination_conv (Conv.arg_conv cv) (imp_prems_conv cv) ct
bulwahn@39657
   960
  | _ => Conv.all_conv ct
bulwahn@39657
   961
bulwahn@36047
   962
(** eta contract higher-order arguments **)
bulwahn@35875
   963
bulwahn@35875
   964
fun eta_contract_ho_arguments thy intro =
bulwahn@35875
   965
  let
bulwahn@35875
   966
    fun f atom = list_comb (apsnd ((map o map_products) Envir.eta_contract) (strip_comb atom))
bulwahn@35875
   967
  in
bulwahn@35875
   968
    map_term thy (map_concl f o map_atoms f) intro
bulwahn@35875
   969
  end
bulwahn@35875
   970
bulwahn@36047
   971
(** remove equalities **)
bulwahn@36022
   972
bulwahn@36022
   973
fun remove_equalities thy intro =
bulwahn@36022
   974
  let
bulwahn@36022
   975
    fun remove_eqs intro_t =
bulwahn@36022
   976
      let
bulwahn@36022
   977
        val (prems, concl) = Logic.strip_horn intro_t
bulwahn@36022
   978
        fun remove_eq (prems, concl) =
bulwahn@36022
   979
          let
bulwahn@36022
   980
            fun removable_eq prem =
bulwahn@36022
   981
              case try (HOLogic.dest_eq o HOLogic.dest_Trueprop) prem of
bulwahn@36022
   982
                SOME (lhs, rhs) => (case lhs of
bulwahn@36022
   983
                  Var _ => true
bulwahn@36022
   984
                  | _ => (case rhs of Var _ => true | _ => false))
bulwahn@36022
   985
              | NONE => false
bulwahn@36022
   986
          in
bulwahn@36022
   987
            case find_first removable_eq prems of
bulwahn@36022
   988
              NONE => (prems, concl)
bulwahn@36022
   989
            | SOME eq =>
bulwahn@36022
   990
              let
bulwahn@36022
   991
                val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop eq)
bulwahn@36022
   992
                val prems' = remove (op =) eq prems
bulwahn@36022
   993
                val subst = (case lhs of
bulwahn@36022
   994
                  (v as Var _) =>
bulwahn@36022
   995
                    (fn t => if t = v then rhs else t)
bulwahn@36022
   996
                | _ => (case rhs of
bulwahn@36022
   997
                   (v as Var _) => (fn t => if t = v then lhs else t)))
bulwahn@36022
   998
              in
bulwahn@36022
   999
                remove_eq (map (map_aterms subst) prems', map_aterms subst concl)
bulwahn@36022
  1000
              end
bulwahn@36022
  1001
          end
bulwahn@36022
  1002
      in
bulwahn@36022
  1003
        Logic.list_implies (remove_eq (prems, concl))
bulwahn@36022
  1004
      end
bulwahn@36022
  1005
  in
bulwahn@36022
  1006
    map_term thy remove_eqs intro
bulwahn@36022
  1007
  end
bulwahn@35875
  1008
bulwahn@36246
  1009
(* Some last processing *)
bulwahn@36246
  1010
bulwahn@36246
  1011
fun remove_pointless_clauses intro =
bulwahn@36246
  1012
  if Logic.strip_imp_prems (prop_of intro) = [@{prop "False"}] then
bulwahn@36246
  1013
    []
bulwahn@36246
  1014
  else [intro]
bulwahn@36246
  1015
bulwahn@36246
  1016
(* some peephole optimisations *)
bulwahn@36246
  1017
bulwahn@36246
  1018
fun peephole_optimisation thy intro =
bulwahn@36246
  1019
  let
wenzelm@36610
  1020
    val process =
wenzelm@52230
  1021
      rewrite_rule (Predicate_Compile_Simps.get (Proof_Context.init_global thy))
bulwahn@36246
  1022
    fun process_False intro_t =
bulwahn@36246
  1023
      if member (op =) (Logic.strip_imp_prems intro_t) @{prop "False"} then NONE else SOME intro_t
bulwahn@36246
  1024
    fun process_True intro_t =
bulwahn@36246
  1025
      map_filter_premises (fn p => if p = @{prop True} then NONE else SOME p) intro_t
bulwahn@36246
  1026
  in
bulwahn@36246
  1027
    Option.map (Skip_Proof.make_thm thy)
bulwahn@36246
  1028
      (process_False (process_True (prop_of (process intro))))
bulwahn@36246
  1029
  end
bulwahn@36246
  1030
bulwahn@40101
  1031
bulwahn@40101
  1032
(* importing introduction rules *)
bulwahn@40101
  1033
bulwahn@40101
  1034
fun import_intros inp_pred [] ctxt =
bulwahn@40101
  1035
  let
bulwahn@40101
  1036
    val ([outp_pred], ctxt') = Variable.import_terms true [inp_pred] ctxt
bulwahn@40101
  1037
    val T = fastype_of outp_pred
bulwahn@40101
  1038
    val paramTs = ho_argsT_of_typ (binder_types T)
haftmann@46662
  1039
    val (param_names, _) = Variable.variant_fixes
bulwahn@40101
  1040
      (map (fn i => "p" ^ (string_of_int i)) (1 upto (length paramTs))) ctxt'
bulwahn@40101
  1041
    val params = map2 (curry Free) param_names paramTs
bulwahn@40101
  1042
  in
bulwahn@40101
  1043
    (((outp_pred, params), []), ctxt')
bulwahn@40101
  1044
  end
bulwahn@40101
  1045
  | import_intros inp_pred (th :: ths) ctxt =
bulwahn@40101
  1046
    let
bulwahn@40101
  1047
      val ((_, [th']), ctxt') = Variable.import true [th] ctxt
wenzelm@42361
  1048
      val thy = Proof_Context.theory_of ctxt'
bulwahn@40101
  1049
      val (pred, args) = strip_intro_concl th'
bulwahn@40101
  1050
      val T = fastype_of pred
bulwahn@40101
  1051
      val ho_args = ho_args_of_typ T args
bulwahn@40101
  1052
      fun subst_of (pred', pred) =
bulwahn@40101
  1053
        let
bulwahn@40101
  1054
          val subst = Sign.typ_match thy (fastype_of pred', fastype_of pred) Vartab.empty
bulwahn@40101
  1055
            handle Type.TYPE_MATCH => error ("Type mismatch of predicate " ^ fst (dest_Const pred)
bulwahn@40101
  1056
            ^ " (trying to match " ^ Syntax.string_of_typ ctxt (fastype_of pred')
bulwahn@40101
  1057
            ^ " and " ^ Syntax.string_of_typ ctxt (fastype_of pred) ^ ")"
bulwahn@40101
  1058
            ^ " in " ^ Display.string_of_thm ctxt th)
bulwahn@40101
  1059
        in map (fn (indexname, (s, T)) => ((indexname, s), T)) (Vartab.dest subst) end
bulwahn@40101
  1060
      fun instantiate_typ th =
bulwahn@40101
  1061
        let
bulwahn@40101
  1062
          val (pred', _) = strip_intro_concl th
bulwahn@40101
  1063
          val _ = if not (fst (dest_Const pred) = fst (dest_Const pred')) then
bulwahn@40101
  1064
            raise Fail "Trying to instantiate another predicate" else ()
bulwahn@40101
  1065
        in Thm.certify_instantiate (subst_of (pred', pred), []) th end;
bulwahn@40101
  1066
      fun instantiate_ho_args th =
bulwahn@40101
  1067
        let
bulwahn@40101
  1068
          val (_, args') = (strip_comb o HOLogic.dest_Trueprop o Logic.strip_imp_concl o prop_of) th
bulwahn@40101
  1069
          val ho_args' = map dest_Var (ho_args_of_typ T args')
bulwahn@40101
  1070
        in Thm.certify_instantiate ([], ho_args' ~~ ho_args) th end
bulwahn@40101
  1071
      val outp_pred =
bulwahn@40101
  1072
        Term_Subst.instantiate (subst_of (inp_pred, pred), []) inp_pred
bulwahn@40101
  1073
      val ((_, ths'), ctxt1) =
bulwahn@40101
  1074
        Variable.import false (map (instantiate_typ #> instantiate_ho_args) ths) ctxt'
bulwahn@40101
  1075
    in
bulwahn@40101
  1076
      (((outp_pred, ho_args), th' :: ths'), ctxt1)
bulwahn@40101
  1077
    end
bulwahn@40101
  1078
  
bulwahn@40101
  1079
(* generation of case rules from user-given introduction rules *)
bulwahn@40101
  1080
bulwahn@40101
  1081
fun mk_args2 (Type (@{type_name Product_Type.prod}, [T1, T2])) st =
bulwahn@40101
  1082
    let
bulwahn@40101
  1083
      val (t1, st') = mk_args2 T1 st
bulwahn@40101
  1084
      val (t2, st'') = mk_args2 T2 st'
bulwahn@40101
  1085
    in
bulwahn@40101
  1086
      (HOLogic.mk_prod (t1, t2), st'')
bulwahn@40101
  1087
    end
bulwahn@40101
  1088
  (*| mk_args2 (T as Type ("fun", _)) (params, ctxt) = 
bulwahn@40101
  1089
    let
bulwahn@40101
  1090
      val (S, U) = strip_type T
bulwahn@40101
  1091
    in
bulwahn@40101
  1092
      if U = HOLogic.boolT then
bulwahn@40101
  1093
        (hd params, (tl params, ctxt))
bulwahn@40101
  1094
      else
bulwahn@40101
  1095
        let
bulwahn@40101
  1096
          val ([x], ctxt') = Variable.variant_fixes ["x"] ctxt
bulwahn@40101
  1097
        in
bulwahn@40101
  1098
          (Free (x, T), (params, ctxt'))
bulwahn@40101
  1099
        end
bulwahn@40101
  1100
    end*)
bulwahn@40101
  1101
  | mk_args2 T (params, ctxt) =
bulwahn@40101
  1102
    let
bulwahn@40101
  1103
      val ([x], ctxt') = Variable.variant_fixes ["x"] ctxt
bulwahn@40101
  1104
    in
bulwahn@40101
  1105
      (Free (x, T), (params, ctxt'))
bulwahn@40101
  1106
    end
bulwahn@40101
  1107
bulwahn@40101
  1108
fun mk_casesrule ctxt pred introrules =
bulwahn@40101
  1109
  let
bulwahn@40101
  1110
    (* TODO: can be simplified if parameters are not treated specially ? *)
bulwahn@40101
  1111
    val (((pred, params), intros_th), ctxt1) = import_intros pred introrules ctxt
bulwahn@40101
  1112
    (* TODO: distinct required ? -- test case with more than one parameter! *)
bulwahn@40101
  1113
    val params = distinct (op aconv) params
bulwahn@40101
  1114
    val intros = map prop_of intros_th
bulwahn@40101
  1115
    val ([propname], ctxt2) = Variable.variant_fixes ["thesis"] ctxt1
bulwahn@40101
  1116
    val prop = HOLogic.mk_Trueprop (Free (propname, HOLogic.boolT))
bulwahn@40101
  1117
    val argsT = binder_types (fastype_of pred)
bulwahn@40101
  1118
    (* TODO: can be simplified if parameters are not treated specially ? <-- see uncommented code! *)
bulwahn@40101
  1119
    val (argvs, _) = fold_map mk_args2 argsT (params, ctxt2)
bulwahn@40101
  1120
    fun mk_case intro =
bulwahn@40101
  1121
      let
bulwahn@40101
  1122
        val (_, args) = (strip_comb o HOLogic.dest_Trueprop o Logic.strip_imp_concl) intro
bulwahn@40101
  1123
        val prems = Logic.strip_imp_prems intro
bulwahn@40101
  1124
        val eqprems =
bulwahn@40101
  1125
          map2 (HOLogic.mk_Trueprop oo (curry HOLogic.mk_eq)) argvs args
bulwahn@40101
  1126
        val frees = map Free (fold Term.add_frees (args @ prems) [])
bulwahn@40101
  1127
      in fold Logic.all frees (Logic.list_implies (eqprems @ prems, prop)) end
bulwahn@40101
  1128
    val assm = HOLogic.mk_Trueprop (list_comb (pred, argvs))
bulwahn@40101
  1129
    val cases = map mk_case intros
bulwahn@40101
  1130
  in Logic.list_implies (assm :: cases, prop) end;
bulwahn@40101
  1131
  
bulwahn@40101
  1132
bulwahn@40101
  1133
(* unifying constants to have the same type variables *)
bulwahn@40101
  1134
bulwahn@40101
  1135
fun unify_consts thy cs intr_ts =
bulwahn@40101
  1136
  (let
bulwahn@40101
  1137
     val add_term_consts_2 = fold_aterms (fn Const c => insert (op =) c | _ => I);
bulwahn@40101
  1138
     fun varify (t, (i, ts)) =
bulwahn@40101
  1139
       let val t' = map_types (Logic.incr_tvar (i + 1)) (#2 (Type.varify_global [] t))
bulwahn@40101
  1140
       in (maxidx_of_term t', t'::ts) end;
bulwahn@40101
  1141
     val (i, cs') = List.foldr varify (~1, []) cs;
bulwahn@40101
  1142
     val (i', intr_ts') = List.foldr varify (i, []) intr_ts;
bulwahn@40101
  1143
     val rec_consts = fold add_term_consts_2 cs' [];
bulwahn@40101
  1144
     val intr_consts = fold add_term_consts_2 intr_ts' [];
bulwahn@40101
  1145
     fun unify (cname, cT) =
bulwahn@40101
  1146
       let val consts = map snd (filter (fn c => fst c = cname) intr_consts)
bulwahn@40101
  1147
       in fold (Sign.typ_unify thy) ((replicate (length consts) cT) ~~ consts) end;
bulwahn@40101
  1148
     val (env, _) = fold unify rec_consts (Vartab.empty, i');
bulwahn@40101
  1149
     val subst = map_types (Envir.norm_type env)
bulwahn@40101
  1150
   in (map subst cs', map subst intr_ts')
bulwahn@40101
  1151
   end) handle Type.TUNIFY =>
bulwahn@40101
  1152
     (warning "Occurrences of recursive constant have non-unifiable types"; (cs, intr_ts));
bulwahn@40101
  1153
bulwahn@40101
  1154
(* preprocessing rules *)
bulwahn@40101
  1155
bulwahn@40101
  1156
fun preprocess_equality thy rule =
bulwahn@40101
  1157
  Conv.fconv_rule
bulwahn@40101
  1158
    (imp_prems_conv
wenzelm@51314
  1159
      (HOLogic.Trueprop_conv
wenzelm@51314
  1160
        (Conv.try_conv (Conv.rewr_conv (Thm.symmetric @{thm Predicate.eq_is_eq})))))
bulwahn@40101
  1161
    (Thm.transfer thy rule)
bulwahn@40101
  1162
bulwahn@40101
  1163
fun preprocess_intro thy = expand_tuples thy #> preprocess_equality thy
bulwahn@40101
  1164
bulwahn@39541
  1165
(* defining a quickcheck predicate *)
bulwahn@39541
  1166
bulwahn@39541
  1167
fun strip_imp_prems (Const(@{const_name HOL.implies}, _) $ A $ B) = A :: strip_imp_prems B
bulwahn@39541
  1168
  | strip_imp_prems _ = [];
bulwahn@39541
  1169
haftmann@46662
  1170
fun strip_imp_concl (Const(@{const_name HOL.implies}, _) $ _ $ B) = strip_imp_concl B
haftmann@46662
  1171
  | strip_imp_concl A = A;
bulwahn@39541
  1172
bulwahn@39541
  1173
fun strip_horn A = (strip_imp_prems A, strip_imp_concl A);
bulwahn@39541
  1174
bulwahn@39541
  1175
fun define_quickcheck_predicate t thy =
bulwahn@39541
  1176
  let
bulwahn@39541
  1177
    val (vs, t') = strip_abs t
wenzelm@51552
  1178
    val vs' = Variable.variant_frees (Proof_Context.init_global thy) [] vs (* FIXME proper context!? *)
bulwahn@39541
  1179
    val t'' = subst_bounds (map Free (rev vs'), t')
bulwahn@39541
  1180
    val (prems, concl) = strip_horn t''
bulwahn@39541
  1181
    val constname = "quickcheck"
bulwahn@39541
  1182
    val full_constname = Sign.full_bname thy constname
bulwahn@39541
  1183
    val constT = map snd vs' ---> @{typ bool}
bulwahn@39541
  1184
    val thy1 = Sign.add_consts_i [(Binding.name constname, constT, NoSyn)] thy
bulwahn@39541
  1185
    val const = Const (full_constname, constT)
bulwahn@39541
  1186
    val t = Logic.list_implies
bulwahn@39541
  1187
      (map HOLogic.mk_Trueprop (prems @ [HOLogic.mk_not concl]),
bulwahn@39541
  1188
       HOLogic.mk_Trueprop (list_comb (const, map Free vs')))
wenzelm@51552
  1189
    val intro =
wenzelm@51552
  1190
      Goal.prove (Proof_Context.init_global thy1) (map fst vs') [] t
wenzelm@51552
  1191
        (fn _ => ALLGOALS Skip_Proof.cheat_tac)
bulwahn@39541
  1192
  in
bulwahn@39541
  1193
    ((((full_constname, constT), vs'), intro), thy1)
bulwahn@39541
  1194
  end
bulwahn@39541
  1195
bulwahn@33250
  1196
end;