src/HOLCF/One.thy
author huffman
Fri Mar 04 23:12:36 2005 +0100 (2005-03-04)
changeset 15576 efb95d0d01f7
parent 14981 e73f8140af78
child 15577 e16da3068ad6
permissions -rw-r--r--
converted to new-style theories, and combined numbered files
slotosch@2640
     1
(*  Title:      HOLCF/One.thy
nipkow@243
     2
    ID:         $Id$
slotosch@2640
     3
    Author:     Oscar Slotosch
huffman@15576
     4
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
nipkow@243
     5
*)
nipkow@243
     6
huffman@15576
     7
theory One = Lift:
nipkow@243
     8
huffman@15576
     9
types one = "unit lift"
nipkow@243
    10
wenzelm@3717
    11
constdefs
wenzelm@3717
    12
  ONE :: "one"
wenzelm@3717
    13
  "ONE == Def ()"
slotosch@2640
    14
slotosch@2640
    15
translations
wenzelm@3717
    16
  "one" <= (type) "unit lift" 
nipkow@243
    17
huffman@15576
    18
(*  Title:      HOLCF/One.ML
huffman@15576
    19
    ID:         $Id$
huffman@15576
    20
    Author:     Oscar Slotosch
huffman@15576
    21
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
huffman@15576
    22
huffman@15576
    23
The unit domain.
huffman@15576
    24
*)
huffman@15576
    25
huffman@15576
    26
(* ------------------------------------------------------------------------ *)
huffman@15576
    27
(* Exhaustion and Elimination for type one                                  *)
huffman@15576
    28
(* ------------------------------------------------------------------------ *)
huffman@15576
    29
huffman@15576
    30
lemma Exh_one: "t=UU | t = ONE"
huffman@15576
    31
apply (unfold ONE_def)
huffman@15576
    32
apply (induct t)
huffman@15576
    33
apply simp
huffman@15576
    34
apply simp
huffman@15576
    35
done
huffman@15576
    36
huffman@15576
    37
lemma oneE: "[| p=UU ==> Q; p = ONE ==>Q|] ==>Q"
huffman@15576
    38
apply (rule Exh_one [THEN disjE])
huffman@15576
    39
apply fast
huffman@15576
    40
apply fast
huffman@15576
    41
done
huffman@15576
    42
huffman@15576
    43
lemma dist_less_one [simp]: "~ONE << UU"
huffman@15576
    44
apply (unfold ONE_def)
huffman@15576
    45
apply (simp add: inst_lift_po)
huffman@15576
    46
done
huffman@15576
    47
huffman@15576
    48
lemma dist_eq_one [simp]: "ONE~=UU" "UU~=ONE"
huffman@15576
    49
apply (unfold ONE_def)
huffman@15576
    50
apply (simp_all add: inst_lift_po)
huffman@15576
    51
done
huffman@15576
    52
nipkow@243
    53
end