src/HOL/Tools/meson.ML
author quigley
Tue Apr 19 15:15:06 2005 +0200 (2005-04-19)
changeset 15773 f14ae2432710
parent 15736 1bb0399a9517
child 15779 aed221aff642
permissions -rw-r--r--
Completed integration of reconstruction code. Now finds and displays proofs when used with modified version
of Proof General. C.Q.
wenzelm@9869
     1
(*  Title:      HOL/Tools/meson.ML
paulson@9840
     2
    ID:         $Id$
paulson@9840
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@9840
     4
    Copyright   1992  University of Cambridge
paulson@9840
     5
wenzelm@9869
     6
The MESON resolution proof procedure for HOL.
paulson@9840
     7
paulson@9840
     8
When making clauses, avoids using the rewriter -- instead uses RS recursively
paulson@9840
     9
paulson@9840
    10
NEED TO SORT LITERALS BY # OF VARS, USING ==>I/E.  ELIMINATES NEED FOR
paulson@9840
    11
FUNCTION nodups -- if done to goal clauses too!
paulson@9840
    12
*)
paulson@9840
    13
paulson@15579
    14
signature BASIC_MESON =
paulson@15579
    15
sig
paulson@15579
    16
  val size_of_subgoals	: thm -> int
paulson@15579
    17
  val make_nnf		: thm -> thm
paulson@15579
    18
  val skolemize		: thm -> thm
paulson@15579
    19
  val make_clauses	: thm list -> thm list
paulson@15579
    20
  val make_horns	: thm list -> thm list
paulson@15579
    21
  val best_prolog_tac	: (thm -> int) -> thm list -> tactic
paulson@15579
    22
  val depth_prolog_tac	: thm list -> tactic
paulson@15579
    23
  val gocls		: thm list -> thm list
paulson@15579
    24
  val skolemize_prems_tac	: thm list -> int -> tactic
paulson@15579
    25
  val MESON		: (thm list -> tactic) -> int -> tactic
paulson@15579
    26
  val best_meson_tac	: (thm -> int) -> int -> tactic
paulson@15579
    27
  val safe_best_meson_tac	: int -> tactic
paulson@15579
    28
  val depth_meson_tac	: int -> tactic
paulson@15579
    29
  val prolog_step_tac'	: thm list -> int -> tactic
paulson@15579
    30
  val iter_deepen_prolog_tac	: thm list -> tactic
paulson@15579
    31
  val iter_deepen_meson_tac	: int -> tactic
paulson@15579
    32
  val meson_tac		: int -> tactic
paulson@15579
    33
  val negate_head	: thm -> thm
paulson@15579
    34
  val select_literal	: int -> thm -> thm
paulson@15579
    35
  val skolemize_tac	: int -> tactic
paulson@15579
    36
  val make_clauses_tac	: int -> tactic
paulson@15579
    37
  val meson_setup	: (theory -> theory) list
paulson@15579
    38
end
paulson@9840
    39
paulson@9840
    40
paulson@15579
    41
structure Meson =
paulson@15579
    42
struct
paulson@9840
    43
paulson@15579
    44
val not_conjD = thm "meson_not_conjD";
paulson@15579
    45
val not_disjD = thm "meson_not_disjD";
paulson@15579
    46
val not_notD = thm "meson_not_notD";
paulson@15579
    47
val not_allD = thm "meson_not_allD";
paulson@15579
    48
val not_exD = thm "meson_not_exD";
paulson@15579
    49
val imp_to_disjD = thm "meson_imp_to_disjD";
paulson@15579
    50
val not_impD = thm "meson_not_impD";
paulson@15579
    51
val iff_to_disjD = thm "meson_iff_to_disjD";
paulson@15579
    52
val not_iffD = thm "meson_not_iffD";
paulson@15579
    53
val conj_exD1 = thm "meson_conj_exD1";
paulson@15579
    54
val conj_exD2 = thm "meson_conj_exD2";
paulson@15579
    55
val disj_exD = thm "meson_disj_exD";
paulson@15579
    56
val disj_exD1 = thm "meson_disj_exD1";
paulson@15579
    57
val disj_exD2 = thm "meson_disj_exD2";
paulson@15579
    58
val disj_assoc = thm "meson_disj_assoc";
paulson@15579
    59
val disj_comm = thm "meson_disj_comm";
paulson@15579
    60
val disj_FalseD1 = thm "meson_disj_FalseD1";
paulson@15579
    61
val disj_FalseD2 = thm "meson_disj_FalseD2";
paulson@9840
    62
paulson@9840
    63
paulson@15579
    64
(**** Operators for forward proof ****)
paulson@15579
    65
paulson@15579
    66
(*raises exception if no rules apply -- unlike RL*)
paulson@15579
    67
fun tryres (th, rl::rls) = (th RS rl handle THM _ => tryres(th,rls))
paulson@15579
    68
  | tryres (th, []) = raise THM("tryres", 0, [th]);
paulson@15579
    69
paulson@15579
    70
(*Permits forward proof from rules that discharge assumptions*)
paulson@15579
    71
fun forward_res nf st =
paulson@15579
    72
  case Seq.pull (ALLGOALS (METAHYPS (fn [prem] => rtac (nf prem) 1)) st)
paulson@15579
    73
  of SOME(th,_) => th
paulson@15579
    74
   | NONE => raise THM("forward_res", 0, [st]);
paulson@15579
    75
paulson@15579
    76
paulson@15579
    77
(*Are any of the constants in "bs" present in the term?*)
paulson@15579
    78
fun has_consts bs =
paulson@15579
    79
  let fun has (Const(a,_)) = a mem bs
paulson@15579
    80
	| has (Const ("Hilbert_Choice.Eps",_) $ _) = false
paulson@15579
    81
		     (*ignore constants within @-terms*)
paulson@15579
    82
	| has (f$u) = has f orelse has u
paulson@15579
    83
	| has (Abs(_,_,t)) = has t
paulson@15579
    84
	| has _ = false
paulson@15579
    85
  in  has  end;
paulson@9840
    86
paulson@15736
    87
(* for tracing: encloses each string element in brackets. *)
paulson@15736
    88
fun concat_with_and [] = ""
paulson@15736
    89
  | concat_with_and [x] = "(" ^ x ^ ")"
paulson@15736
    90
  | concat_with_and (x::xs) = "(" ^ x ^ ")" ^ " & " ^ concat_with_and xs;
quigley@15679
    91
paulson@9840
    92
paulson@15579
    93
(**** Clause handling ****)
paulson@9840
    94
paulson@15579
    95
fun literals (Const("Trueprop",_) $ P) = literals P
paulson@15579
    96
  | literals (Const("op |",_) $ P $ Q) = literals P @ literals Q
paulson@15579
    97
  | literals (Const("Not",_) $ P) = [(false,P)]
paulson@15579
    98
  | literals P = [(true,P)];
paulson@9840
    99
paulson@15579
   100
(*number of literals in a term*)
paulson@15579
   101
val nliterals = length o literals;
paulson@9840
   102
paulson@15579
   103
(*to detect, and remove, tautologous clauses*)
paulson@15579
   104
fun taut_lits [] = false
paulson@15579
   105
  | taut_lits ((flg,t)::ts) = (not flg,t) mem ts orelse taut_lits ts;
paulson@9840
   106
paulson@15579
   107
(*Include False as a literal: an occurrence of ~False is a tautology*)
paulson@15579
   108
fun is_taut th = taut_lits ((true, HOLogic.false_const) ::
paulson@15579
   109
			    literals (prop_of th));
paulson@9840
   110
paulson@15579
   111
(*Generation of unique names -- maxidx cannot be relied upon to increase!
paulson@15579
   112
  Cannot rely on "variant", since variables might coincide when literals
paulson@15579
   113
  are joined to make a clause...
paulson@15579
   114
  19 chooses "U" as the first variable name*)
paulson@15579
   115
val name_ref = ref 19;
paulson@9840
   116
paulson@15579
   117
(*Replaces universally quantified variables by FREE variables -- because
paulson@15579
   118
  assumptions may not contain scheme variables.  Later, call "generalize". *)
paulson@15579
   119
fun freeze_spec th =
paulson@15579
   120
  let val sth = th RS spec
paulson@15579
   121
      val newname = (name_ref := !name_ref + 1;
paulson@15579
   122
		     radixstring(26, "A", !name_ref))
paulson@15579
   123
  in  read_instantiate [("x", newname)] sth  end;
paulson@9840
   124
paulson@15579
   125
fun resop nf [prem] = resolve_tac (nf prem) 1;
paulson@9840
   126
paulson@15579
   127
(*Conjunctive normal form, detecting tautologies early.
paulson@15579
   128
  Strips universal quantifiers and breaks up conjunctions. *)
paulson@15579
   129
fun cnf_aux seen (th,ths) =
quigley@15773
   130
 if taut_lits (literals(prop_of th) @ seen)  
paulson@15579
   131
  then ths     (*tautology ignored*)
paulson@15579
   132
  else if not (has_consts ["All","op &"] (prop_of th))  
paulson@15579
   133
  then th::ths (*no work to do, terminate*)
paulson@15579
   134
  else (*conjunction?*)
paulson@15579
   135
	cnf_aux seen (th RS conjunct1,
paulson@15579
   136
		      cnf_aux seen (th RS conjunct2, ths))
paulson@15579
   137
  handle THM _ => (*universal quant?*)
paulson@15579
   138
	cnf_aux  seen (freeze_spec th,  ths)
paulson@15579
   139
  handle THM _ => (*disjunction?*)
paulson@15579
   140
    let val tac =
paulson@15579
   141
	(METAHYPS (resop (cnf_nil seen)) 1) THEN
paulson@15579
   142
	(fn st' => st' |>
paulson@15579
   143
		METAHYPS (resop (cnf_nil (literals (concl_of st') @ seen))) 1)
quigley@15773
   144
    in  Seq.list_of (tac (th RS disj_forward)) @ ths  end 
quigley@15773
   145
and cnf_nil seen th = (cnf_aux seen (th,[]))
paulson@9840
   146
paulson@15579
   147
(*Top-level call to cnf -- it's safe to reset name_ref*)
paulson@15579
   148
fun cnf (th,ths) =
paulson@15579
   149
   (name_ref := 19;  cnf (th RS conjunct1, cnf (th RS conjunct2, ths))
paulson@15579
   150
    handle THM _ => (*not a conjunction*) cnf_aux [] (th, ths));
paulson@9840
   151
paulson@15579
   152
(**** Removal of duplicate literals ****)
paulson@9840
   153
paulson@15579
   154
(*Forward proof, passing extra assumptions as theorems to the tactic*)
paulson@15579
   155
fun forward_res2 nf hyps st =
paulson@15579
   156
  case Seq.pull
paulson@15579
   157
	(REPEAT
paulson@15579
   158
	 (METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
paulson@15579
   159
	 st)
paulson@15579
   160
  of SOME(th,_) => th
paulson@15579
   161
   | NONE => raise THM("forward_res2", 0, [st]);
paulson@9840
   162
paulson@15579
   163
(*Remove duplicates in P|Q by assuming ~P in Q
paulson@15579
   164
  rls (initially []) accumulates assumptions of the form P==>False*)
paulson@15579
   165
fun nodups_aux rls th = nodups_aux rls (th RS disj_assoc)
paulson@15579
   166
    handle THM _ => tryres(th,rls)
paulson@15579
   167
    handle THM _ => tryres(forward_res2 nodups_aux rls (th RS disj_forward2),
paulson@15579
   168
			   [disj_FalseD1, disj_FalseD2, asm_rl])
paulson@15579
   169
    handle THM _ => th;
paulson@9840
   170
paulson@15579
   171
(*Remove duplicate literals, if there are any*)
paulson@15579
   172
fun nodups th =
paulson@15579
   173
    if null(findrep(literals(prop_of th))) then th
paulson@15579
   174
    else nodups_aux [] th;
paulson@9840
   175
paulson@9840
   176
paulson@15579
   177
(**** Generation of contrapositives ****)
paulson@9840
   178
paulson@15579
   179
(*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
paulson@15579
   180
fun assoc_right th = assoc_right (th RS disj_assoc)
paulson@15579
   181
	handle THM _ => th;
paulson@9840
   182
paulson@15579
   183
(*Must check for negative literal first!*)
paulson@15579
   184
val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
paulson@9840
   185
paulson@15579
   186
(*For ordinary resolution. *)
paulson@15579
   187
val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
paulson@9840
   188
paulson@15579
   189
(*Create a goal or support clause, conclusing False*)
paulson@15579
   190
fun make_goal th =   (*Must check for negative literal first!*)
paulson@15579
   191
    make_goal (tryres(th, clause_rules))
paulson@15579
   192
  handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
paulson@9840
   193
paulson@15579
   194
(*Sort clauses by number of literals*)
paulson@15579
   195
fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
paulson@9840
   196
paulson@15579
   197
(*TAUTOLOGY CHECK SHOULD NOT BE NECESSARY!*)
paulson@15579
   198
fun sort_clauses ths = sort (make_ord fewerlits) (List.filter (not o is_taut) ths);
paulson@9840
   199
paulson@15579
   200
(*Convert all suitable free variables to schematic variables*)
paulson@15579
   201
fun generalize th = forall_elim_vars 0 (forall_intr_frees th);
paulson@9840
   202
paulson@15581
   203
(*True if the given type contains bool anywhere*)
paulson@15581
   204
fun has_bool (Type("bool",_)) = true
paulson@15581
   205
  | has_bool (Type(_, Ts)) = exists has_bool Ts
paulson@15581
   206
  | has_bool _ = false;
paulson@15581
   207
  
paulson@15613
   208
(*Is the string the name of a connective? It doesn't matter if this list is
paulson@15613
   209
  incomplete, since when actually called, the only connectives likely to
paulson@15613
   210
  remain are & | Not.*)  
paulson@15613
   211
fun is_conn c = c mem_string
paulson@15613
   212
    ["Trueprop", "op &", "op |", "op -->", "op =", "Not", 
paulson@15613
   213
     "All", "Ex", "Ball", "Bex"];
paulson@15613
   214
paulson@15613
   215
(*True if the term contains a function where the type of any argument contains
paulson@15613
   216
  bool.*)
paulson@15613
   217
val has_bool_arg_const = 
paulson@15613
   218
    exists_Const
paulson@15613
   219
      (fn (c,T) => not(is_conn c) andalso exists (has_bool) (binder_types T));
paulson@15613
   220
  
paulson@15581
   221
(*Raises an exception if any Vars in the theorem mention type bool. That would mean
paulson@15613
   222
  they are higher-order, and in addition, they could cause make_horn to loop!
paulson@15613
   223
  Functions taking Boolean arguments are also rejected.*)
paulson@15581
   224
fun check_no_bool th =
paulson@15613
   225
  let val {prop,...} = rep_thm th
paulson@15613
   226
  in if exists (has_bool o fastype_of) (term_vars prop) orelse
paulson@15613
   227
        has_bool_arg_const prop
paulson@15613
   228
  then raise THM ("check_no_bool", 0, [th]) else th
paulson@15613
   229
  end;
paulson@15581
   230
paulson@15579
   231
(*Create a meta-level Horn clause*)
paulson@15579
   232
fun make_horn crules th = make_horn crules (tryres(th,crules))
paulson@15579
   233
			  handle THM _ => th;
paulson@9840
   234
paulson@15579
   235
(*Generate Horn clauses for all contrapositives of a clause*)
paulson@15579
   236
fun add_contras crules (th,hcs) =
paulson@15579
   237
  let fun rots (0,th) = hcs
paulson@15579
   238
	| rots (k,th) = zero_var_indexes (make_horn crules th) ::
paulson@15579
   239
			rots(k-1, assoc_right (th RS disj_comm))
paulson@15581
   240
  in case nliterals(prop_of (check_no_bool th)) of
paulson@15579
   241
	1 => th::hcs
paulson@15579
   242
      | n => rots(n, assoc_right th)
paulson@15579
   243
  end;
paulson@9840
   244
paulson@15579
   245
(*Use "theorem naming" to label the clauses*)
paulson@15579
   246
fun name_thms label =
paulson@15579
   247
    let fun name1 (th, (k,ths)) =
paulson@15579
   248
	  (k-1, Thm.name_thm (label ^ string_of_int k, th) :: ths)
paulson@9840
   249
paulson@15579
   250
    in  fn ths => #2 (foldr name1 (length ths, []) ths)  end;
paulson@9840
   251
paulson@15579
   252
(*Find an all-negative support clause*)
paulson@15579
   253
fun is_negative th = forall (not o #1) (literals (prop_of th));
paulson@9840
   254
paulson@15579
   255
val neg_clauses = List.filter is_negative;
paulson@9840
   256
paulson@9840
   257
paulson@15579
   258
(***** MESON PROOF PROCEDURE *****)
paulson@9840
   259
paulson@15579
   260
fun rhyps (Const("==>",_) $ (Const("Trueprop",_) $ A) $ phi,
paulson@15579
   261
	   As) = rhyps(phi, A::As)
paulson@15579
   262
  | rhyps (_, As) = As;
paulson@9840
   263
paulson@15579
   264
(** Detecting repeated assumptions in a subgoal **)
paulson@9840
   265
paulson@15579
   266
(*The stringtree detects repeated assumptions.*)
paulson@15579
   267
fun ins_term (net,t) = Net.insert_term((t,t), net, op aconv);
paulson@9840
   268
paulson@15579
   269
(*detects repetitions in a list of terms*)
paulson@15579
   270
fun has_reps [] = false
paulson@15579
   271
  | has_reps [_] = false
paulson@15579
   272
  | has_reps [t,u] = (t aconv u)
paulson@15579
   273
  | has_reps ts = (Library.foldl ins_term (Net.empty, ts);  false)
paulson@15579
   274
		  handle INSERT => true;
paulson@9840
   275
paulson@15579
   276
(*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
paulson@15579
   277
fun TRYALL_eq_assume_tac 0 st = Seq.single st
paulson@15579
   278
  | TRYALL_eq_assume_tac i st =
paulson@15579
   279
       TRYALL_eq_assume_tac (i-1) (eq_assumption i st)
paulson@15579
   280
       handle THM _ => TRYALL_eq_assume_tac (i-1) st;
paulson@9840
   281
paulson@15579
   282
(*Loop checking: FAIL if trying to prove the same thing twice
paulson@15579
   283
  -- if *ANY* subgoal has repeated literals*)
paulson@15579
   284
fun check_tac st =
paulson@15579
   285
  if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
paulson@15579
   286
  then  Seq.empty  else  Seq.single st;
paulson@9840
   287
paulson@9840
   288
paulson@15579
   289
(* net_resolve_tac actually made it slower... *)
paulson@15579
   290
fun prolog_step_tac horns i =
paulson@15579
   291
    (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
paulson@15579
   292
    TRYALL eq_assume_tac;
paulson@9840
   293
paulson@9840
   294
(*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
paulson@15579
   295
fun addconcl(prem,sz) = size_of_term(Logic.strip_assums_concl prem) + sz
paulson@15579
   296
paulson@15579
   297
fun size_of_subgoals st = foldr addconcl 0 (prems_of st);
paulson@15579
   298
paulson@9840
   299
paulson@9840
   300
(*Negation Normal Form*)
paulson@9840
   301
val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
wenzelm@9869
   302
               not_impD, not_iffD, not_allD, not_exD, not_notD];
paulson@15581
   303
paulson@15581
   304
fun make_nnf1 th = make_nnf1 (tryres(th, nnf_rls))
wenzelm@9869
   305
    handle THM _ =>
paulson@15581
   306
        forward_res make_nnf1
wenzelm@9869
   307
           (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
paulson@9840
   308
    handle THM _ => th;
paulson@9840
   309
paulson@15581
   310
fun make_nnf th = make_nnf1 (check_no_bool th);
paulson@15581
   311
paulson@9840
   312
(*Pull existential quantifiers (Skolemization)*)
wenzelm@9869
   313
fun skolemize th =
paulson@9840
   314
  if not (has_consts ["Ex"] (prop_of th)) then th
quigley@15773
   315
  else (skolemize (tryres(th, [choice, conj_exD1, conj_exD2,
quigley@15679
   316
                              disj_exD, disj_exD1, disj_exD2])))
wenzelm@9869
   317
    handle THM _ =>
wenzelm@9869
   318
        skolemize (forward_res skolemize
wenzelm@9869
   319
                   (tryres (th, [conj_forward, disj_forward, all_forward])))
paulson@9840
   320
    handle THM _ => forward_res skolemize (th RS ex_forward);
paulson@9840
   321
paulson@9840
   322
paulson@9840
   323
(*Make clauses from a list of theorems, previously Skolemized and put into nnf.
paulson@9840
   324
  The resulting clauses are HOL disjunctions.*)
wenzelm@9869
   325
fun make_clauses ths =
quigley@15773
   326
   (  sort_clauses (map (generalize o nodups) (foldr cnf [] ths)));
quigley@15773
   327
paulson@9840
   328
paulson@9840
   329
(*Convert a list of clauses to (contrapositive) Horn clauses*)
wenzelm@9869
   330
fun make_horns ths =
paulson@9840
   331
    name_thms "Horn#"
skalberg@15574
   332
      (gen_distinct Drule.eq_thm_prop (foldr (add_contras clause_rules) [] ths));
paulson@9840
   333
paulson@9840
   334
(*Could simply use nprems_of, which would count remaining subgoals -- no
paulson@9840
   335
  discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
paulson@9840
   336
wenzelm@9869
   337
fun best_prolog_tac sizef horns =
paulson@9840
   338
    BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
paulson@9840
   339
wenzelm@9869
   340
fun depth_prolog_tac horns =
paulson@9840
   341
    DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
paulson@9840
   342
paulson@9840
   343
(*Return all negative clauses, as possible goal clauses*)
paulson@9840
   344
fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
paulson@9840
   345
paulson@9840
   346
paulson@15008
   347
fun skolemize_prems_tac prems =
paulson@9840
   348
    cut_facts_tac (map (skolemize o make_nnf) prems)  THEN'
paulson@9840
   349
    REPEAT o (etac exE);
paulson@9840
   350
paulson@9840
   351
(*Shell of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions*)
paulson@9840
   352
fun MESON cltac = SELECT_GOAL
paulson@9840
   353
 (EVERY1 [rtac ccontr,
paulson@9840
   354
          METAHYPS (fn negs =>
paulson@15008
   355
                    EVERY1 [skolemize_prems_tac negs,
paulson@9840
   356
                            METAHYPS (cltac o make_clauses)])]);
paulson@9840
   357
paulson@9840
   358
(** Best-first search versions **)
paulson@9840
   359
wenzelm@9869
   360
fun best_meson_tac sizef =
wenzelm@9869
   361
  MESON (fn cls =>
paulson@9840
   362
         THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
paulson@9840
   363
                         (has_fewer_prems 1, sizef)
paulson@9840
   364
                         (prolog_step_tac (make_horns cls) 1));
paulson@9840
   365
paulson@9840
   366
(*First, breaks the goal into independent units*)
paulson@9840
   367
val safe_best_meson_tac =
wenzelm@9869
   368
     SELECT_GOAL (TRY Safe_tac THEN
paulson@9840
   369
                  TRYALL (best_meson_tac size_of_subgoals));
paulson@9840
   370
paulson@9840
   371
(** Depth-first search version **)
paulson@9840
   372
paulson@9840
   373
val depth_meson_tac =
wenzelm@9869
   374
     MESON (fn cls => EVERY [resolve_tac (gocls cls) 1,
paulson@9840
   375
                             depth_prolog_tac (make_horns cls)]);
paulson@9840
   376
paulson@9840
   377
paulson@9840
   378
paulson@9840
   379
(** Iterative deepening version **)
paulson@9840
   380
paulson@9840
   381
(*This version does only one inference per call;
paulson@9840
   382
  having only one eq_assume_tac speeds it up!*)
wenzelm@9869
   383
fun prolog_step_tac' horns =
paulson@9840
   384
    let val (horn0s, hornps) = (*0 subgoals vs 1 or more*)
paulson@9840
   385
            take_prefix Thm.no_prems horns
paulson@9840
   386
        val nrtac = net_resolve_tac horns
paulson@9840
   387
    in  fn i => eq_assume_tac i ORELSE
paulson@9840
   388
                match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
paulson@9840
   389
                ((assume_tac i APPEND nrtac i) THEN check_tac)
paulson@9840
   390
    end;
paulson@9840
   391
wenzelm@9869
   392
fun iter_deepen_prolog_tac horns =
paulson@9840
   393
    ITER_DEEPEN (has_fewer_prems 1) (prolog_step_tac' horns);
paulson@9840
   394
wenzelm@9869
   395
val iter_deepen_meson_tac =
wenzelm@9869
   396
  MESON (fn cls =>
paulson@9840
   397
         (THEN_ITER_DEEPEN (resolve_tac (gocls cls) 1)
paulson@9840
   398
                           (has_fewer_prems 1)
paulson@9840
   399
                           (prolog_step_tac' (make_horns cls))));
paulson@9840
   400
wenzelm@9869
   401
fun meson_claset_tac cs =
wenzelm@9869
   402
  SELECT_GOAL (TRY (safe_tac cs) THEN TRYALL iter_deepen_meson_tac);
wenzelm@9869
   403
wenzelm@9869
   404
val meson_tac = CLASET' meson_claset_tac;
wenzelm@9869
   405
wenzelm@9869
   406
paulson@14813
   407
(**** Code to support ordinary resolution, rather than Model Elimination ****)
paulson@14744
   408
paulson@15008
   409
(*Convert a list of clauses (disjunctions) to meta-level clauses (==>), 
paulson@15008
   410
  with no contrapositives, for ordinary resolution.*)
paulson@14744
   411
paulson@14744
   412
(*Rules to convert the head literal into a negated assumption. If the head
paulson@14744
   413
  literal is already negated, then using notEfalse instead of notEfalse'
paulson@14744
   414
  prevents a double negation.*)
paulson@14744
   415
val notEfalse = read_instantiate [("R","False")] notE;
paulson@14744
   416
val notEfalse' = rotate_prems 1 notEfalse;
paulson@14744
   417
paulson@15448
   418
fun negated_asm_of_head th = 
paulson@14744
   419
    th RS notEfalse handle THM _ => th RS notEfalse';
paulson@14744
   420
paulson@14744
   421
(*Converting one clause*)
paulson@15581
   422
fun make_meta_clause th = 
paulson@15581
   423
	negated_asm_of_head (make_horn resolution_clause_rules (check_no_bool th));
paulson@14744
   424
paulson@14744
   425
fun make_meta_clauses ths =
paulson@14744
   426
    name_thms "MClause#"
paulson@14744
   427
      (gen_distinct Drule.eq_thm_prop (map make_meta_clause ths));
paulson@14744
   428
paulson@14744
   429
(*Permute a rule's premises to move the i-th premise to the last position.*)
paulson@14744
   430
fun make_last i th =
paulson@14744
   431
  let val n = nprems_of th 
paulson@14744
   432
  in  if 1 <= i andalso i <= n 
paulson@14744
   433
      then Thm.permute_prems (i-1) 1 th
paulson@15118
   434
      else raise THM("select_literal", i, [th])
paulson@14744
   435
  end;
paulson@14744
   436
paulson@14744
   437
(*Maps a rule that ends "... ==> P ==> False" to "... ==> ~P" while suppressing
paulson@14744
   438
  double-negations.*)
paulson@14744
   439
val negate_head = rewrite_rule [atomize_not, not_not RS eq_reflection];
paulson@14744
   440
paulson@14744
   441
(*Maps the clause  [P1,...Pn]==>False to [P1,...,P(i-1),P(i+1),...Pn] ==> ~P*)
paulson@14744
   442
fun select_literal i cl = negate_head (make_last i cl);
paulson@14744
   443
paulson@14813
   444
(*Top-level Skolemization. Allows part of the conversion to clauses to be
paulson@14813
   445
  expressed as a tactic (or Isar method).  Each assumption of the selected 
paulson@14813
   446
  goal is converted to NNF and then its existential quantifiers are pulled
paulson@14813
   447
  to the front. Finally, all existential quantifiers are eliminated, 
paulson@14813
   448
  leaving !!-quantified variables. Perhaps Safe_tac should follow, but it
paulson@14813
   449
  might generate many subgoals.*)
paulson@14813
   450
val skolemize_tac = 
paulson@14813
   451
  SUBGOAL
paulson@14813
   452
    (fn (prop,_) =>
paulson@14813
   453
     let val ts = Logic.strip_assums_hyp prop
quigley@15773
   454
         
quigley@15679
   455
         val outfile = TextIO.openOut(File.sysify_path(File.tmp_path (Path.basic "skolem")))
quigley@15679
   456
         val _ = TextIO.output(outfile, "in skolemize_tac ");
quigley@15679
   457
         val _ = TextIO.flushOut outfile;
quigley@15679
   458
         val _ =  TextIO.closeOut outfile
paulson@14813
   459
     in EVERY1 
paulson@14813
   460
	 [METAHYPS
quigley@15773
   461
	    (fn hyps => (cut_facts_tac (map (skolemize o make_nnf) hyps) 1
paulson@14813
   462
                         THEN REPEAT (etac exE 1))),
paulson@14813
   463
	  REPEAT_DETERM_N (length ts) o (etac thin_rl)]
paulson@14813
   464
     end);
paulson@14813
   465
paulson@15118
   466
(*Top-level conversion to meta-level clauses. Each clause has  
paulson@15118
   467
  leading !!-bound universal variables, to express generality. To get 
paulson@15118
   468
  disjunctions instead of meta-clauses, remove "make_meta_clauses" below.*)
paulson@15008
   469
val make_clauses_tac = 
paulson@15008
   470
  SUBGOAL
paulson@15008
   471
    (fn (prop,_) =>
paulson@15008
   472
     let val ts = Logic.strip_assums_hyp prop
paulson@15008
   473
     in EVERY1 
paulson@15008
   474
	 [METAHYPS
paulson@15008
   475
	    (fn hyps => 
paulson@15151
   476
              (Method.insert_tac
paulson@15118
   477
                (map forall_intr_vars 
paulson@15118
   478
                  (make_meta_clauses (make_clauses hyps))) 1)),
paulson@15008
   479
	  REPEAT_DETERM_N (length ts) o (etac thin_rl)]
paulson@15008
   480
     end);
paulson@15008
   481
paulson@14744
   482
paulson@15579
   483
(*** proof method setup ***)
wenzelm@9869
   484
wenzelm@9869
   485
fun meson_meth ctxt =
wenzelm@10821
   486
  Method.SIMPLE_METHOD' HEADGOAL
wenzelm@15032
   487
    (CHANGED_PROP o meson_claset_tac (local_claset_of ctxt));
wenzelm@9869
   488
paulson@14890
   489
val skolemize_meth =
paulson@14890
   490
  Method.SIMPLE_METHOD' HEADGOAL
paulson@14890
   491
    (CHANGED_PROP o skolemize_tac);
paulson@14890
   492
paulson@15008
   493
val make_clauses_meth =
paulson@15008
   494
  Method.SIMPLE_METHOD' HEADGOAL
paulson@15008
   495
    (CHANGED_PROP o make_clauses_tac);
paulson@15008
   496
wenzelm@9869
   497
wenzelm@9869
   498
val meson_setup =
wenzelm@9869
   499
 [Method.add_methods
paulson@14813
   500
  [("meson", Method.ctxt_args meson_meth, 
paulson@14813
   501
    "The MESON resolution proof procedure"),
paulson@14890
   502
   ("skolemize", Method.no_args skolemize_meth, 
paulson@15008
   503
    "Skolemization into existential quantifiers"),
paulson@15008
   504
   ("make_clauses", Method.no_args make_clauses_meth, 
paulson@15118
   505
    "Conversion to !!-quantified meta-level clauses")]];
paulson@9840
   506
paulson@9840
   507
end;
wenzelm@9869
   508
paulson@15579
   509
structure BasicMeson: BASIC_MESON = Meson;
paulson@15579
   510
open BasicMeson;