blanchet@55075
|
1 |
(* Title: HOL/Basic_BNFs.thy
|
blanchet@48975
|
2 |
Author: Dmitriy Traytel, TU Muenchen
|
blanchet@48975
|
3 |
Author: Andrei Popescu, TU Muenchen
|
blanchet@48975
|
4 |
Author: Jasmin Blanchette, TU Muenchen
|
blanchet@48975
|
5 |
Copyright 2012
|
blanchet@48975
|
6 |
|
blanchet@49309
|
7 |
Registration of basic types as bounded natural functors.
|
blanchet@48975
|
8 |
*)
|
blanchet@48975
|
9 |
|
wenzelm@58889
|
10 |
section {* Registration of Basic Types as Bounded Natural Functors *}
|
blanchet@48975
|
11 |
|
blanchet@48975
|
12 |
theory Basic_BNFs
|
blanchet@49310
|
13 |
imports BNF_Def
|
blanchet@48975
|
14 |
begin
|
blanchet@48975
|
15 |
|
traytel@58916
|
16 |
inductive_set setl :: "'a + 'b \<Rightarrow> 'a set" for s :: "'a + 'b" where
|
traytel@58916
|
17 |
"s = Inl x \<Longrightarrow> x \<in> setl s"
|
traytel@58916
|
18 |
inductive_set setr :: "'a + 'b \<Rightarrow> 'b set" for s :: "'a + 'b" where
|
traytel@58916
|
19 |
"s = Inr x \<Longrightarrow> x \<in> setr s"
|
blanchet@48975
|
20 |
|
traytel@58916
|
21 |
lemma sum_set_defs[code]:
|
traytel@58916
|
22 |
"setl = (\<lambda>x. case x of Inl z => {z} | _ => {})"
|
traytel@58916
|
23 |
"setr = (\<lambda>x. case x of Inr z => {z} | _ => {})"
|
traytel@58916
|
24 |
by (auto simp: fun_eq_iff intro: setl.intros setr.intros elim: setl.cases setr.cases split: sum.splits)
|
blanchet@48975
|
25 |
|
traytel@58916
|
26 |
lemma rel_sum_simps[code, simp]:
|
blanchet@55943
|
27 |
"rel_sum R1 R2 (Inl a1) (Inl b1) = R1 a1 b1"
|
blanchet@55943
|
28 |
"rel_sum R1 R2 (Inl a1) (Inr b2) = False"
|
blanchet@55943
|
29 |
"rel_sum R1 R2 (Inr a2) (Inl b1) = False"
|
blanchet@55943
|
30 |
"rel_sum R1 R2 (Inr a2) (Inr b2) = R2 a2 b2"
|
traytel@58916
|
31 |
by (auto intro: rel_sum.intros elim: rel_sum.cases)
|
blanchet@55083
|
32 |
|
traytel@54421
|
33 |
bnf "'a + 'b"
|
blanchet@55931
|
34 |
map: map_sum
|
traytel@54421
|
35 |
sets: setl setr
|
traytel@54421
|
36 |
bd: natLeq
|
traytel@54421
|
37 |
wits: Inl Inr
|
blanchet@55943
|
38 |
rel: rel_sum
|
blanchet@48975
|
39 |
proof -
|
blanchet@55931
|
40 |
show "map_sum id id = id" by (rule map_sum.id)
|
blanchet@48975
|
41 |
next
|
blanchet@54486
|
42 |
fix f1 :: "'o \<Rightarrow> 's" and f2 :: "'p \<Rightarrow> 't" and g1 :: "'s \<Rightarrow> 'q" and g2 :: "'t \<Rightarrow> 'r"
|
blanchet@55931
|
43 |
show "map_sum (g1 o f1) (g2 o f2) = map_sum g1 g2 o map_sum f1 f2"
|
blanchet@55931
|
44 |
by (rule map_sum.comp[symmetric])
|
blanchet@48975
|
45 |
next
|
blanchet@54486
|
46 |
fix x and f1 :: "'o \<Rightarrow> 'q" and f2 :: "'p \<Rightarrow> 'r" and g1 g2
|
blanchet@49451
|
47 |
assume a1: "\<And>z. z \<in> setl x \<Longrightarrow> f1 z = g1 z" and
|
blanchet@49451
|
48 |
a2: "\<And>z. z \<in> setr x \<Longrightarrow> f2 z = g2 z"
|
blanchet@55931
|
49 |
thus "map_sum f1 f2 x = map_sum g1 g2 x"
|
blanchet@48975
|
50 |
proof (cases x)
|
traytel@58916
|
51 |
case Inl thus ?thesis using a1 by (clarsimp simp: sum_set_defs(1))
|
blanchet@48975
|
52 |
next
|
traytel@58916
|
53 |
case Inr thus ?thesis using a2 by (clarsimp simp: sum_set_defs(2))
|
blanchet@48975
|
54 |
qed
|
blanchet@48975
|
55 |
next
|
blanchet@54486
|
56 |
fix f1 :: "'o \<Rightarrow> 'q" and f2 :: "'p \<Rightarrow> 'r"
|
blanchet@55931
|
57 |
show "setl o map_sum f1 f2 = image f1 o setl"
|
traytel@58916
|
58 |
by (rule ext, unfold o_apply) (simp add: sum_set_defs(1) split: sum.split)
|
blanchet@48975
|
59 |
next
|
blanchet@54486
|
60 |
fix f1 :: "'o \<Rightarrow> 'q" and f2 :: "'p \<Rightarrow> 'r"
|
blanchet@55931
|
61 |
show "setr o map_sum f1 f2 = image f2 o setr"
|
traytel@58916
|
62 |
by (rule ext, unfold o_apply) (simp add: sum_set_defs(2) split: sum.split)
|
blanchet@48975
|
63 |
next
|
blanchet@48975
|
64 |
show "card_order natLeq" by (rule natLeq_card_order)
|
blanchet@48975
|
65 |
next
|
blanchet@48975
|
66 |
show "cinfinite natLeq" by (rule natLeq_cinfinite)
|
blanchet@48975
|
67 |
next
|
blanchet@54486
|
68 |
fix x :: "'o + 'p"
|
blanchet@49451
|
69 |
show "|setl x| \<le>o natLeq"
|
blanchet@48975
|
70 |
apply (rule ordLess_imp_ordLeq)
|
blanchet@48975
|
71 |
apply (rule finite_iff_ordLess_natLeq[THEN iffD1])
|
traytel@58916
|
72 |
by (simp add: sum_set_defs(1) split: sum.split)
|
blanchet@48975
|
73 |
next
|
blanchet@54486
|
74 |
fix x :: "'o + 'p"
|
blanchet@49451
|
75 |
show "|setr x| \<le>o natLeq"
|
blanchet@48975
|
76 |
apply (rule ordLess_imp_ordLeq)
|
blanchet@48975
|
77 |
apply (rule finite_iff_ordLess_natLeq[THEN iffD1])
|
traytel@58916
|
78 |
by (simp add: sum_set_defs(2) split: sum.split)
|
blanchet@48975
|
79 |
next
|
traytel@54841
|
80 |
fix R1 R2 S1 S2
|
blanchet@55943
|
81 |
show "rel_sum R1 R2 OO rel_sum S1 S2 \<le> rel_sum (R1 OO S1) (R2 OO S2)"
|
traytel@58916
|
82 |
by (force elim: rel_sum.cases)
|
blanchet@49453
|
83 |
next
|
blanchet@49453
|
84 |
fix R S
|
blanchet@55943
|
85 |
show "rel_sum R S =
|
blanchet@55931
|
86 |
(Grp {x. setl x \<subseteq> Collect (split R) \<and> setr x \<subseteq> Collect (split S)} (map_sum fst fst))\<inverse>\<inverse> OO
|
blanchet@55931
|
87 |
Grp {x. setl x \<subseteq> Collect (split R) \<and> setr x \<subseteq> Collect (split S)} (map_sum snd snd)"
|
traytel@58916
|
88 |
unfolding sum_set_defs Grp_def relcompp.simps conversep.simps fun_eq_iff
|
traytel@58916
|
89 |
by (fastforce elim: rel_sum.cases split: sum.splits)
|
blanchet@48975
|
90 |
qed (auto simp: sum_set_defs)
|
blanchet@48975
|
91 |
|
traytel@58916
|
92 |
inductive_set fsts :: "'a \<times> 'b \<Rightarrow> 'a set" for p :: "'a \<times> 'b" where
|
traytel@58916
|
93 |
"fst p \<in> fsts p"
|
traytel@58916
|
94 |
inductive_set snds :: "'a \<times> 'b \<Rightarrow> 'b set" for p :: "'a \<times> 'b" where
|
traytel@58916
|
95 |
"snd p \<in> snds p"
|
blanchet@48975
|
96 |
|
traytel@58916
|
97 |
lemma prod_set_defs[code]: "fsts = (\<lambda>p. {fst p})" "snds = (\<lambda>p. {snd p})"
|
traytel@58916
|
98 |
by (auto intro: fsts.intros snds.intros elim: fsts.cases snds.cases)
|
blanchet@48975
|
99 |
|
traytel@58916
|
100 |
inductive
|
traytel@58916
|
101 |
rel_prod :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> 'a \<times> 'c \<Rightarrow> 'b \<times> 'd \<Rightarrow> bool" for R1 R2
|
blanchet@55083
|
102 |
where
|
traytel@58916
|
103 |
"\<lbrakk>R1 a b; R2 c d\<rbrakk> \<Longrightarrow> rel_prod R1 R2 (a, c) (b, d)"
|
traytel@58916
|
104 |
|
traytel@58916
|
105 |
hide_fact rel_prod_def
|
traytel@58916
|
106 |
|
traytel@58916
|
107 |
lemma rel_prod_apply [code, simp]:
|
traytel@58916
|
108 |
"rel_prod R1 R2 (a, b) (c, d) \<longleftrightarrow> R1 a c \<and> R2 b d"
|
traytel@58916
|
109 |
by (auto intro: rel_prod.intros elim: rel_prod.cases)
|
traytel@58916
|
110 |
|
traytel@58916
|
111 |
lemma rel_prod_conv:
|
blanchet@55944
|
112 |
"rel_prod R1 R2 = (\<lambda>(a, b) (c, d). R1 a c \<and> R2 b d)"
|
traytel@58916
|
113 |
by (rule ext, rule ext) auto
|
blanchet@55083
|
114 |
|
traytel@54421
|
115 |
bnf "'a \<times> 'b"
|
blanchet@55932
|
116 |
map: map_prod
|
traytel@54421
|
117 |
sets: fsts snds
|
traytel@54421
|
118 |
bd: natLeq
|
blanchet@55944
|
119 |
rel: rel_prod
|
blanchet@48975
|
120 |
proof (unfold prod_set_defs)
|
blanchet@55932
|
121 |
show "map_prod id id = id" by (rule map_prod.id)
|
blanchet@48975
|
122 |
next
|
blanchet@48975
|
123 |
fix f1 f2 g1 g2
|
blanchet@55932
|
124 |
show "map_prod (g1 o f1) (g2 o f2) = map_prod g1 g2 o map_prod f1 f2"
|
blanchet@55932
|
125 |
by (rule map_prod.comp[symmetric])
|
blanchet@48975
|
126 |
next
|
blanchet@48975
|
127 |
fix x f1 f2 g1 g2
|
blanchet@48975
|
128 |
assume "\<And>z. z \<in> {fst x} \<Longrightarrow> f1 z = g1 z" "\<And>z. z \<in> {snd x} \<Longrightarrow> f2 z = g2 z"
|
blanchet@55932
|
129 |
thus "map_prod f1 f2 x = map_prod g1 g2 x" by (cases x) simp
|
blanchet@48975
|
130 |
next
|
blanchet@48975
|
131 |
fix f1 f2
|
blanchet@55932
|
132 |
show "(\<lambda>x. {fst x}) o map_prod f1 f2 = image f1 o (\<lambda>x. {fst x})"
|
blanchet@48975
|
133 |
by (rule ext, unfold o_apply) simp
|
blanchet@48975
|
134 |
next
|
blanchet@48975
|
135 |
fix f1 f2
|
blanchet@55932
|
136 |
show "(\<lambda>x. {snd x}) o map_prod f1 f2 = image f2 o (\<lambda>x. {snd x})"
|
blanchet@48975
|
137 |
by (rule ext, unfold o_apply) simp
|
blanchet@48975
|
138 |
next
|
traytel@52635
|
139 |
show "card_order natLeq" by (rule natLeq_card_order)
|
blanchet@48975
|
140 |
next
|
traytel@52635
|
141 |
show "cinfinite natLeq" by (rule natLeq_cinfinite)
|
blanchet@48975
|
142 |
next
|
blanchet@48975
|
143 |
fix x
|
traytel@52635
|
144 |
show "|{fst x}| \<le>o natLeq"
|
traytel@55811
|
145 |
by (rule ordLess_imp_ordLeq) (simp add: finite_iff_ordLess_natLeq[symmetric])
|
blanchet@48975
|
146 |
next
|
traytel@52635
|
147 |
fix x
|
traytel@52635
|
148 |
show "|{snd x}| \<le>o natLeq"
|
traytel@55811
|
149 |
by (rule ordLess_imp_ordLeq) (simp add: finite_iff_ordLess_natLeq[symmetric])
|
blanchet@48975
|
150 |
next
|
traytel@54841
|
151 |
fix R1 R2 S1 S2
|
blanchet@55944
|
152 |
show "rel_prod R1 R2 OO rel_prod S1 S2 \<le> rel_prod (R1 OO S1) (R2 OO S2)" by auto
|
blanchet@49453
|
153 |
next
|
blanchet@49453
|
154 |
fix R S
|
blanchet@55944
|
155 |
show "rel_prod R S =
|
blanchet@55932
|
156 |
(Grp {x. {fst x} \<subseteq> Collect (split R) \<and> {snd x} \<subseteq> Collect (split S)} (map_prod fst fst))\<inverse>\<inverse> OO
|
blanchet@55932
|
157 |
Grp {x. {fst x} \<subseteq> Collect (split R) \<and> {snd x} \<subseteq> Collect (split S)} (map_prod snd snd)"
|
traytel@58916
|
158 |
unfolding prod_set_defs rel_prod_apply Grp_def relcompp.simps conversep.simps fun_eq_iff
|
blanchet@49453
|
159 |
by auto
|
traytel@54189
|
160 |
qed
|
blanchet@48975
|
161 |
|
traytel@54421
|
162 |
bnf "'a \<Rightarrow> 'b"
|
traytel@54421
|
163 |
map: "op \<circ>"
|
traytel@54421
|
164 |
sets: range
|
traytel@54421
|
165 |
bd: "natLeq +c |UNIV :: 'a set|"
|
blanchet@55945
|
166 |
rel: "rel_fun op ="
|
blanchet@48975
|
167 |
proof
|
blanchet@48975
|
168 |
fix f show "id \<circ> f = id f" by simp
|
blanchet@48975
|
169 |
next
|
blanchet@48975
|
170 |
fix f g show "op \<circ> (g \<circ> f) = op \<circ> g \<circ> op \<circ> f"
|
blanchet@48975
|
171 |
unfolding comp_def[abs_def] ..
|
blanchet@48975
|
172 |
next
|
blanchet@48975
|
173 |
fix x f g
|
blanchet@48975
|
174 |
assume "\<And>z. z \<in> range x \<Longrightarrow> f z = g z"
|
blanchet@48975
|
175 |
thus "f \<circ> x = g \<circ> x" by auto
|
blanchet@48975
|
176 |
next
|
blanchet@48975
|
177 |
fix f show "range \<circ> op \<circ> f = op ` f \<circ> range"
|
haftmann@56077
|
178 |
by (auto simp add: fun_eq_iff)
|
blanchet@48975
|
179 |
next
|
blanchet@48975
|
180 |
show "card_order (natLeq +c |UNIV| )" (is "_ (_ +c ?U)")
|
blanchet@48975
|
181 |
apply (rule card_order_csum)
|
blanchet@48975
|
182 |
apply (rule natLeq_card_order)
|
blanchet@48975
|
183 |
by (rule card_of_card_order_on)
|
blanchet@48975
|
184 |
(* *)
|
blanchet@48975
|
185 |
show "cinfinite (natLeq +c ?U)"
|
blanchet@48975
|
186 |
apply (rule cinfinite_csum)
|
blanchet@48975
|
187 |
apply (rule disjI1)
|
blanchet@48975
|
188 |
by (rule natLeq_cinfinite)
|
blanchet@48975
|
189 |
next
|
blanchet@48975
|
190 |
fix f :: "'d => 'a"
|
blanchet@48975
|
191 |
have "|range f| \<le>o | (UNIV::'d set) |" (is "_ \<le>o ?U") by (rule card_of_image)
|
blanchet@54486
|
192 |
also have "?U \<le>o natLeq +c ?U" by (rule ordLeq_csum2) (rule card_of_Card_order)
|
blanchet@48975
|
193 |
finally show "|range f| \<le>o natLeq +c ?U" .
|
blanchet@48975
|
194 |
next
|
traytel@54841
|
195 |
fix R S
|
blanchet@55945
|
196 |
show "rel_fun op = R OO rel_fun op = S \<le> rel_fun op = (R OO S)" by (auto simp: rel_fun_def)
|
blanchet@49453
|
197 |
next
|
blanchet@49463
|
198 |
fix R
|
blanchet@55945
|
199 |
show "rel_fun op = R =
|
traytel@51893
|
200 |
(Grp {x. range x \<subseteq> Collect (split R)} (op \<circ> fst))\<inverse>\<inverse> OO
|
traytel@51893
|
201 |
Grp {x. range x \<subseteq> Collect (split R)} (op \<circ> snd)"
|
blanchet@55945
|
202 |
unfolding rel_fun_def Grp_def fun_eq_iff relcompp.simps conversep.simps subset_iff image_iff
|
traytel@55811
|
203 |
comp_apply mem_Collect_eq split_beta bex_UNIV
|
traytel@55811
|
204 |
proof (safe, unfold fun_eq_iff[symmetric])
|
traytel@55811
|
205 |
fix x xa a b c xb y aa ba
|
traytel@55811
|
206 |
assume *: "x = a" "xa = c" "a = ba" "b = aa" "c = (\<lambda>x. snd (b x))" "ba = (\<lambda>x. fst (aa x))" and
|
traytel@55811
|
207 |
**: "\<forall>t. (\<exists>x. t = aa x) \<longrightarrow> R (fst t) (snd t)"
|
traytel@55811
|
208 |
show "R (x y) (xa y)" unfolding * by (rule mp[OF spec[OF **]]) blast
|
traytel@55811
|
209 |
qed force
|
traytel@54189
|
210 |
qed
|
traytel@54191
|
211 |
|
blanchet@48975
|
212 |
end
|