src/HOL/Fun.thy
author haftmann
Fri Jun 19 07:53:35 2015 +0200 (2015-06-19)
changeset 60517 f16e4fb20652
parent 60303 00c06f1315d0
child 60758 d8d85a8172b5
permissions -rw-r--r--
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
clasohm@1475
     1
(*  Title:      HOL/Fun.thy
clasohm@1475
     2
    Author:     Tobias Nipkow, Cambridge University Computer Laboratory
blanchet@55019
     3
    Author:     Andrei Popescu, TU Muenchen
blanchet@55019
     4
    Copyright   1994, 2012
huffman@18154
     5
*)
clasohm@923
     6
wenzelm@58889
     7
section {* Notions about functions *}
clasohm@923
     8
paulson@15510
     9
theory Fun
haftmann@56015
    10
imports Set
blanchet@55467
    11
keywords "functor" :: thy_goal
nipkow@15131
    12
begin
nipkow@2912
    13
haftmann@26147
    14
lemma apply_inverse:
haftmann@26357
    15
  "f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u"
haftmann@26147
    16
  by auto
nipkow@2912
    17
lp15@59504
    18
text{*Uniqueness, so NOT the axiom of choice.*}
lp15@59504
    19
lemma uniq_choice: "\<forall>x. \<exists>!y. Q x y \<Longrightarrow> \<exists>f. \<forall>x. Q x (f x)"
lp15@59504
    20
  by (force intro: theI')
lp15@59504
    21
lp15@59504
    22
lemma b_uniq_choice: "\<forall>x\<in>S. \<exists>!y. Q x y \<Longrightarrow> \<exists>f. \<forall>x\<in>S. Q x (f x)"
lp15@59504
    23
  by (force intro: theI')
wenzelm@12258
    24
haftmann@26147
    25
subsection {* The Identity Function @{text id} *}
paulson@6171
    26
haftmann@44277
    27
definition id :: "'a \<Rightarrow> 'a" where
haftmann@22744
    28
  "id = (\<lambda>x. x)"
nipkow@13910
    29
haftmann@26147
    30
lemma id_apply [simp]: "id x = x"
haftmann@26147
    31
  by (simp add: id_def)
haftmann@26147
    32
huffman@47579
    33
lemma image_id [simp]: "image id = id"
huffman@47579
    34
  by (simp add: id_def fun_eq_iff)
haftmann@26147
    35
huffman@47579
    36
lemma vimage_id [simp]: "vimage id = id"
huffman@47579
    37
  by (simp add: id_def fun_eq_iff)
haftmann@26147
    38
haftmann@52435
    39
code_printing
haftmann@52435
    40
  constant id \<rightharpoonup> (Haskell) "id"
haftmann@52435
    41
haftmann@26147
    42
haftmann@26147
    43
subsection {* The Composition Operator @{text "f \<circ> g"} *}
haftmann@26147
    44
haftmann@44277
    45
definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o" 55) where
haftmann@22744
    46
  "f o g = (\<lambda>x. f (g x))"
oheimb@11123
    47
wenzelm@21210
    48
notation (xsymbols)
wenzelm@19656
    49
  comp  (infixl "\<circ>" 55)
wenzelm@19656
    50
wenzelm@21210
    51
notation (HTML output)
wenzelm@19656
    52
  comp  (infixl "\<circ>" 55)
wenzelm@19656
    53
haftmann@49739
    54
lemma comp_apply [simp]: "(f o g) x = f (g x)"
haftmann@49739
    55
  by (simp add: comp_def)
paulson@13585
    56
haftmann@49739
    57
lemma comp_assoc: "(f o g) o h = f o (g o h)"
haftmann@49739
    58
  by (simp add: fun_eq_iff)
paulson@13585
    59
haftmann@49739
    60
lemma id_comp [simp]: "id o g = g"
haftmann@49739
    61
  by (simp add: fun_eq_iff)
paulson@13585
    62
haftmann@49739
    63
lemma comp_id [simp]: "f o id = f"
haftmann@49739
    64
  by (simp add: fun_eq_iff)
haftmann@49739
    65
haftmann@49739
    66
lemma comp_eq_dest:
haftmann@34150
    67
  "a o b = c o d \<Longrightarrow> a (b v) = c (d v)"
haftmann@49739
    68
  by (simp add: fun_eq_iff)
haftmann@34150
    69
haftmann@49739
    70
lemma comp_eq_elim:
haftmann@34150
    71
  "a o b = c o d \<Longrightarrow> ((\<And>v. a (b v) = c (d v)) \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@49739
    72
  by (simp add: fun_eq_iff) 
haftmann@34150
    73
blanchet@55066
    74
lemma comp_eq_dest_lhs: "a o b = c \<Longrightarrow> a (b v) = c v"
blanchet@55066
    75
  by clarsimp
blanchet@55066
    76
blanchet@55066
    77
lemma comp_eq_id_dest: "a o b = id o c \<Longrightarrow> a (b v) = c v"
blanchet@55066
    78
  by clarsimp
blanchet@55066
    79
haftmann@49739
    80
lemma image_comp:
haftmann@56154
    81
  "f ` (g ` r) = (f o g) ` r"
paulson@33044
    82
  by auto
paulson@33044
    83
haftmann@49739
    84
lemma vimage_comp:
haftmann@56154
    85
  "f -` (g -` x) = (g \<circ> f) -` x"
haftmann@49739
    86
  by auto
haftmann@49739
    87
lp15@59504
    88
lemma image_eq_imp_comp: "f ` A = g ` B \<Longrightarrow> (h o f) ` A = (h o g) ` B"
lp15@59504
    89
  by (auto simp: comp_def elim!: equalityE)
lp15@59504
    90
Andreas@59512
    91
lemma image_bind: "f ` (Set.bind A g) = Set.bind A (op ` f \<circ> g)"
Andreas@59512
    92
by(auto simp add: Set.bind_def)
Andreas@59512
    93
Andreas@59512
    94
lemma bind_image: "Set.bind (f ` A) g = Set.bind A (g \<circ> f)"
Andreas@59512
    95
by(auto simp add: Set.bind_def)
Andreas@59512
    96
haftmann@52435
    97
code_printing
haftmann@52435
    98
  constant comp \<rightharpoonup> (SML) infixl 5 "o" and (Haskell) infixr 9 "."
haftmann@52435
    99
paulson@13585
   100
haftmann@26588
   101
subsection {* The Forward Composition Operator @{text fcomp} *}
haftmann@26357
   102
haftmann@44277
   103
definition fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>>" 60) where
haftmann@37751
   104
  "f \<circ>> g = (\<lambda>x. g (f x))"
haftmann@26357
   105
haftmann@37751
   106
lemma fcomp_apply [simp]:  "(f \<circ>> g) x = g (f x)"
haftmann@26357
   107
  by (simp add: fcomp_def)
haftmann@26357
   108
haftmann@37751
   109
lemma fcomp_assoc: "(f \<circ>> g) \<circ>> h = f \<circ>> (g \<circ>> h)"
haftmann@26357
   110
  by (simp add: fcomp_def)
haftmann@26357
   111
haftmann@37751
   112
lemma id_fcomp [simp]: "id \<circ>> g = g"
haftmann@26357
   113
  by (simp add: fcomp_def)
haftmann@26357
   114
haftmann@37751
   115
lemma fcomp_id [simp]: "f \<circ>> id = f"
haftmann@26357
   116
  by (simp add: fcomp_def)
haftmann@26357
   117
haftmann@52435
   118
code_printing
haftmann@52435
   119
  constant fcomp \<rightharpoonup> (Eval) infixl 1 "#>"
haftmann@31202
   120
haftmann@37751
   121
no_notation fcomp (infixl "\<circ>>" 60)
haftmann@26588
   122
haftmann@26357
   123
haftmann@40602
   124
subsection {* Mapping functions *}
haftmann@40602
   125
haftmann@40602
   126
definition map_fun :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow> 'd" where
haftmann@40602
   127
  "map_fun f g h = g \<circ> h \<circ> f"
haftmann@40602
   128
haftmann@40602
   129
lemma map_fun_apply [simp]:
haftmann@40602
   130
  "map_fun f g h x = g (h (f x))"
haftmann@40602
   131
  by (simp add: map_fun_def)
haftmann@40602
   132
haftmann@40602
   133
hoelzl@40702
   134
subsection {* Injectivity and Bijectivity *}
hoelzl@39076
   135
hoelzl@39076
   136
definition inj_on :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool" where -- "injective"
hoelzl@39076
   137
  "inj_on f A \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. f x = f y \<longrightarrow> x = y)"
haftmann@26147
   138
hoelzl@39076
   139
definition bij_betw :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool" where -- "bijective"
hoelzl@39076
   140
  "bij_betw f A B \<longleftrightarrow> inj_on f A \<and> f ` A = B"
haftmann@26147
   141
hoelzl@40702
   142
text{*A common special case: functions injective, surjective or bijective over
hoelzl@40702
   143
the entire domain type.*}
haftmann@26147
   144
haftmann@26147
   145
abbreviation
hoelzl@39076
   146
  "inj f \<equiv> inj_on f UNIV"
haftmann@26147
   147
hoelzl@40702
   148
abbreviation surj :: "('a \<Rightarrow> 'b) \<Rightarrow> bool" where -- "surjective"
hoelzl@40702
   149
  "surj f \<equiv> (range f = UNIV)"
paulson@13585
   150
hoelzl@39076
   151
abbreviation
hoelzl@39076
   152
  "bij f \<equiv> bij_betw f UNIV UNIV"
haftmann@26147
   153
nipkow@43705
   154
text{* The negated case: *}
nipkow@43705
   155
translations
nipkow@43705
   156
"\<not> CONST surj f" <= "CONST range f \<noteq> CONST UNIV"
nipkow@43705
   157
haftmann@26147
   158
lemma injI:
haftmann@26147
   159
  assumes "\<And>x y. f x = f y \<Longrightarrow> x = y"
haftmann@26147
   160
  shows "inj f"
haftmann@26147
   161
  using assms unfolding inj_on_def by auto
paulson@13585
   162
berghofe@13637
   163
theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)"
berghofe@13637
   164
  by (unfold inj_on_def, blast)
berghofe@13637
   165
paulson@13585
   166
lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y"
paulson@13585
   167
by (simp add: inj_on_def)
paulson@13585
   168
nipkow@32988
   169
lemma inj_on_eq_iff: "inj_on f A ==> x:A ==> y:A ==> (f(x) = f(y)) = (x=y)"
paulson@13585
   170
by (force simp add: inj_on_def)
paulson@13585
   171
hoelzl@40703
   172
lemma inj_on_cong:
hoelzl@40703
   173
  "(\<And> a. a : A \<Longrightarrow> f a = g a) \<Longrightarrow> inj_on f A = inj_on g A"
hoelzl@40703
   174
unfolding inj_on_def by auto
hoelzl@40703
   175
hoelzl@40703
   176
lemma inj_on_strict_subset:
haftmann@56077
   177
  "inj_on f B \<Longrightarrow> A \<subset> B \<Longrightarrow> f ` A \<subset> f ` B"
haftmann@56077
   178
  unfolding inj_on_def by blast
hoelzl@40703
   179
haftmann@38620
   180
lemma inj_comp:
haftmann@38620
   181
  "inj f \<Longrightarrow> inj g \<Longrightarrow> inj (f \<circ> g)"
haftmann@38620
   182
  by (simp add: inj_on_def)
haftmann@38620
   183
haftmann@38620
   184
lemma inj_fun: "inj f \<Longrightarrow> inj (\<lambda>x y. f x)"
nipkow@39302
   185
  by (simp add: inj_on_def fun_eq_iff)
haftmann@38620
   186
nipkow@32988
   187
lemma inj_eq: "inj f ==> (f(x) = f(y)) = (x=y)"
nipkow@32988
   188
by (simp add: inj_on_eq_iff)
nipkow@32988
   189
haftmann@26147
   190
lemma inj_on_id[simp]: "inj_on id A"
hoelzl@39076
   191
  by (simp add: inj_on_def)
paulson@13585
   192
haftmann@26147
   193
lemma inj_on_id2[simp]: "inj_on (%x. x) A"
hoelzl@39076
   194
by (simp add: inj_on_def)
haftmann@26147
   195
bulwahn@46586
   196
lemma inj_on_Int: "inj_on f A \<or> inj_on f B \<Longrightarrow> inj_on f (A \<inter> B)"
hoelzl@40703
   197
unfolding inj_on_def by blast
hoelzl@40703
   198
hoelzl@40702
   199
lemma surj_id: "surj id"
hoelzl@40702
   200
by simp
haftmann@26147
   201
hoelzl@39101
   202
lemma bij_id[simp]: "bij id"
hoelzl@39076
   203
by (simp add: bij_betw_def)
paulson@13585
   204
paulson@13585
   205
lemma inj_onI:
paulson@13585
   206
    "(!! x y. [|  x:A;  y:A;  f(x) = f(y) |] ==> x=y) ==> inj_on f A"
paulson@13585
   207
by (simp add: inj_on_def)
paulson@13585
   208
paulson@13585
   209
lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A"
paulson@13585
   210
by (auto dest:  arg_cong [of concl: g] simp add: inj_on_def)
paulson@13585
   211
paulson@13585
   212
lemma inj_onD: "[| inj_on f A;  f(x)=f(y);  x:A;  y:A |] ==> x=y"
paulson@13585
   213
by (unfold inj_on_def, blast)
paulson@13585
   214
paulson@13585
   215
lemma inj_on_iff: "[| inj_on f A;  x:A;  y:A |] ==> (f(x)=f(y)) = (x=y)"
haftmann@56077
   216
  by (fact inj_on_eq_iff)
paulson@13585
   217
paulson@13585
   218
lemma comp_inj_on:
paulson@13585
   219
     "[| inj_on f A;  inj_on g (f`A) |] ==> inj_on (g o f) A"
paulson@13585
   220
by (simp add: comp_def inj_on_def)
paulson@13585
   221
nipkow@15303
   222
lemma inj_on_imageI: "inj_on (g o f) A \<Longrightarrow> inj_on g (f ` A)"
haftmann@56077
   223
  by (simp add: inj_on_def) blast
nipkow@15303
   224
nipkow@15439
   225
lemma inj_on_image_iff: "\<lbrakk> ALL x:A. ALL y:A. (g(f x) = g(f y)) = (g x = g y);
nipkow@15439
   226
  inj_on f A \<rbrakk> \<Longrightarrow> inj_on g (f ` A) = inj_on g A"
nipkow@15439
   227
apply(unfold inj_on_def)
nipkow@15439
   228
apply blast
nipkow@15439
   229
done
nipkow@15439
   230
paulson@13585
   231
lemma inj_on_contraD: "[| inj_on f A;  ~x=y;  x:A;  y:A |] ==> ~ f(x)=f(y)"
paulson@13585
   232
by (unfold inj_on_def, blast)
wenzelm@12258
   233
paulson@13585
   234
lemma inj_singleton: "inj (%s. {s})"
paulson@13585
   235
by (simp add: inj_on_def)
paulson@13585
   236
nipkow@15111
   237
lemma inj_on_empty[iff]: "inj_on f {}"
nipkow@15111
   238
by(simp add: inj_on_def)
nipkow@15111
   239
nipkow@15303
   240
lemma subset_inj_on: "[| inj_on f B; A <= B |] ==> inj_on f A"
paulson@13585
   241
by (unfold inj_on_def, blast)
paulson@13585
   242
nipkow@15111
   243
lemma inj_on_Un:
nipkow@15111
   244
 "inj_on f (A Un B) =
nipkow@15111
   245
  (inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})"
nipkow@15111
   246
apply(unfold inj_on_def)
nipkow@15111
   247
apply (blast intro:sym)
nipkow@15111
   248
done
nipkow@15111
   249
nipkow@15111
   250
lemma inj_on_insert[iff]:
nipkow@15111
   251
  "inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))"
nipkow@15111
   252
apply(unfold inj_on_def)
nipkow@15111
   253
apply (blast intro:sym)
nipkow@15111
   254
done
nipkow@15111
   255
nipkow@15111
   256
lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)"
nipkow@15111
   257
apply(unfold inj_on_def)
nipkow@15111
   258
apply (blast)
nipkow@15111
   259
done
nipkow@15111
   260
hoelzl@40703
   261
lemma comp_inj_on_iff:
hoelzl@40703
   262
  "inj_on f A \<Longrightarrow> inj_on f' (f ` A) \<longleftrightarrow> inj_on (f' o f) A"
hoelzl@40703
   263
by(auto simp add: comp_inj_on inj_on_def)
hoelzl@40703
   264
hoelzl@40703
   265
lemma inj_on_imageI2:
hoelzl@40703
   266
  "inj_on (f' o f) A \<Longrightarrow> inj_on f A"
hoelzl@40703
   267
by(auto simp add: comp_inj_on inj_on_def)
hoelzl@40703
   268
haftmann@51598
   269
lemma inj_img_insertE:
haftmann@51598
   270
  assumes "inj_on f A"
haftmann@51598
   271
  assumes "x \<notin> B" and "insert x B = f ` A"
haftmann@51598
   272
  obtains x' A' where "x' \<notin> A'" and "A = insert x' A'"
blanchet@55019
   273
    and "x = f x'" and "B = f ` A'"
haftmann@51598
   274
proof -
haftmann@51598
   275
  from assms have "x \<in> f ` A" by auto
haftmann@51598
   276
  then obtain x' where *: "x' \<in> A" "x = f x'" by auto
haftmann@51598
   277
  then have "A = insert x' (A - {x'})" by auto
haftmann@51598
   278
  with assms * have "B = f ` (A - {x'})"
haftmann@51598
   279
    by (auto dest: inj_on_contraD)
haftmann@51598
   280
  have "x' \<notin> A - {x'}" by simp
haftmann@51598
   281
  from `x' \<notin> A - {x'}` `A = insert x' (A - {x'})` `x = f x'` `B = image f (A - {x'})`
haftmann@51598
   282
  show ?thesis ..
haftmann@51598
   283
qed
haftmann@51598
   284
traytel@54578
   285
lemma linorder_injI:
traytel@54578
   286
  assumes hyp: "\<And>x y. x < (y::'a::linorder) \<Longrightarrow> f x \<noteq> f y"
traytel@54578
   287
  shows "inj f"
traytel@54578
   288
  -- {* Courtesy of Stephan Merz *}
traytel@54578
   289
proof (rule inj_onI)
traytel@54578
   290
  fix x y
traytel@54578
   291
  assume f_eq: "f x = f y"
traytel@54578
   292
  show "x = y" by (rule linorder_cases) (auto dest: hyp simp: f_eq)
traytel@54578
   293
qed
traytel@54578
   294
hoelzl@40702
   295
lemma surj_def: "surj f \<longleftrightarrow> (\<forall>y. \<exists>x. y = f x)"
hoelzl@40702
   296
  by auto
hoelzl@39076
   297
hoelzl@40702
   298
lemma surjI: assumes *: "\<And> x. g (f x) = x" shows "surj g"
hoelzl@40702
   299
  using *[symmetric] by auto
paulson@13585
   300
hoelzl@39076
   301
lemma surjD: "surj f \<Longrightarrow> \<exists>x. y = f x"
hoelzl@39076
   302
  by (simp add: surj_def)
paulson@13585
   303
hoelzl@39076
   304
lemma surjE: "surj f \<Longrightarrow> (\<And>x. y = f x \<Longrightarrow> C) \<Longrightarrow> C"
hoelzl@39076
   305
  by (simp add: surj_def, blast)
paulson@13585
   306
paulson@13585
   307
lemma comp_surj: "[| surj f;  surj g |] ==> surj (g o f)"
paulson@13585
   308
apply (simp add: comp_def surj_def, clarify)
paulson@13585
   309
apply (drule_tac x = y in spec, clarify)
paulson@13585
   310
apply (drule_tac x = x in spec, blast)
paulson@13585
   311
done
paulson@13585
   312
ballarin@57282
   313
lemma bij_betw_imageI:
ballarin@57282
   314
  "\<lbrakk> inj_on f A; f ` A = B \<rbrakk> \<Longrightarrow> bij_betw f A B"
ballarin@57282
   315
unfolding bij_betw_def by clarify
ballarin@57282
   316
ballarin@57282
   317
lemma bij_betw_imp_surj_on: "bij_betw f A B \<Longrightarrow> f ` A = B"
ballarin@57282
   318
  unfolding bij_betw_def by clarify
ballarin@57282
   319
hoelzl@39074
   320
lemma bij_betw_imp_surj: "bij_betw f A UNIV \<Longrightarrow> surj f"
hoelzl@40702
   321
  unfolding bij_betw_def by auto
hoelzl@39074
   322
hoelzl@40703
   323
lemma bij_betw_empty1:
hoelzl@40703
   324
  assumes "bij_betw f {} A"
hoelzl@40703
   325
  shows "A = {}"
hoelzl@40703
   326
using assms unfolding bij_betw_def by blast
hoelzl@40703
   327
hoelzl@40703
   328
lemma bij_betw_empty2:
hoelzl@40703
   329
  assumes "bij_betw f A {}"
hoelzl@40703
   330
  shows "A = {}"
hoelzl@40703
   331
using assms unfolding bij_betw_def by blast
hoelzl@40703
   332
hoelzl@40703
   333
lemma inj_on_imp_bij_betw:
hoelzl@40703
   334
  "inj_on f A \<Longrightarrow> bij_betw f A (f ` A)"
hoelzl@40703
   335
unfolding bij_betw_def by simp
hoelzl@40703
   336
hoelzl@39076
   337
lemma bij_def: "bij f \<longleftrightarrow> inj f \<and> surj f"
hoelzl@40702
   338
  unfolding bij_betw_def ..
hoelzl@39074
   339
paulson@13585
   340
lemma bijI: "[| inj f; surj f |] ==> bij f"
paulson@13585
   341
by (simp add: bij_def)
paulson@13585
   342
paulson@13585
   343
lemma bij_is_inj: "bij f ==> inj f"
paulson@13585
   344
by (simp add: bij_def)
paulson@13585
   345
paulson@13585
   346
lemma bij_is_surj: "bij f ==> surj f"
paulson@13585
   347
by (simp add: bij_def)
paulson@13585
   348
nipkow@26105
   349
lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A"
nipkow@26105
   350
by (simp add: bij_betw_def)
nipkow@26105
   351
nipkow@31438
   352
lemma bij_betw_trans:
nipkow@31438
   353
  "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (g o f) A C"
nipkow@31438
   354
by(auto simp add:bij_betw_def comp_inj_on)
nipkow@31438
   355
hoelzl@40702
   356
lemma bij_comp: "bij f \<Longrightarrow> bij g \<Longrightarrow> bij (g o f)"
hoelzl@40702
   357
  by (rule bij_betw_trans)
hoelzl@40702
   358
hoelzl@40703
   359
lemma bij_betw_comp_iff:
hoelzl@40703
   360
  "bij_betw f A A' \<Longrightarrow> bij_betw f' A' A'' \<longleftrightarrow> bij_betw (f' o f) A A''"
hoelzl@40703
   361
by(auto simp add: bij_betw_def inj_on_def)
hoelzl@40703
   362
hoelzl@40703
   363
lemma bij_betw_comp_iff2:
hoelzl@40703
   364
  assumes BIJ: "bij_betw f' A' A''" and IM: "f ` A \<le> A'"
hoelzl@40703
   365
  shows "bij_betw f A A' \<longleftrightarrow> bij_betw (f' o f) A A''"
hoelzl@40703
   366
using assms
hoelzl@40703
   367
proof(auto simp add: bij_betw_comp_iff)
hoelzl@40703
   368
  assume *: "bij_betw (f' \<circ> f) A A''"
hoelzl@40703
   369
  thus "bij_betw f A A'"
hoelzl@40703
   370
  using IM
hoelzl@40703
   371
  proof(auto simp add: bij_betw_def)
hoelzl@40703
   372
    assume "inj_on (f' \<circ> f) A"
hoelzl@40703
   373
    thus "inj_on f A" using inj_on_imageI2 by blast
hoelzl@40703
   374
  next
hoelzl@40703
   375
    fix a' assume **: "a' \<in> A'"
hoelzl@40703
   376
    hence "f' a' \<in> A''" using BIJ unfolding bij_betw_def by auto
hoelzl@40703
   377
    then obtain a where 1: "a \<in> A \<and> f'(f a) = f' a'" using *
hoelzl@40703
   378
    unfolding bij_betw_def by force
hoelzl@40703
   379
    hence "f a \<in> A'" using IM by auto
hoelzl@40703
   380
    hence "f a = a'" using BIJ ** 1 unfolding bij_betw_def inj_on_def by auto
hoelzl@40703
   381
    thus "a' \<in> f ` A" using 1 by auto
hoelzl@40703
   382
  qed
hoelzl@40703
   383
qed
hoelzl@40703
   384
nipkow@26105
   385
lemma bij_betw_inv: assumes "bij_betw f A B" shows "EX g. bij_betw g B A"
nipkow@26105
   386
proof -
nipkow@26105
   387
  have i: "inj_on f A" and s: "f ` A = B"
nipkow@26105
   388
    using assms by(auto simp:bij_betw_def)
nipkow@26105
   389
  let ?P = "%b a. a:A \<and> f a = b" let ?g = "%b. The (?P b)"
nipkow@26105
   390
  { fix a b assume P: "?P b a"
haftmann@56077
   391
    hence ex1: "\<exists>a. ?P b a" using s by blast
nipkow@26105
   392
    hence uex1: "\<exists>!a. ?P b a" by(blast dest:inj_onD[OF i])
nipkow@26105
   393
    hence " ?g b = a" using the1_equality[OF uex1, OF P] P by simp
nipkow@26105
   394
  } note g = this
nipkow@26105
   395
  have "inj_on ?g B"
nipkow@26105
   396
  proof(rule inj_onI)
nipkow@26105
   397
    fix x y assume "x:B" "y:B" "?g x = ?g y"
haftmann@56077
   398
    from s `x:B` obtain a1 where a1: "?P x a1" by blast
haftmann@56077
   399
    from s `y:B` obtain a2 where a2: "?P y a2" by blast
nipkow@26105
   400
    from g[OF a1] a1 g[OF a2] a2 `?g x = ?g y` show "x=y" by simp
nipkow@26105
   401
  qed
nipkow@26105
   402
  moreover have "?g ` B = A"
haftmann@56077
   403
  proof(auto simp: image_def)
nipkow@26105
   404
    fix b assume "b:B"
haftmann@56077
   405
    with s obtain a where P: "?P b a" by blast
nipkow@26105
   406
    thus "?g b \<in> A" using g[OF P] by auto
nipkow@26105
   407
  next
nipkow@26105
   408
    fix a assume "a:A"
haftmann@56077
   409
    then obtain b where P: "?P b a" using s by blast
haftmann@56077
   410
    then have "b:B" using s by blast
nipkow@26105
   411
    with g[OF P] show "\<exists>b\<in>B. a = ?g b" by blast
nipkow@26105
   412
  qed
nipkow@26105
   413
  ultimately show ?thesis by(auto simp:bij_betw_def)
nipkow@26105
   414
qed
nipkow@26105
   415
hoelzl@40703
   416
lemma bij_betw_cong:
hoelzl@40703
   417
  "(\<And> a. a \<in> A \<Longrightarrow> f a = g a) \<Longrightarrow> bij_betw f A A' = bij_betw g A A'"
hoelzl@40703
   418
unfolding bij_betw_def inj_on_def by force
hoelzl@40703
   419
hoelzl@40703
   420
lemma bij_betw_id[intro, simp]:
hoelzl@40703
   421
  "bij_betw id A A"
hoelzl@40703
   422
unfolding bij_betw_def id_def by auto
hoelzl@40703
   423
hoelzl@40703
   424
lemma bij_betw_id_iff:
hoelzl@40703
   425
  "bij_betw id A B \<longleftrightarrow> A = B"
hoelzl@40703
   426
by(auto simp add: bij_betw_def)
hoelzl@40703
   427
hoelzl@39075
   428
lemma bij_betw_combine:
hoelzl@39075
   429
  assumes "bij_betw f A B" "bij_betw f C D" "B \<inter> D = {}"
hoelzl@39075
   430
  shows "bij_betw f (A \<union> C) (B \<union> D)"
hoelzl@39075
   431
  using assms unfolding bij_betw_def inj_on_Un image_Un by auto
hoelzl@39075
   432
hoelzl@40703
   433
lemma bij_betw_subset:
hoelzl@40703
   434
  assumes BIJ: "bij_betw f A A'" and
hoelzl@40703
   435
          SUB: "B \<le> A" and IM: "f ` B = B'"
hoelzl@40703
   436
  shows "bij_betw f B B'"
hoelzl@40703
   437
using assms
hoelzl@40703
   438
by(unfold bij_betw_def inj_on_def, auto simp add: inj_on_def)
hoelzl@40703
   439
haftmann@58195
   440
lemma bij_pointE:
haftmann@58195
   441
  assumes "bij f"
haftmann@58195
   442
  obtains x where "y = f x" and "\<And>x'. y = f x' \<Longrightarrow> x' = x"
haftmann@58195
   443
proof -
haftmann@58195
   444
  from assms have "inj f" by (rule bij_is_inj)
haftmann@58195
   445
  moreover from assms have "surj f" by (rule bij_is_surj)
haftmann@58195
   446
  then have "y \<in> range f" by simp
haftmann@58195
   447
  ultimately have "\<exists>!x. y = f x" by (simp add: range_ex1_eq)
haftmann@58195
   448
  with that show thesis by blast
haftmann@58195
   449
qed
haftmann@58195
   450
paulson@13585
   451
lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A"
hoelzl@40702
   452
by simp
paulson@13585
   453
hoelzl@42903
   454
lemma surj_vimage_empty:
hoelzl@42903
   455
  assumes "surj f" shows "f -` A = {} \<longleftrightarrow> A = {}"
hoelzl@42903
   456
  using surj_image_vimage_eq[OF `surj f`, of A]
nipkow@44890
   457
  by (intro iffI) fastforce+
hoelzl@42903
   458
paulson@13585
   459
lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A"
paulson@13585
   460
by (simp add: inj_on_def, blast)
paulson@13585
   461
paulson@13585
   462
lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A"
hoelzl@40702
   463
by (blast intro: sym)
paulson@13585
   464
paulson@13585
   465
lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A"
paulson@13585
   466
by (unfold inj_on_def, blast)
paulson@13585
   467
paulson@13585
   468
lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)"
paulson@13585
   469
apply (unfold bij_def)
paulson@13585
   470
apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD)
paulson@13585
   471
done
paulson@13585
   472
Andreas@53927
   473
lemma inj_on_image_eq_iff: "\<lbrakk> inj_on f C; A \<subseteq> C; B \<subseteq> C \<rbrakk> \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B"
Andreas@53927
   474
by(fastforce simp add: inj_on_def)
Andreas@53927
   475
nipkow@31438
   476
lemma inj_on_Un_image_eq_iff: "inj_on f (A \<union> B) \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B"
Andreas@53927
   477
by(erule inj_on_image_eq_iff) simp_all
nipkow@31438
   478
paulson@13585
   479
lemma inj_on_image_Int:
paulson@13585
   480
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A Int B) = f`A Int f`B"
paulson@60303
   481
  by (simp add: inj_on_def, blast)
paulson@13585
   482
paulson@13585
   483
lemma inj_on_image_set_diff:
paulson@60303
   484
   "[| inj_on f C;  A-B \<subseteq> C;  B \<subseteq> C |] ==> f`(A-B) = f`A - f`B"
paulson@60303
   485
  by (simp add: inj_on_def, blast)
paulson@13585
   486
paulson@13585
   487
lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B"
paulson@60303
   488
  by (simp add: inj_on_def, blast)
paulson@13585
   489
paulson@13585
   490
lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B"
paulson@13585
   491
by (simp add: inj_on_def, blast)
paulson@13585
   492
lp15@59504
   493
lemma inj_on_image_mem_iff: "\<lbrakk>inj_on f B; a \<in> B; A \<subseteq> B\<rbrakk> \<Longrightarrow> f a \<in> f`A \<longleftrightarrow> a \<in> A"
lp15@59504
   494
  by (auto simp: inj_on_def)
lp15@59504
   495
lp15@59504
   496
lemma inj_image_mem_iff: "inj f \<Longrightarrow> f a \<in> f`A \<longleftrightarrow> a \<in> A"
lp15@59504
   497
  by (blast dest: injD)
paulson@13585
   498
paulson@13585
   499
lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)"
lp15@59504
   500
  by (blast dest: injD)
paulson@13585
   501
paulson@13585
   502
lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)"
lp15@59504
   503
  by (blast dest: injD)
paulson@13585
   504
paulson@13585
   505
lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)"
hoelzl@40702
   506
by auto
paulson@13585
   507
paulson@13585
   508
lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)"
paulson@13585
   509
by (auto simp add: inj_on_def)
paulson@5852
   510
paulson@13585
   511
lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)"
paulson@13585
   512
apply (simp add: bij_def)
paulson@13585
   513
apply (rule equalityI)
paulson@13585
   514
apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset)
paulson@13585
   515
done
paulson@13585
   516
haftmann@41657
   517
lemma inj_vimage_singleton: "inj f \<Longrightarrow> f -` {a} \<subseteq> {THE x. f x = a}"
haftmann@41657
   518
  -- {* The inverse image of a singleton under an injective function
haftmann@41657
   519
         is included in a singleton. *}
haftmann@41657
   520
  apply (auto simp add: inj_on_def)
haftmann@41657
   521
  apply (blast intro: the_equality [symmetric])
haftmann@41657
   522
  done
haftmann@41657
   523
hoelzl@43991
   524
lemma inj_on_vimage_singleton:
hoelzl@43991
   525
  "inj_on f A \<Longrightarrow> f -` {a} \<inter> A \<subseteq> {THE x. x \<in> A \<and> f x = a}"
hoelzl@43991
   526
  by (auto simp add: inj_on_def intro: the_equality [symmetric])
hoelzl@43991
   527
hoelzl@35584
   528
lemma (in ordered_ab_group_add) inj_uminus[simp, intro]: "inj_on uminus A"
hoelzl@35580
   529
  by (auto intro!: inj_onI)
paulson@13585
   530
hoelzl@35584
   531
lemma (in linorder) strict_mono_imp_inj_on: "strict_mono f \<Longrightarrow> inj_on f A"
hoelzl@35584
   532
  by (auto intro!: inj_onI dest: strict_mono_eq)
hoelzl@35584
   533
blanchet@55019
   534
lemma bij_betw_byWitness:
blanchet@55019
   535
assumes LEFT: "\<forall>a \<in> A. f'(f a) = a" and
blanchet@55019
   536
        RIGHT: "\<forall>a' \<in> A'. f(f' a') = a'" and
blanchet@55019
   537
        IM1: "f ` A \<le> A'" and IM2: "f' ` A' \<le> A"
blanchet@55019
   538
shows "bij_betw f A A'"
blanchet@55019
   539
using assms
blanchet@55019
   540
proof(unfold bij_betw_def inj_on_def, safe)
blanchet@55019
   541
  fix a b assume *: "a \<in> A" "b \<in> A" and **: "f a = f b"
blanchet@55019
   542
  have "a = f'(f a) \<and> b = f'(f b)" using * LEFT by simp
blanchet@55019
   543
  with ** show "a = b" by simp
blanchet@55019
   544
next
blanchet@55019
   545
  fix a' assume *: "a' \<in> A'"
blanchet@55019
   546
  hence "f' a' \<in> A" using IM2 by blast
blanchet@55019
   547
  moreover
blanchet@55019
   548
  have "a' = f(f' a')" using * RIGHT by simp
blanchet@55019
   549
  ultimately show "a' \<in> f ` A" by blast
blanchet@55019
   550
qed
blanchet@55019
   551
blanchet@55019
   552
corollary notIn_Un_bij_betw:
blanchet@55019
   553
assumes NIN: "b \<notin> A" and NIN': "f b \<notin> A'" and
blanchet@55019
   554
       BIJ: "bij_betw f A A'"
blanchet@55019
   555
shows "bij_betw f (A \<union> {b}) (A' \<union> {f b})"
blanchet@55019
   556
proof-
blanchet@55019
   557
  have "bij_betw f {b} {f b}"
blanchet@55019
   558
  unfolding bij_betw_def inj_on_def by simp
blanchet@55019
   559
  with assms show ?thesis
blanchet@55019
   560
  using bij_betw_combine[of f A A' "{b}" "{f b}"] by blast
blanchet@55019
   561
qed
blanchet@55019
   562
blanchet@55019
   563
lemma notIn_Un_bij_betw3:
blanchet@55019
   564
assumes NIN: "b \<notin> A" and NIN': "f b \<notin> A'"
blanchet@55019
   565
shows "bij_betw f A A' = bij_betw f (A \<union> {b}) (A' \<union> {f b})"
blanchet@55019
   566
proof
blanchet@55019
   567
  assume "bij_betw f A A'"
blanchet@55019
   568
  thus "bij_betw f (A \<union> {b}) (A' \<union> {f b})"
blanchet@55019
   569
  using assms notIn_Un_bij_betw[of b A f A'] by blast
blanchet@55019
   570
next
blanchet@55019
   571
  assume *: "bij_betw f (A \<union> {b}) (A' \<union> {f b})"
blanchet@55019
   572
  have "f ` A = A'"
blanchet@55019
   573
  proof(auto)
blanchet@55019
   574
    fix a assume **: "a \<in> A"
blanchet@55019
   575
    hence "f a \<in> A' \<union> {f b}" using * unfolding bij_betw_def by blast
blanchet@55019
   576
    moreover
blanchet@55019
   577
    {assume "f a = f b"
blanchet@55019
   578
     hence "a = b" using * ** unfolding bij_betw_def inj_on_def by blast
blanchet@55019
   579
     with NIN ** have False by blast
blanchet@55019
   580
    }
blanchet@55019
   581
    ultimately show "f a \<in> A'" by blast
blanchet@55019
   582
  next
blanchet@55019
   583
    fix a' assume **: "a' \<in> A'"
blanchet@55019
   584
    hence "a' \<in> f`(A \<union> {b})"
blanchet@55019
   585
    using * by (auto simp add: bij_betw_def)
blanchet@55019
   586
    then obtain a where 1: "a \<in> A \<union> {b} \<and> f a = a'" by blast
blanchet@55019
   587
    moreover
blanchet@55019
   588
    {assume "a = b" with 1 ** NIN' have False by blast
blanchet@55019
   589
    }
blanchet@55019
   590
    ultimately have "a \<in> A" by blast
blanchet@55019
   591
    with 1 show "a' \<in> f ` A" by blast
blanchet@55019
   592
  qed
blanchet@55019
   593
  thus "bij_betw f A A'" using * bij_betw_subset[of f "A \<union> {b}" _ A] by blast
blanchet@55019
   594
qed
blanchet@55019
   595
haftmann@41657
   596
paulson@13585
   597
subsection{*Function Updating*}
paulson@13585
   598
haftmann@44277
   599
definition fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)" where
haftmann@26147
   600
  "fun_upd f a b == % x. if x=a then b else f x"
haftmann@26147
   601
wenzelm@41229
   602
nonterminal updbinds and updbind
wenzelm@41229
   603
haftmann@26147
   604
syntax
haftmann@26147
   605
  "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
haftmann@26147
   606
  ""         :: "updbind => updbinds"             ("_")
haftmann@26147
   607
  "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
wenzelm@35115
   608
  "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000, 0] 900)
haftmann@26147
   609
haftmann@26147
   610
translations
wenzelm@35115
   611
  "_Update f (_updbinds b bs)" == "_Update (_Update f b) bs"
wenzelm@35115
   612
  "f(x:=y)" == "CONST fun_upd f x y"
haftmann@26147
   613
blanchet@55414
   614
(* Hint: to define the sum of two functions (or maps), use case_sum.
blanchet@58111
   615
         A nice infix syntax could be defined by
wenzelm@35115
   616
notation
blanchet@55414
   617
  case_sum  (infixr "'(+')"80)
haftmann@26147
   618
*)
haftmann@26147
   619
paulson@13585
   620
lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)"
paulson@13585
   621
apply (simp add: fun_upd_def, safe)
paulson@13585
   622
apply (erule subst)
paulson@13585
   623
apply (rule_tac [2] ext, auto)
paulson@13585
   624
done
paulson@13585
   625
wenzelm@45603
   626
lemma fun_upd_idem: "f x = y ==> f(x:=y) = f"
wenzelm@45603
   627
  by (simp only: fun_upd_idem_iff)
paulson@13585
   628
wenzelm@45603
   629
lemma fun_upd_triv [iff]: "f(x := f x) = f"
wenzelm@45603
   630
  by (simp only: fun_upd_idem)
paulson@13585
   631
paulson@13585
   632
lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)"
paulson@17084
   633
by (simp add: fun_upd_def)
paulson@13585
   634
paulson@13585
   635
(* fun_upd_apply supersedes these two,   but they are useful
paulson@13585
   636
   if fun_upd_apply is intentionally removed from the simpset *)
paulson@13585
   637
lemma fun_upd_same: "(f(x:=y)) x = y"
paulson@13585
   638
by simp
paulson@13585
   639
paulson@13585
   640
lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z"
paulson@13585
   641
by simp
paulson@13585
   642
paulson@13585
   643
lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)"
nipkow@39302
   644
by (simp add: fun_eq_iff)
paulson@13585
   645
paulson@13585
   646
lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)"
paulson@13585
   647
by (rule ext, auto)
paulson@13585
   648
haftmann@56077
   649
lemma inj_on_fun_updI:
haftmann@56077
   650
  "inj_on f A \<Longrightarrow> y \<notin> f ` A \<Longrightarrow> inj_on (f(x := y)) A"
haftmann@56077
   651
  by (fastforce simp: inj_on_def)
nipkow@15303
   652
paulson@15510
   653
lemma fun_upd_image:
paulson@15510
   654
     "f(x:=y) ` A = (if x \<in> A then insert y (f ` (A-{x})) else f ` A)"
paulson@15510
   655
by auto
paulson@15510
   656
nipkow@31080
   657
lemma fun_upd_comp: "f \<circ> (g(x := y)) = (f \<circ> g)(x := f y)"
huffman@44921
   658
  by auto
nipkow@31080
   659
haftmann@26147
   660
haftmann@26147
   661
subsection {* @{text override_on} *}
haftmann@26147
   662
haftmann@44277
   663
definition override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b" where
haftmann@26147
   664
  "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)"
nipkow@13910
   665
nipkow@15691
   666
lemma override_on_emptyset[simp]: "override_on f g {} = f"
nipkow@15691
   667
by(simp add:override_on_def)
nipkow@13910
   668
nipkow@15691
   669
lemma override_on_apply_notin[simp]: "a ~: A ==> (override_on f g A) a = f a"
nipkow@15691
   670
by(simp add:override_on_def)
nipkow@13910
   671
nipkow@15691
   672
lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a"
nipkow@15691
   673
by(simp add:override_on_def)
nipkow@13910
   674
haftmann@26147
   675
haftmann@26147
   676
subsection {* @{text swap} *}
paulson@15510
   677
haftmann@56608
   678
definition swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
haftmann@56608
   679
where
haftmann@22744
   680
  "swap a b f = f (a := f b, b:= f a)"
paulson@15510
   681
haftmann@56608
   682
lemma swap_apply [simp]:
haftmann@56608
   683
  "swap a b f a = f b"
haftmann@56608
   684
  "swap a b f b = f a"
haftmann@56608
   685
  "c \<noteq> a \<Longrightarrow> c \<noteq> b \<Longrightarrow> swap a b f c = f c"
haftmann@56608
   686
  by (simp_all add: swap_def)
haftmann@56608
   687
haftmann@56608
   688
lemma swap_self [simp]:
haftmann@56608
   689
  "swap a a f = f"
haftmann@56608
   690
  by (simp add: swap_def)
paulson@15510
   691
haftmann@56608
   692
lemma swap_commute:
haftmann@56608
   693
  "swap a b f = swap b a f"
haftmann@56608
   694
  by (simp add: fun_upd_def swap_def fun_eq_iff)
paulson@15510
   695
haftmann@56608
   696
lemma swap_nilpotent [simp]:
haftmann@56608
   697
  "swap a b (swap a b f) = f"
haftmann@56608
   698
  by (rule ext, simp add: fun_upd_def swap_def)
haftmann@56608
   699
haftmann@56608
   700
lemma swap_comp_involutory [simp]:
haftmann@56608
   701
  "swap a b \<circ> swap a b = id"
haftmann@56608
   702
  by (rule ext) simp
paulson@15510
   703
huffman@34145
   704
lemma swap_triple:
huffman@34145
   705
  assumes "a \<noteq> c" and "b \<noteq> c"
huffman@34145
   706
  shows "swap a b (swap b c (swap a b f)) = swap a c f"
nipkow@39302
   707
  using assms by (simp add: fun_eq_iff swap_def)
huffman@34145
   708
huffman@34101
   709
lemma comp_swap: "f \<circ> swap a b g = swap a b (f \<circ> g)"
haftmann@56608
   710
  by (rule ext, simp add: fun_upd_def swap_def)
huffman@34101
   711
hoelzl@39076
   712
lemma swap_image_eq [simp]:
hoelzl@39076
   713
  assumes "a \<in> A" "b \<in> A" shows "swap a b f ` A = f ` A"
hoelzl@39076
   714
proof -
hoelzl@39076
   715
  have subset: "\<And>f. swap a b f ` A \<subseteq> f ` A"
hoelzl@39076
   716
    using assms by (auto simp: image_iff swap_def)
hoelzl@39076
   717
  then have "swap a b (swap a b f) ` A \<subseteq> (swap a b f) ` A" .
hoelzl@39076
   718
  with subset[of f] show ?thesis by auto
hoelzl@39076
   719
qed
hoelzl@39076
   720
paulson@15510
   721
lemma inj_on_imp_inj_on_swap:
hoelzl@39076
   722
  "\<lbrakk>inj_on f A; a \<in> A; b \<in> A\<rbrakk> \<Longrightarrow> inj_on (swap a b f) A"
hoelzl@39076
   723
  by (simp add: inj_on_def swap_def, blast)
paulson@15510
   724
paulson@15510
   725
lemma inj_on_swap_iff [simp]:
hoelzl@39076
   726
  assumes A: "a \<in> A" "b \<in> A" shows "inj_on (swap a b f) A \<longleftrightarrow> inj_on f A"
hoelzl@39075
   727
proof
paulson@15510
   728
  assume "inj_on (swap a b f) A"
hoelzl@39075
   729
  with A have "inj_on (swap a b (swap a b f)) A"
hoelzl@39075
   730
    by (iprover intro: inj_on_imp_inj_on_swap)
hoelzl@39075
   731
  thus "inj_on f A" by simp
paulson@15510
   732
next
paulson@15510
   733
  assume "inj_on f A"
krauss@34209
   734
  with A show "inj_on (swap a b f) A" by (iprover intro: inj_on_imp_inj_on_swap)
paulson@15510
   735
qed
paulson@15510
   736
hoelzl@39076
   737
lemma surj_imp_surj_swap: "surj f \<Longrightarrow> surj (swap a b f)"
hoelzl@40702
   738
  by simp
paulson@15510
   739
hoelzl@39076
   740
lemma surj_swap_iff [simp]: "surj (swap a b f) \<longleftrightarrow> surj f"
hoelzl@40702
   741
  by simp
haftmann@21547
   742
hoelzl@39076
   743
lemma bij_betw_swap_iff [simp]:
hoelzl@39076
   744
  "\<lbrakk> x \<in> A; y \<in> A \<rbrakk> \<Longrightarrow> bij_betw (swap x y f) A B \<longleftrightarrow> bij_betw f A B"
hoelzl@39076
   745
  by (auto simp: bij_betw_def)
hoelzl@39076
   746
hoelzl@39076
   747
lemma bij_swap_iff [simp]: "bij (swap a b f) \<longleftrightarrow> bij f"
hoelzl@39076
   748
  by simp
hoelzl@39075
   749
wenzelm@36176
   750
hide_const (open) swap
haftmann@21547
   751
haftmann@56608
   752
haftmann@31949
   753
subsection {* Inversion of injective functions *}
haftmann@31949
   754
nipkow@33057
   755
definition the_inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
haftmann@44277
   756
  "the_inv_into A f == %x. THE y. y : A & f y = x"
nipkow@32961
   757
nipkow@33057
   758
lemma the_inv_into_f_f:
nipkow@33057
   759
  "[| inj_on f A;  x : A |] ==> the_inv_into A f (f x) = x"
nipkow@33057
   760
apply (simp add: the_inv_into_def inj_on_def)
krauss@34209
   761
apply blast
nipkow@32961
   762
done
nipkow@32961
   763
nipkow@33057
   764
lemma f_the_inv_into_f:
nipkow@33057
   765
  "inj_on f A ==> y : f`A  ==> f (the_inv_into A f y) = y"
nipkow@33057
   766
apply (simp add: the_inv_into_def)
nipkow@32961
   767
apply (rule the1I2)
nipkow@32961
   768
 apply(blast dest: inj_onD)
nipkow@32961
   769
apply blast
nipkow@32961
   770
done
nipkow@32961
   771
nipkow@33057
   772
lemma the_inv_into_into:
nipkow@33057
   773
  "[| inj_on f A; x : f ` A; A <= B |] ==> the_inv_into A f x : B"
nipkow@33057
   774
apply (simp add: the_inv_into_def)
nipkow@32961
   775
apply (rule the1I2)
nipkow@32961
   776
 apply(blast dest: inj_onD)
nipkow@32961
   777
apply blast
nipkow@32961
   778
done
nipkow@32961
   779
nipkow@33057
   780
lemma the_inv_into_onto[simp]:
nipkow@33057
   781
  "inj_on f A ==> the_inv_into A f ` (f ` A) = A"
nipkow@33057
   782
by (fast intro:the_inv_into_into the_inv_into_f_f[symmetric])
nipkow@32961
   783
nipkow@33057
   784
lemma the_inv_into_f_eq:
nipkow@33057
   785
  "[| inj_on f A; f x = y; x : A |] ==> the_inv_into A f y = x"
nipkow@32961
   786
  apply (erule subst)
nipkow@33057
   787
  apply (erule the_inv_into_f_f, assumption)
nipkow@32961
   788
  done
nipkow@32961
   789
nipkow@33057
   790
lemma the_inv_into_comp:
nipkow@32961
   791
  "[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==>
nipkow@33057
   792
  the_inv_into A (f o g) x = (the_inv_into A g o the_inv_into (g ` A) f) x"
nipkow@33057
   793
apply (rule the_inv_into_f_eq)
nipkow@32961
   794
  apply (fast intro: comp_inj_on)
nipkow@33057
   795
 apply (simp add: f_the_inv_into_f the_inv_into_into)
nipkow@33057
   796
apply (simp add: the_inv_into_into)
nipkow@32961
   797
done
nipkow@32961
   798
nipkow@33057
   799
lemma inj_on_the_inv_into:
nipkow@33057
   800
  "inj_on f A \<Longrightarrow> inj_on (the_inv_into A f) (f ` A)"
haftmann@56077
   801
by (auto intro: inj_onI simp: the_inv_into_f_f)
nipkow@32961
   802
nipkow@33057
   803
lemma bij_betw_the_inv_into:
nipkow@33057
   804
  "bij_betw f A B \<Longrightarrow> bij_betw (the_inv_into A f) B A"
nipkow@33057
   805
by (auto simp add: bij_betw_def inj_on_the_inv_into the_inv_into_into)
nipkow@32961
   806
berghofe@32998
   807
abbreviation the_inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
nipkow@33057
   808
  "the_inv f \<equiv> the_inv_into UNIV f"
berghofe@32998
   809
berghofe@32998
   810
lemma the_inv_f_f:
berghofe@32998
   811
  assumes "inj f"
berghofe@32998
   812
  shows "the_inv f (f x) = x" using assms UNIV_I
nipkow@33057
   813
  by (rule the_inv_into_f_f)
berghofe@32998
   814
haftmann@44277
   815
hoelzl@40703
   816
subsection {* Cantor's Paradox *}
hoelzl@40703
   817
blanchet@54147
   818
lemma Cantors_paradox:
hoelzl@40703
   819
  "\<not>(\<exists>f. f ` A = Pow A)"
hoelzl@40703
   820
proof clarify
hoelzl@40703
   821
  fix f assume "f ` A = Pow A" hence *: "Pow A \<le> f ` A" by blast
hoelzl@40703
   822
  let ?X = "{a \<in> A. a \<notin> f a}"
hoelzl@40703
   823
  have "?X \<in> Pow A" unfolding Pow_def by auto
hoelzl@40703
   824
  with * obtain x where "x \<in> A \<and> f x = ?X" by blast
hoelzl@40703
   825
  thus False by best
hoelzl@40703
   826
qed
haftmann@31949
   827
haftmann@40969
   828
subsection {* Setup *} 
haftmann@40969
   829
haftmann@40969
   830
subsubsection {* Proof tools *}
haftmann@22845
   831
haftmann@22845
   832
text {* simplifies terms of the form
haftmann@22845
   833
  f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *}
haftmann@22845
   834
wenzelm@24017
   835
simproc_setup fun_upd2 ("f(v := w, x := y)") = {* fn _ =>
haftmann@22845
   836
let
haftmann@22845
   837
  fun gen_fun_upd NONE T _ _ = NONE
wenzelm@24017
   838
    | gen_fun_upd (SOME f) T x y = SOME (Const (@{const_name fun_upd}, T) $ f $ x $ y)
haftmann@22845
   839
  fun dest_fun_T1 (Type (_, T :: Ts)) = T
haftmann@22845
   840
  fun find_double (t as Const (@{const_name fun_upd},T) $ f $ x $ y) =
haftmann@22845
   841
    let
haftmann@22845
   842
      fun find (Const (@{const_name fun_upd},T) $ g $ v $ w) =
haftmann@22845
   843
            if v aconv x then SOME g else gen_fun_upd (find g) T v w
haftmann@22845
   844
        | find t = NONE
haftmann@22845
   845
    in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end
wenzelm@24017
   846
wenzelm@51717
   847
  val ss = simpset_of @{context}
wenzelm@51717
   848
wenzelm@51717
   849
  fun proc ctxt ct =
wenzelm@24017
   850
    let
wenzelm@24017
   851
      val t = Thm.term_of ct
wenzelm@24017
   852
    in
wenzelm@24017
   853
      case find_double t of
wenzelm@24017
   854
        (T, NONE) => NONE
wenzelm@24017
   855
      | (T, SOME rhs) =>
wenzelm@27330
   856
          SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs))
wenzelm@24017
   857
            (fn _ =>
wenzelm@59498
   858
              resolve_tac ctxt [eq_reflection] 1 THEN
wenzelm@59498
   859
              resolve_tac ctxt @{thms ext} 1 THEN
wenzelm@51717
   860
              simp_tac (put_simpset ss ctxt) 1))
wenzelm@24017
   861
    end
wenzelm@24017
   862
in proc end
haftmann@22845
   863
*}
haftmann@22845
   864
haftmann@22845
   865
haftmann@40969
   866
subsubsection {* Functorial structure of types *}
haftmann@40969
   867
blanchet@55467
   868
ML_file "Tools/functor.ML"
haftmann@40969
   869
blanchet@55467
   870
functor map_fun: map_fun
haftmann@47488
   871
  by (simp_all add: fun_eq_iff)
haftmann@47488
   872
blanchet@55467
   873
functor vimage
haftmann@49739
   874
  by (simp_all add: fun_eq_iff vimage_comp)
haftmann@49739
   875
haftmann@49739
   876
text {* Legacy theorem names *}
haftmann@49739
   877
haftmann@49739
   878
lemmas o_def = comp_def
haftmann@49739
   879
lemmas o_apply = comp_apply
haftmann@49739
   880
lemmas o_assoc = comp_assoc [symmetric]
haftmann@49739
   881
lemmas id_o = id_comp
haftmann@49739
   882
lemmas o_id = comp_id
haftmann@49739
   883
lemmas o_eq_dest = comp_eq_dest
haftmann@49739
   884
lemmas o_eq_elim = comp_eq_elim
blanchet@55066
   885
lemmas o_eq_dest_lhs = comp_eq_dest_lhs
blanchet@55066
   886
lemmas o_eq_id_dest = comp_eq_id_dest
haftmann@47488
   887
nipkow@2912
   888
end
haftmann@56015
   889