kuncar@53012
|
1 |
(* Title: HOL/Lifting_Set.thy
|
kuncar@53012
|
2 |
Author: Brian Huffman and Ondrej Kuncar
|
kuncar@53012
|
3 |
*)
|
kuncar@53012
|
4 |
|
wenzelm@58889
|
5 |
section {* Setup for Lifting/Transfer for the set type *}
|
kuncar@53012
|
6 |
|
kuncar@53012
|
7 |
theory Lifting_Set
|
kuncar@53012
|
8 |
imports Lifting
|
kuncar@53012
|
9 |
begin
|
kuncar@53012
|
10 |
|
kuncar@53012
|
11 |
subsection {* Relator and predicator properties *}
|
kuncar@53012
|
12 |
|
blanchet@55938
|
13 |
lemma rel_setD1: "\<lbrakk> rel_set R A B; x \<in> A \<rbrakk> \<Longrightarrow> \<exists>y \<in> B. R x y"
|
blanchet@55938
|
14 |
and rel_setD2: "\<lbrakk> rel_set R A B; y \<in> B \<rbrakk> \<Longrightarrow> \<exists>x \<in> A. R x y"
|
blanchet@55938
|
15 |
by(simp_all add: rel_set_def)
|
Andreas@53927
|
16 |
|
blanchet@55938
|
17 |
lemma rel_set_conversep [simp]: "rel_set A\<inverse>\<inverse> = (rel_set A)\<inverse>\<inverse>"
|
blanchet@55938
|
18 |
unfolding rel_set_def by auto
|
kuncar@53012
|
19 |
|
blanchet@55938
|
20 |
lemma rel_set_eq [relator_eq]: "rel_set (op =) = (op =)"
|
blanchet@55938
|
21 |
unfolding rel_set_def fun_eq_iff by auto
|
kuncar@53012
|
22 |
|
blanchet@55938
|
23 |
lemma rel_set_mono[relator_mono]:
|
kuncar@53012
|
24 |
assumes "A \<le> B"
|
blanchet@55938
|
25 |
shows "rel_set A \<le> rel_set B"
|
blanchet@55938
|
26 |
using assms unfolding rel_set_def by blast
|
kuncar@53012
|
27 |
|
blanchet@55938
|
28 |
lemma rel_set_OO[relator_distr]: "rel_set R OO rel_set S = rel_set (R OO S)"
|
kuncar@53012
|
29 |
apply (rule sym)
|
kuncar@53012
|
30 |
apply (intro ext, rename_tac X Z)
|
kuncar@53012
|
31 |
apply (rule iffI)
|
kuncar@53012
|
32 |
apply (rule_tac b="{y. (\<exists>x\<in>X. R x y) \<and> (\<exists>z\<in>Z. S y z)}" in relcomppI)
|
blanchet@55938
|
33 |
apply (simp add: rel_set_def, fast)
|
blanchet@55938
|
34 |
apply (simp add: rel_set_def, fast)
|
blanchet@55938
|
35 |
apply (simp add: rel_set_def, fast)
|
kuncar@53012
|
36 |
done
|
kuncar@53012
|
37 |
|
kuncar@53012
|
38 |
lemma Domainp_set[relator_domain]:
|
kuncar@56520
|
39 |
"Domainp (rel_set T) = (\<lambda>A. Ball A (Domainp T))"
|
kuncar@56520
|
40 |
unfolding rel_set_def Domainp_iff[abs_def]
|
kuncar@53012
|
41 |
apply (intro ext)
|
kuncar@53012
|
42 |
apply (rule iffI)
|
kuncar@53012
|
43 |
apply blast
|
kuncar@53012
|
44 |
apply (rename_tac A, rule_tac x="{y. \<exists>x\<in>A. T x y}" in exI, fast)
|
kuncar@53012
|
45 |
done
|
kuncar@53012
|
46 |
|
kuncar@56518
|
47 |
lemma left_total_rel_set[transfer_rule]:
|
blanchet@55938
|
48 |
"left_total A \<Longrightarrow> left_total (rel_set A)"
|
blanchet@55938
|
49 |
unfolding left_total_def rel_set_def
|
kuncar@53012
|
50 |
apply safe
|
kuncar@53012
|
51 |
apply (rename_tac X, rule_tac x="{y. \<exists>x\<in>X. A x y}" in exI, fast)
|
kuncar@53012
|
52 |
done
|
kuncar@53012
|
53 |
|
kuncar@56518
|
54 |
lemma left_unique_rel_set[transfer_rule]:
|
blanchet@55938
|
55 |
"left_unique A \<Longrightarrow> left_unique (rel_set A)"
|
blanchet@55938
|
56 |
unfolding left_unique_def rel_set_def
|
kuncar@53012
|
57 |
by fast
|
kuncar@53012
|
58 |
|
blanchet@55938
|
59 |
lemma right_total_rel_set [transfer_rule]:
|
blanchet@55938
|
60 |
"right_total A \<Longrightarrow> right_total (rel_set A)"
|
blanchet@55938
|
61 |
using left_total_rel_set[of "A\<inverse>\<inverse>"] by simp
|
kuncar@53012
|
62 |
|
blanchet@55938
|
63 |
lemma right_unique_rel_set [transfer_rule]:
|
blanchet@55938
|
64 |
"right_unique A \<Longrightarrow> right_unique (rel_set A)"
|
blanchet@55938
|
65 |
unfolding right_unique_def rel_set_def by fast
|
kuncar@53012
|
66 |
|
blanchet@55938
|
67 |
lemma bi_total_rel_set [transfer_rule]:
|
blanchet@55938
|
68 |
"bi_total A \<Longrightarrow> bi_total (rel_set A)"
|
kuncar@56524
|
69 |
by(simp add: bi_total_alt_def left_total_rel_set right_total_rel_set)
|
kuncar@53012
|
70 |
|
blanchet@55938
|
71 |
lemma bi_unique_rel_set [transfer_rule]:
|
blanchet@55938
|
72 |
"bi_unique A \<Longrightarrow> bi_unique (rel_set A)"
|
blanchet@55938
|
73 |
unfolding bi_unique_def rel_set_def by fast
|
kuncar@53012
|
74 |
|
kuncar@56519
|
75 |
lemma set_relator_eq_onp [relator_eq_onp]:
|
kuncar@56519
|
76 |
"rel_set (eq_onp P) = eq_onp (\<lambda>A. Ball A P)"
|
kuncar@56519
|
77 |
unfolding fun_eq_iff rel_set_def eq_onp_def Ball_def by fast
|
kuncar@53012
|
78 |
|
hoelzl@57129
|
79 |
lemma bi_unique_rel_set_lemma:
|
hoelzl@57129
|
80 |
assumes "bi_unique R" and "rel_set R X Y"
|
hoelzl@57129
|
81 |
obtains f where "Y = image f X" and "inj_on f X" and "\<forall>x\<in>X. R x (f x)"
|
hoelzl@57129
|
82 |
proof
|
hoelzl@57129
|
83 |
def f \<equiv> "\<lambda>x. THE y. R x y"
|
hoelzl@57129
|
84 |
{ fix x assume "x \<in> X"
|
hoelzl@57129
|
85 |
with `rel_set R X Y` `bi_unique R` have "R x (f x)"
|
hoelzl@57129
|
86 |
by (simp add: bi_unique_def rel_set_def f_def) (metis theI)
|
hoelzl@57129
|
87 |
with assms `x \<in> X`
|
hoelzl@57129
|
88 |
have "R x (f x)" "\<forall>x'\<in>X. R x' (f x) \<longrightarrow> x = x'" "\<forall>y\<in>Y. R x y \<longrightarrow> y = f x" "f x \<in> Y"
|
hoelzl@57129
|
89 |
by (fastforce simp add: bi_unique_def rel_set_def)+ }
|
hoelzl@57129
|
90 |
note * = this
|
hoelzl@57129
|
91 |
moreover
|
hoelzl@57129
|
92 |
{ fix y assume "y \<in> Y"
|
hoelzl@57129
|
93 |
with `rel_set R X Y` *(3) `y \<in> Y` have "\<exists>x\<in>X. y = f x"
|
hoelzl@57129
|
94 |
by (fastforce simp: rel_set_def) }
|
hoelzl@57129
|
95 |
ultimately show "\<forall>x\<in>X. R x (f x)" "Y = image f X" "inj_on f X"
|
hoelzl@57129
|
96 |
by (auto simp: inj_on_def image_iff)
|
hoelzl@57129
|
97 |
qed
|
hoelzl@57129
|
98 |
|
kuncar@53012
|
99 |
subsection {* Quotient theorem for the Lifting package *}
|
kuncar@53012
|
100 |
|
kuncar@53012
|
101 |
lemma Quotient_set[quot_map]:
|
kuncar@53012
|
102 |
assumes "Quotient R Abs Rep T"
|
blanchet@55938
|
103 |
shows "Quotient (rel_set R) (image Abs) (image Rep) (rel_set T)"
|
kuncar@53012
|
104 |
using assms unfolding Quotient_alt_def4
|
blanchet@55938
|
105 |
apply (simp add: rel_set_OO[symmetric])
|
blanchet@55938
|
106 |
apply (simp add: rel_set_def, fast)
|
kuncar@53012
|
107 |
done
|
kuncar@53012
|
108 |
|
kuncar@53012
|
109 |
subsection {* Transfer rules for the Transfer package *}
|
kuncar@53012
|
110 |
|
kuncar@53012
|
111 |
subsubsection {* Unconditional transfer rules *}
|
kuncar@53012
|
112 |
|
kuncar@53012
|
113 |
context
|
kuncar@53012
|
114 |
begin
|
kuncar@53012
|
115 |
interpretation lifting_syntax .
|
kuncar@53012
|
116 |
|
blanchet@55938
|
117 |
lemma empty_transfer [transfer_rule]: "(rel_set A) {} {}"
|
blanchet@55938
|
118 |
unfolding rel_set_def by simp
|
kuncar@53012
|
119 |
|
kuncar@53012
|
120 |
lemma insert_transfer [transfer_rule]:
|
blanchet@55938
|
121 |
"(A ===> rel_set A ===> rel_set A) insert insert"
|
blanchet@55945
|
122 |
unfolding rel_fun_def rel_set_def by auto
|
kuncar@53012
|
123 |
|
kuncar@53012
|
124 |
lemma union_transfer [transfer_rule]:
|
blanchet@55938
|
125 |
"(rel_set A ===> rel_set A ===> rel_set A) union union"
|
blanchet@55945
|
126 |
unfolding rel_fun_def rel_set_def by auto
|
kuncar@53012
|
127 |
|
kuncar@53012
|
128 |
lemma Union_transfer [transfer_rule]:
|
blanchet@55938
|
129 |
"(rel_set (rel_set A) ===> rel_set A) Union Union"
|
blanchet@55945
|
130 |
unfolding rel_fun_def rel_set_def by simp fast
|
kuncar@53012
|
131 |
|
kuncar@53012
|
132 |
lemma image_transfer [transfer_rule]:
|
blanchet@55938
|
133 |
"((A ===> B) ===> rel_set A ===> rel_set B) image image"
|
blanchet@55945
|
134 |
unfolding rel_fun_def rel_set_def by simp fast
|
kuncar@53012
|
135 |
|
kuncar@53012
|
136 |
lemma UNION_transfer [transfer_rule]:
|
blanchet@55938
|
137 |
"(rel_set A ===> (A ===> rel_set B) ===> rel_set B) UNION UNION"
|
haftmann@56166
|
138 |
unfolding Union_image_eq [symmetric, abs_def] by transfer_prover
|
kuncar@53012
|
139 |
|
kuncar@53012
|
140 |
lemma Ball_transfer [transfer_rule]:
|
blanchet@55938
|
141 |
"(rel_set A ===> (A ===> op =) ===> op =) Ball Ball"
|
blanchet@55945
|
142 |
unfolding rel_set_def rel_fun_def by fast
|
kuncar@53012
|
143 |
|
kuncar@53012
|
144 |
lemma Bex_transfer [transfer_rule]:
|
blanchet@55938
|
145 |
"(rel_set A ===> (A ===> op =) ===> op =) Bex Bex"
|
blanchet@55945
|
146 |
unfolding rel_set_def rel_fun_def by fast
|
kuncar@53012
|
147 |
|
kuncar@53012
|
148 |
lemma Pow_transfer [transfer_rule]:
|
blanchet@55938
|
149 |
"(rel_set A ===> rel_set (rel_set A)) Pow Pow"
|
blanchet@55945
|
150 |
apply (rule rel_funI, rename_tac X Y, rule rel_setI)
|
kuncar@53012
|
151 |
apply (rename_tac X', rule_tac x="{y\<in>Y. \<exists>x\<in>X'. A x y}" in rev_bexI, clarsimp)
|
blanchet@55938
|
152 |
apply (simp add: rel_set_def, fast)
|
kuncar@53012
|
153 |
apply (rename_tac Y', rule_tac x="{x\<in>X. \<exists>y\<in>Y'. A x y}" in rev_bexI, clarsimp)
|
blanchet@55938
|
154 |
apply (simp add: rel_set_def, fast)
|
kuncar@53012
|
155 |
done
|
kuncar@53012
|
156 |
|
blanchet@55938
|
157 |
lemma rel_set_transfer [transfer_rule]:
|
haftmann@56482
|
158 |
"((A ===> B ===> op =) ===> rel_set A ===> rel_set B ===> op =) rel_set rel_set"
|
blanchet@55945
|
159 |
unfolding rel_fun_def rel_set_def by fast
|
kuncar@53012
|
160 |
|
kuncar@53952
|
161 |
lemma bind_transfer [transfer_rule]:
|
blanchet@55938
|
162 |
"(rel_set A ===> (A ===> rel_set B) ===> rel_set B) Set.bind Set.bind"
|
haftmann@56482
|
163 |
unfolding bind_UNION [abs_def] by transfer_prover
|
haftmann@56482
|
164 |
|
haftmann@56482
|
165 |
lemma INF_parametric [transfer_rule]:
|
haftmann@56482
|
166 |
"(rel_set A ===> (A ===> HOL.eq) ===> HOL.eq) INFIMUM INFIMUM"
|
haftmann@56482
|
167 |
unfolding INF_def [abs_def] by transfer_prover
|
haftmann@56482
|
168 |
|
haftmann@56482
|
169 |
lemma SUP_parametric [transfer_rule]:
|
haftmann@56482
|
170 |
"(rel_set R ===> (R ===> HOL.eq) ===> HOL.eq) SUPREMUM SUPREMUM"
|
haftmann@56482
|
171 |
unfolding SUP_def [abs_def] by transfer_prover
|
haftmann@56482
|
172 |
|
kuncar@53952
|
173 |
|
kuncar@53012
|
174 |
subsubsection {* Rules requiring bi-unique, bi-total or right-total relations *}
|
kuncar@53012
|
175 |
|
kuncar@53012
|
176 |
lemma member_transfer [transfer_rule]:
|
kuncar@53012
|
177 |
assumes "bi_unique A"
|
blanchet@55938
|
178 |
shows "(A ===> rel_set A ===> op =) (op \<in>) (op \<in>)"
|
blanchet@55945
|
179 |
using assms unfolding rel_fun_def rel_set_def bi_unique_def by fast
|
kuncar@53012
|
180 |
|
kuncar@53012
|
181 |
lemma right_total_Collect_transfer[transfer_rule]:
|
kuncar@53012
|
182 |
assumes "right_total A"
|
blanchet@55938
|
183 |
shows "((A ===> op =) ===> rel_set A) (\<lambda>P. Collect (\<lambda>x. P x \<and> Domainp A x)) Collect"
|
blanchet@55945
|
184 |
using assms unfolding right_total_def rel_set_def rel_fun_def Domainp_iff by fast
|
kuncar@53012
|
185 |
|
kuncar@53012
|
186 |
lemma Collect_transfer [transfer_rule]:
|
kuncar@53012
|
187 |
assumes "bi_total A"
|
blanchet@55938
|
188 |
shows "((A ===> op =) ===> rel_set A) Collect Collect"
|
blanchet@55945
|
189 |
using assms unfolding rel_fun_def rel_set_def bi_total_def by fast
|
kuncar@53012
|
190 |
|
kuncar@53012
|
191 |
lemma inter_transfer [transfer_rule]:
|
kuncar@53012
|
192 |
assumes "bi_unique A"
|
blanchet@55938
|
193 |
shows "(rel_set A ===> rel_set A ===> rel_set A) inter inter"
|
blanchet@55945
|
194 |
using assms unfolding rel_fun_def rel_set_def bi_unique_def by fast
|
kuncar@53012
|
195 |
|
kuncar@53012
|
196 |
lemma Diff_transfer [transfer_rule]:
|
kuncar@53012
|
197 |
assumes "bi_unique A"
|
blanchet@55938
|
198 |
shows "(rel_set A ===> rel_set A ===> rel_set A) (op -) (op -)"
|
blanchet@55945
|
199 |
using assms unfolding rel_fun_def rel_set_def bi_unique_def
|
kuncar@53012
|
200 |
unfolding Ball_def Bex_def Diff_eq
|
kuncar@53012
|
201 |
by (safe, simp, metis, simp, metis)
|
kuncar@53012
|
202 |
|
kuncar@53012
|
203 |
lemma subset_transfer [transfer_rule]:
|
kuncar@53012
|
204 |
assumes [transfer_rule]: "bi_unique A"
|
blanchet@55938
|
205 |
shows "(rel_set A ===> rel_set A ===> op =) (op \<subseteq>) (op \<subseteq>)"
|
kuncar@53012
|
206 |
unfolding subset_eq [abs_def] by transfer_prover
|
kuncar@53012
|
207 |
|
kuncar@60229
|
208 |
declare right_total_UNIV_transfer[transfer_rule]
|
kuncar@53012
|
209 |
|
kuncar@53012
|
210 |
lemma UNIV_transfer [transfer_rule]:
|
kuncar@53012
|
211 |
assumes "bi_total A"
|
blanchet@55938
|
212 |
shows "(rel_set A) UNIV UNIV"
|
blanchet@55938
|
213 |
using assms unfolding rel_set_def bi_total_def by simp
|
kuncar@53012
|
214 |
|
kuncar@53012
|
215 |
lemma right_total_Compl_transfer [transfer_rule]:
|
kuncar@53012
|
216 |
assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "right_total A"
|
blanchet@55938
|
217 |
shows "(rel_set A ===> rel_set A) (\<lambda>S. uminus S \<inter> Collect (Domainp A)) uminus"
|
kuncar@53012
|
218 |
unfolding Compl_eq [abs_def]
|
kuncar@53012
|
219 |
by (subst Collect_conj_eq[symmetric]) transfer_prover
|
kuncar@53012
|
220 |
|
kuncar@53012
|
221 |
lemma Compl_transfer [transfer_rule]:
|
kuncar@53012
|
222 |
assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "bi_total A"
|
blanchet@55938
|
223 |
shows "(rel_set A ===> rel_set A) uminus uminus"
|
kuncar@53012
|
224 |
unfolding Compl_eq [abs_def] by transfer_prover
|
kuncar@53012
|
225 |
|
kuncar@53012
|
226 |
lemma right_total_Inter_transfer [transfer_rule]:
|
kuncar@53012
|
227 |
assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "right_total A"
|
blanchet@55938
|
228 |
shows "(rel_set (rel_set A) ===> rel_set A) (\<lambda>S. Inter S \<inter> Collect (Domainp A)) Inter"
|
kuncar@53012
|
229 |
unfolding Inter_eq[abs_def]
|
kuncar@53012
|
230 |
by (subst Collect_conj_eq[symmetric]) transfer_prover
|
kuncar@53012
|
231 |
|
kuncar@53012
|
232 |
lemma Inter_transfer [transfer_rule]:
|
kuncar@53012
|
233 |
assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "bi_total A"
|
blanchet@55938
|
234 |
shows "(rel_set (rel_set A) ===> rel_set A) Inter Inter"
|
kuncar@53012
|
235 |
unfolding Inter_eq [abs_def] by transfer_prover
|
kuncar@53012
|
236 |
|
kuncar@53012
|
237 |
lemma filter_transfer [transfer_rule]:
|
kuncar@53012
|
238 |
assumes [transfer_rule]: "bi_unique A"
|
blanchet@55938
|
239 |
shows "((A ===> op=) ===> rel_set A ===> rel_set A) Set.filter Set.filter"
|
blanchet@55945
|
240 |
unfolding Set.filter_def[abs_def] rel_fun_def rel_set_def by blast
|
kuncar@53012
|
241 |
|
kuncar@53012
|
242 |
lemma finite_transfer [transfer_rule]:
|
blanchet@55938
|
243 |
"bi_unique A \<Longrightarrow> (rel_set A ===> op =) finite finite"
|
hoelzl@57129
|
244 |
by (rule rel_funI, erule (1) bi_unique_rel_set_lemma)
|
hoelzl@57129
|
245 |
(auto dest: finite_imageD)
|
kuncar@53012
|
246 |
|
kuncar@53012
|
247 |
lemma card_transfer [transfer_rule]:
|
blanchet@55938
|
248 |
"bi_unique A \<Longrightarrow> (rel_set A ===> op =) card card"
|
hoelzl@57129
|
249 |
by (rule rel_funI, erule (1) bi_unique_rel_set_lemma)
|
hoelzl@57129
|
250 |
(simp add: card_image)
|
kuncar@53012
|
251 |
|
Andreas@53927
|
252 |
lemma vimage_parametric [transfer_rule]:
|
Andreas@53927
|
253 |
assumes [transfer_rule]: "bi_total A" "bi_unique B"
|
blanchet@55938
|
254 |
shows "((A ===> B) ===> rel_set B ===> rel_set A) vimage vimage"
|
hoelzl@57129
|
255 |
unfolding vimage_def[abs_def] by transfer_prover
|
Andreas@53927
|
256 |
|
Andreas@57599
|
257 |
lemma Image_parametric [transfer_rule]:
|
Andreas@57599
|
258 |
assumes "bi_unique A"
|
Andreas@57599
|
259 |
shows "(rel_set (rel_prod A B) ===> rel_set A ===> rel_set B) op `` op ``"
|
Andreas@57599
|
260 |
by(intro rel_funI rel_setI)
|
Andreas@57599
|
261 |
(force dest: rel_setD1 bi_uniqueDr[OF assms], force dest: rel_setD2 bi_uniqueDl[OF assms])
|
Andreas@57599
|
262 |
|
kuncar@53012
|
263 |
end
|
kuncar@53012
|
264 |
|
hoelzl@57129
|
265 |
lemma (in comm_monoid_set) F_parametric [transfer_rule]:
|
hoelzl@57129
|
266 |
fixes A :: "'b \<Rightarrow> 'c \<Rightarrow> bool"
|
hoelzl@57129
|
267 |
assumes "bi_unique A"
|
hoelzl@57129
|
268 |
shows "rel_fun (rel_fun A (op =)) (rel_fun (rel_set A) (op =)) F F"
|
hoelzl@57129
|
269 |
proof(rule rel_funI)+
|
hoelzl@57129
|
270 |
fix f :: "'b \<Rightarrow> 'a" and g S T
|
hoelzl@57129
|
271 |
assume "rel_fun A (op =) f g" "rel_set A S T"
|
hoelzl@57129
|
272 |
with `bi_unique A` obtain i where "bij_betw i S T" "\<And>x. x \<in> S \<Longrightarrow> f x = g (i x)"
|
hoelzl@57129
|
273 |
by (auto elim: bi_unique_rel_set_lemma simp: rel_fun_def bij_betw_def)
|
hoelzl@57129
|
274 |
then show "F f S = F g T"
|
hoelzl@57129
|
275 |
by (simp add: reindex_bij_betw)
|
hoelzl@57129
|
276 |
qed
|
hoelzl@57129
|
277 |
|
hoelzl@57129
|
278 |
lemmas setsum_parametric = setsum.F_parametric
|
hoelzl@57129
|
279 |
lemmas setprod_parametric = setprod.F_parametric
|
hoelzl@57129
|
280 |
|
Andreas@60057
|
281 |
lemma rel_set_UNION:
|
Andreas@60057
|
282 |
assumes [transfer_rule]: "rel_set Q A B" "rel_fun Q (rel_set R) f g"
|
Andreas@60057
|
283 |
shows "rel_set R (UNION A f) (UNION B g)"
|
Andreas@60057
|
284 |
by transfer_prover
|
Andreas@60057
|
285 |
|
kuncar@53012
|
286 |
end
|