huffman@31708
|
1 |
|
haftmann@32554
|
2 |
(* Authors: Jeremy Avigad and Amine Chaieb *)
|
huffman@31708
|
3 |
|
wenzelm@58889
|
4 |
section {* Generic transfer machinery; specific transfer from nats to ints and back. *}
|
huffman@31708
|
5 |
|
haftmann@32558
|
6 |
theory Nat_Transfer
|
huffman@47255
|
7 |
imports Int
|
huffman@31708
|
8 |
begin
|
huffman@31708
|
9 |
|
haftmann@33318
|
10 |
subsection {* Generic transfer machinery *}
|
haftmann@33318
|
11 |
|
haftmann@35821
|
12 |
definition transfer_morphism:: "('b \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> bool"
|
krauss@42870
|
13 |
where "transfer_morphism f A \<longleftrightarrow> True"
|
haftmann@35644
|
14 |
|
krauss@42870
|
15 |
lemma transfer_morphismI[intro]: "transfer_morphism f A"
|
krauss@42870
|
16 |
by (simp add: transfer_morphism_def)
|
haftmann@33318
|
17 |
|
wenzelm@48891
|
18 |
ML_file "Tools/legacy_transfer.ML"
|
haftmann@33318
|
19 |
|
haftmann@33318
|
20 |
|
huffman@31708
|
21 |
subsection {* Set up transfer from nat to int *}
|
huffman@31708
|
22 |
|
haftmann@33318
|
23 |
text {* set up transfer direction *}
|
huffman@31708
|
24 |
|
krauss@42870
|
25 |
lemma transfer_morphism_nat_int: "transfer_morphism nat (op <= (0::int))" ..
|
huffman@31708
|
26 |
|
haftmann@35683
|
27 |
declare transfer_morphism_nat_int [transfer add
|
haftmann@35683
|
28 |
mode: manual
|
huffman@31708
|
29 |
return: nat_0_le
|
haftmann@35683
|
30 |
labels: nat_int
|
huffman@31708
|
31 |
]
|
huffman@31708
|
32 |
|
haftmann@33318
|
33 |
text {* basic functions and relations *}
|
huffman@31708
|
34 |
|
haftmann@35683
|
35 |
lemma transfer_nat_int_numerals [transfer key: transfer_morphism_nat_int]:
|
huffman@31708
|
36 |
"(0::nat) = nat 0"
|
huffman@31708
|
37 |
"(1::nat) = nat 1"
|
huffman@31708
|
38 |
"(2::nat) = nat 2"
|
huffman@31708
|
39 |
"(3::nat) = nat 3"
|
huffman@31708
|
40 |
by auto
|
huffman@31708
|
41 |
|
huffman@31708
|
42 |
definition
|
huffman@31708
|
43 |
tsub :: "int \<Rightarrow> int \<Rightarrow> int"
|
huffman@31708
|
44 |
where
|
huffman@31708
|
45 |
"tsub x y = (if x >= y then x - y else 0)"
|
huffman@31708
|
46 |
|
huffman@31708
|
47 |
lemma tsub_eq: "x >= y \<Longrightarrow> tsub x y = x - y"
|
huffman@31708
|
48 |
by (simp add: tsub_def)
|
huffman@31708
|
49 |
|
haftmann@35683
|
50 |
lemma transfer_nat_int_functions [transfer key: transfer_morphism_nat_int]:
|
huffman@31708
|
51 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) + (nat y) = nat (x + y)"
|
huffman@31708
|
52 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) * (nat y) = nat (x * y)"
|
huffman@31708
|
53 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) - (nat y) = nat (tsub x y)"
|
huffman@31708
|
54 |
"(x::int) >= 0 \<Longrightarrow> (nat x)^n = nat (x^n)"
|
huffman@31708
|
55 |
by (auto simp add: eq_nat_nat_iff nat_mult_distrib
|
haftmann@33318
|
56 |
nat_power_eq tsub_def)
|
huffman@31708
|
57 |
|
haftmann@35683
|
58 |
lemma transfer_nat_int_function_closures [transfer key: transfer_morphism_nat_int]:
|
huffman@31708
|
59 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x + y >= 0"
|
huffman@31708
|
60 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x * y >= 0"
|
huffman@31708
|
61 |
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> tsub x y >= 0"
|
huffman@31708
|
62 |
"(x::int) >= 0 \<Longrightarrow> x^n >= 0"
|
huffman@31708
|
63 |
"(0::int) >= 0"
|
huffman@31708
|
64 |
"(1::int) >= 0"
|
huffman@31708
|
65 |
"(2::int) >= 0"
|
huffman@31708
|
66 |
"(3::int) >= 0"
|
huffman@31708
|
67 |
"int z >= 0"
|
haftmann@33340
|
68 |
by (auto simp add: zero_le_mult_iff tsub_def)
|
huffman@31708
|
69 |
|
haftmann@35683
|
70 |
lemma transfer_nat_int_relations [transfer key: transfer_morphism_nat_int]:
|
huffman@31708
|
71 |
"x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow>
|
huffman@31708
|
72 |
(nat (x::int) = nat y) = (x = y)"
|
huffman@31708
|
73 |
"x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow>
|
huffman@31708
|
74 |
(nat (x::int) < nat y) = (x < y)"
|
huffman@31708
|
75 |
"x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow>
|
huffman@31708
|
76 |
(nat (x::int) <= nat y) = (x <= y)"
|
huffman@31708
|
77 |
"x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow>
|
huffman@31708
|
78 |
(nat (x::int) dvd nat y) = (x dvd y)"
|
haftmann@32558
|
79 |
by (auto simp add: zdvd_int)
|
huffman@31708
|
80 |
|
huffman@31708
|
81 |
|
haftmann@33318
|
82 |
text {* first-order quantifiers *}
|
haftmann@33318
|
83 |
|
haftmann@33318
|
84 |
lemma all_nat: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x\<ge>0. P (nat x))"
|
haftmann@33318
|
85 |
by (simp split add: split_nat)
|
haftmann@33318
|
86 |
|
haftmann@33318
|
87 |
lemma ex_nat: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> P (nat x))"
|
haftmann@33318
|
88 |
proof
|
haftmann@33318
|
89 |
assume "\<exists>x. P x"
|
haftmann@33318
|
90 |
then obtain x where "P x" ..
|
haftmann@33318
|
91 |
then have "int x \<ge> 0 \<and> P (nat (int x))" by simp
|
haftmann@33318
|
92 |
then show "\<exists>x\<ge>0. P (nat x)" ..
|
haftmann@33318
|
93 |
next
|
haftmann@33318
|
94 |
assume "\<exists>x\<ge>0. P (nat x)"
|
haftmann@33318
|
95 |
then show "\<exists>x. P x" by auto
|
haftmann@33318
|
96 |
qed
|
huffman@31708
|
97 |
|
haftmann@35683
|
98 |
lemma transfer_nat_int_quantifiers [transfer key: transfer_morphism_nat_int]:
|
huffman@31708
|
99 |
"(ALL (x::nat). P x) = (ALL (x::int). x >= 0 \<longrightarrow> P (nat x))"
|
huffman@31708
|
100 |
"(EX (x::nat). P x) = (EX (x::int). x >= 0 & P (nat x))"
|
huffman@31708
|
101 |
by (rule all_nat, rule ex_nat)
|
huffman@31708
|
102 |
|
huffman@31708
|
103 |
(* should we restrict these? *)
|
huffman@31708
|
104 |
lemma all_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow>
|
huffman@31708
|
105 |
(ALL x. Q x \<longrightarrow> P x) = (ALL x. Q x \<longrightarrow> P' x)"
|
huffman@31708
|
106 |
by auto
|
huffman@31708
|
107 |
|
huffman@31708
|
108 |
lemma ex_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow>
|
huffman@31708
|
109 |
(EX x. Q x \<and> P x) = (EX x. Q x \<and> P' x)"
|
huffman@31708
|
110 |
by auto
|
huffman@31708
|
111 |
|
haftmann@35644
|
112 |
declare transfer_morphism_nat_int [transfer add
|
huffman@31708
|
113 |
cong: all_cong ex_cong]
|
huffman@31708
|
114 |
|
huffman@31708
|
115 |
|
haftmann@33318
|
116 |
text {* if *}
|
huffman@31708
|
117 |
|
haftmann@35683
|
118 |
lemma nat_if_cong [transfer key: transfer_morphism_nat_int]:
|
haftmann@35683
|
119 |
"(if P then (nat x) else (nat y)) = nat (if P then x else y)"
|
huffman@31708
|
120 |
by auto
|
huffman@31708
|
121 |
|
huffman@31708
|
122 |
|
haftmann@33318
|
123 |
text {* operations with sets *}
|
huffman@31708
|
124 |
|
huffman@31708
|
125 |
definition
|
huffman@31708
|
126 |
nat_set :: "int set \<Rightarrow> bool"
|
huffman@31708
|
127 |
where
|
huffman@31708
|
128 |
"nat_set S = (ALL x:S. x >= 0)"
|
huffman@31708
|
129 |
|
huffman@31708
|
130 |
lemma transfer_nat_int_set_functions:
|
huffman@31708
|
131 |
"card A = card (int ` A)"
|
huffman@31708
|
132 |
"{} = nat ` ({}::int set)"
|
huffman@31708
|
133 |
"A Un B = nat ` (int ` A Un int ` B)"
|
huffman@31708
|
134 |
"A Int B = nat ` (int ` A Int int ` B)"
|
huffman@31708
|
135 |
"{x. P x} = nat ` {x. x >= 0 & P(nat x)}"
|
huffman@31708
|
136 |
apply (rule card_image [symmetric])
|
huffman@31708
|
137 |
apply (auto simp add: inj_on_def image_def)
|
huffman@31708
|
138 |
apply (rule_tac x = "int x" in bexI)
|
huffman@31708
|
139 |
apply auto
|
huffman@31708
|
140 |
apply (rule_tac x = "int x" in bexI)
|
huffman@31708
|
141 |
apply auto
|
huffman@31708
|
142 |
apply (rule_tac x = "int x" in bexI)
|
huffman@31708
|
143 |
apply auto
|
huffman@31708
|
144 |
apply (rule_tac x = "int x" in exI)
|
huffman@31708
|
145 |
apply auto
|
huffman@31708
|
146 |
done
|
huffman@31708
|
147 |
|
huffman@31708
|
148 |
lemma transfer_nat_int_set_function_closures:
|
huffman@31708
|
149 |
"nat_set {}"
|
huffman@31708
|
150 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)"
|
huffman@31708
|
151 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)"
|
huffman@31708
|
152 |
"nat_set {x. x >= 0 & P x}"
|
huffman@31708
|
153 |
"nat_set (int ` C)"
|
huffman@31708
|
154 |
"nat_set A \<Longrightarrow> x : A \<Longrightarrow> x >= 0" (* does it hurt to turn this on? *)
|
huffman@31708
|
155 |
unfolding nat_set_def apply auto
|
huffman@31708
|
156 |
done
|
huffman@31708
|
157 |
|
huffman@31708
|
158 |
lemma transfer_nat_int_set_relations:
|
huffman@31708
|
159 |
"(finite A) = (finite (int ` A))"
|
huffman@31708
|
160 |
"(x : A) = (int x : int ` A)"
|
huffman@31708
|
161 |
"(A = B) = (int ` A = int ` B)"
|
huffman@31708
|
162 |
"(A < B) = (int ` A < int ` B)"
|
huffman@31708
|
163 |
"(A <= B) = (int ` A <= int ` B)"
|
huffman@31708
|
164 |
apply (rule iffI)
|
huffman@31708
|
165 |
apply (erule finite_imageI)
|
huffman@31708
|
166 |
apply (erule finite_imageD)
|
nipkow@39302
|
167 |
apply (auto simp add: image_def set_eq_iff inj_on_def)
|
huffman@31708
|
168 |
apply (drule_tac x = "int x" in spec, auto)
|
huffman@31708
|
169 |
apply (drule_tac x = "int x" in spec, auto)
|
huffman@31708
|
170 |
apply (drule_tac x = "int x" in spec, auto)
|
huffman@31708
|
171 |
done
|
huffman@31708
|
172 |
|
huffman@31708
|
173 |
lemma transfer_nat_int_set_return_embed: "nat_set A \<Longrightarrow>
|
huffman@31708
|
174 |
(int ` nat ` A = A)"
|
huffman@31708
|
175 |
by (auto simp add: nat_set_def image_def)
|
huffman@31708
|
176 |
|
huffman@31708
|
177 |
lemma transfer_nat_int_set_cong: "(!!x. x >= 0 \<Longrightarrow> P x = P' x) \<Longrightarrow>
|
huffman@31708
|
178 |
{(x::int). x >= 0 & P x} = {x. x >= 0 & P' x}"
|
huffman@31708
|
179 |
by auto
|
huffman@31708
|
180 |
|
haftmann@35644
|
181 |
declare transfer_morphism_nat_int [transfer add
|
huffman@31708
|
182 |
return: transfer_nat_int_set_functions
|
huffman@31708
|
183 |
transfer_nat_int_set_function_closures
|
huffman@31708
|
184 |
transfer_nat_int_set_relations
|
huffman@31708
|
185 |
transfer_nat_int_set_return_embed
|
huffman@31708
|
186 |
cong: transfer_nat_int_set_cong
|
huffman@31708
|
187 |
]
|
huffman@31708
|
188 |
|
huffman@31708
|
189 |
|
haftmann@33318
|
190 |
text {* setsum and setprod *}
|
huffman@31708
|
191 |
|
huffman@31708
|
192 |
(* this handles the case where the *domain* of f is nat *)
|
huffman@31708
|
193 |
lemma transfer_nat_int_sum_prod:
|
huffman@31708
|
194 |
"setsum f A = setsum (%x. f (nat x)) (int ` A)"
|
huffman@31708
|
195 |
"setprod f A = setprod (%x. f (nat x)) (int ` A)"
|
haftmann@57418
|
196 |
apply (subst setsum.reindex)
|
huffman@31708
|
197 |
apply (unfold inj_on_def, auto)
|
haftmann@57418
|
198 |
apply (subst setprod.reindex)
|
huffman@31708
|
199 |
apply (unfold inj_on_def o_def, auto)
|
huffman@31708
|
200 |
done
|
huffman@31708
|
201 |
|
huffman@31708
|
202 |
(* this handles the case where the *range* of f is nat *)
|
huffman@31708
|
203 |
lemma transfer_nat_int_sum_prod2:
|
huffman@31708
|
204 |
"setsum f A = nat(setsum (%x. int (f x)) A)"
|
huffman@31708
|
205 |
"setprod f A = nat(setprod (%x. int (f x)) A)"
|
huffman@31708
|
206 |
apply (subst int_setsum [symmetric])
|
huffman@31708
|
207 |
apply auto
|
huffman@31708
|
208 |
apply (subst int_setprod [symmetric])
|
huffman@31708
|
209 |
apply auto
|
huffman@31708
|
210 |
done
|
huffman@31708
|
211 |
|
huffman@31708
|
212 |
lemma transfer_nat_int_sum_prod_closure:
|
huffman@31708
|
213 |
"nat_set A \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x >= (0::int)) \<Longrightarrow> setsum f A >= 0"
|
huffman@31708
|
214 |
"nat_set A \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x >= (0::int)) \<Longrightarrow> setprod f A >= 0"
|
huffman@31708
|
215 |
unfolding nat_set_def
|
huffman@31708
|
216 |
apply (rule setsum_nonneg)
|
huffman@31708
|
217 |
apply auto
|
huffman@31708
|
218 |
apply (rule setprod_nonneg)
|
huffman@31708
|
219 |
apply auto
|
huffman@31708
|
220 |
done
|
huffman@31708
|
221 |
|
huffman@31708
|
222 |
(* this version doesn't work, even with nat_set A \<Longrightarrow>
|
huffman@31708
|
223 |
x : A \<Longrightarrow> x >= 0 turned on. Why not?
|
huffman@31708
|
224 |
|
huffman@31708
|
225 |
also: what does =simp=> do?
|
huffman@31708
|
226 |
|
huffman@31708
|
227 |
lemma transfer_nat_int_sum_prod_closure:
|
huffman@31708
|
228 |
"(!!x. x : A ==> f x >= (0::int)) \<Longrightarrow> setsum f A >= 0"
|
huffman@31708
|
229 |
"(!!x. x : A ==> f x >= (0::int)) \<Longrightarrow> setprod f A >= 0"
|
huffman@31708
|
230 |
unfolding nat_set_def simp_implies_def
|
huffman@31708
|
231 |
apply (rule setsum_nonneg)
|
huffman@31708
|
232 |
apply auto
|
huffman@31708
|
233 |
apply (rule setprod_nonneg)
|
huffman@31708
|
234 |
apply auto
|
huffman@31708
|
235 |
done
|
huffman@31708
|
236 |
*)
|
huffman@31708
|
237 |
|
huffman@31708
|
238 |
(* Making A = B in this lemma doesn't work. Why not?
|
haftmann@57418
|
239 |
Also, why aren't setsum.cong and setprod.cong enough,
|
huffman@31708
|
240 |
with the previously mentioned rule turned on? *)
|
huffman@31708
|
241 |
|
huffman@31708
|
242 |
lemma transfer_nat_int_sum_prod_cong:
|
huffman@31708
|
243 |
"A = B \<Longrightarrow> nat_set B \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x = g x) \<Longrightarrow>
|
huffman@31708
|
244 |
setsum f A = setsum g B"
|
huffman@31708
|
245 |
"A = B \<Longrightarrow> nat_set B \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x = g x) \<Longrightarrow>
|
huffman@31708
|
246 |
setprod f A = setprod g B"
|
huffman@31708
|
247 |
unfolding nat_set_def
|
haftmann@57418
|
248 |
apply (subst setsum.cong, assumption)
|
huffman@31708
|
249 |
apply auto [2]
|
haftmann@57418
|
250 |
apply (subst setprod.cong, assumption, auto)
|
huffman@31708
|
251 |
done
|
huffman@31708
|
252 |
|
haftmann@35644
|
253 |
declare transfer_morphism_nat_int [transfer add
|
huffman@31708
|
254 |
return: transfer_nat_int_sum_prod transfer_nat_int_sum_prod2
|
huffman@31708
|
255 |
transfer_nat_int_sum_prod_closure
|
huffman@31708
|
256 |
cong: transfer_nat_int_sum_prod_cong]
|
huffman@31708
|
257 |
|
huffman@31708
|
258 |
|
huffman@31708
|
259 |
subsection {* Set up transfer from int to nat *}
|
huffman@31708
|
260 |
|
haftmann@33318
|
261 |
text {* set up transfer direction *}
|
huffman@31708
|
262 |
|
krauss@42870
|
263 |
lemma transfer_morphism_int_nat: "transfer_morphism int (\<lambda>n. True)" ..
|
huffman@31708
|
264 |
|
haftmann@35644
|
265 |
declare transfer_morphism_int_nat [transfer add
|
huffman@31708
|
266 |
mode: manual
|
huffman@31708
|
267 |
return: nat_int
|
haftmann@35683
|
268 |
labels: int_nat
|
huffman@31708
|
269 |
]
|
huffman@31708
|
270 |
|
huffman@31708
|
271 |
|
haftmann@33318
|
272 |
text {* basic functions and relations *}
|
haftmann@33318
|
273 |
|
huffman@31708
|
274 |
definition
|
huffman@31708
|
275 |
is_nat :: "int \<Rightarrow> bool"
|
huffman@31708
|
276 |
where
|
huffman@31708
|
277 |
"is_nat x = (x >= 0)"
|
huffman@31708
|
278 |
|
huffman@31708
|
279 |
lemma transfer_int_nat_numerals:
|
huffman@31708
|
280 |
"0 = int 0"
|
huffman@31708
|
281 |
"1 = int 1"
|
huffman@31708
|
282 |
"2 = int 2"
|
huffman@31708
|
283 |
"3 = int 3"
|
huffman@31708
|
284 |
by auto
|
huffman@31708
|
285 |
|
huffman@31708
|
286 |
lemma transfer_int_nat_functions:
|
huffman@31708
|
287 |
"(int x) + (int y) = int (x + y)"
|
huffman@31708
|
288 |
"(int x) * (int y) = int (x * y)"
|
huffman@31708
|
289 |
"tsub (int x) (int y) = int (x - y)"
|
huffman@31708
|
290 |
"(int x)^n = int (x^n)"
|
haftmann@33318
|
291 |
by (auto simp add: int_mult tsub_def int_power)
|
huffman@31708
|
292 |
|
huffman@31708
|
293 |
lemma transfer_int_nat_function_closures:
|
huffman@31708
|
294 |
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x + y)"
|
huffman@31708
|
295 |
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x * y)"
|
huffman@31708
|
296 |
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (tsub x y)"
|
huffman@31708
|
297 |
"is_nat x \<Longrightarrow> is_nat (x^n)"
|
huffman@31708
|
298 |
"is_nat 0"
|
huffman@31708
|
299 |
"is_nat 1"
|
huffman@31708
|
300 |
"is_nat 2"
|
huffman@31708
|
301 |
"is_nat 3"
|
huffman@31708
|
302 |
"is_nat (int z)"
|
huffman@31708
|
303 |
by (simp_all only: is_nat_def transfer_nat_int_function_closures)
|
huffman@31708
|
304 |
|
huffman@31708
|
305 |
lemma transfer_int_nat_relations:
|
huffman@31708
|
306 |
"(int x = int y) = (x = y)"
|
huffman@31708
|
307 |
"(int x < int y) = (x < y)"
|
huffman@31708
|
308 |
"(int x <= int y) = (x <= y)"
|
huffman@31708
|
309 |
"(int x dvd int y) = (x dvd y)"
|
haftmann@33318
|
310 |
by (auto simp add: zdvd_int)
|
haftmann@32121
|
311 |
|
haftmann@35644
|
312 |
declare transfer_morphism_int_nat [transfer add return:
|
huffman@31708
|
313 |
transfer_int_nat_numerals
|
huffman@31708
|
314 |
transfer_int_nat_functions
|
huffman@31708
|
315 |
transfer_int_nat_function_closures
|
huffman@31708
|
316 |
transfer_int_nat_relations
|
huffman@31708
|
317 |
]
|
huffman@31708
|
318 |
|
huffman@31708
|
319 |
|
haftmann@33318
|
320 |
text {* first-order quantifiers *}
|
huffman@31708
|
321 |
|
huffman@31708
|
322 |
lemma transfer_int_nat_quantifiers:
|
huffman@31708
|
323 |
"(ALL (x::int) >= 0. P x) = (ALL (x::nat). P (int x))"
|
huffman@31708
|
324 |
"(EX (x::int) >= 0. P x) = (EX (x::nat). P (int x))"
|
huffman@31708
|
325 |
apply (subst all_nat)
|
huffman@31708
|
326 |
apply auto [1]
|
huffman@31708
|
327 |
apply (subst ex_nat)
|
huffman@31708
|
328 |
apply auto
|
huffman@31708
|
329 |
done
|
huffman@31708
|
330 |
|
haftmann@35644
|
331 |
declare transfer_morphism_int_nat [transfer add
|
huffman@31708
|
332 |
return: transfer_int_nat_quantifiers]
|
huffman@31708
|
333 |
|
huffman@31708
|
334 |
|
haftmann@33318
|
335 |
text {* if *}
|
huffman@31708
|
336 |
|
huffman@31708
|
337 |
lemma int_if_cong: "(if P then (int x) else (int y)) =
|
huffman@31708
|
338 |
int (if P then x else y)"
|
huffman@31708
|
339 |
by auto
|
huffman@31708
|
340 |
|
haftmann@35644
|
341 |
declare transfer_morphism_int_nat [transfer add return: int_if_cong]
|
huffman@31708
|
342 |
|
huffman@31708
|
343 |
|
huffman@31708
|
344 |
|
haftmann@33318
|
345 |
text {* operations with sets *}
|
huffman@31708
|
346 |
|
huffman@31708
|
347 |
lemma transfer_int_nat_set_functions:
|
huffman@31708
|
348 |
"nat_set A \<Longrightarrow> card A = card (nat ` A)"
|
huffman@31708
|
349 |
"{} = int ` ({}::nat set)"
|
huffman@31708
|
350 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Un B = int ` (nat ` A Un nat ` B)"
|
huffman@31708
|
351 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Int B = int ` (nat ` A Int nat ` B)"
|
huffman@31708
|
352 |
"{x. x >= 0 & P x} = int ` {x. P(int x)}"
|
huffman@31708
|
353 |
(* need all variants of these! *)
|
huffman@31708
|
354 |
by (simp_all only: is_nat_def transfer_nat_int_set_functions
|
huffman@31708
|
355 |
transfer_nat_int_set_function_closures
|
huffman@31708
|
356 |
transfer_nat_int_set_return_embed nat_0_le
|
huffman@31708
|
357 |
cong: transfer_nat_int_set_cong)
|
huffman@31708
|
358 |
|
huffman@31708
|
359 |
lemma transfer_int_nat_set_function_closures:
|
huffman@31708
|
360 |
"nat_set {}"
|
huffman@31708
|
361 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)"
|
huffman@31708
|
362 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)"
|
huffman@31708
|
363 |
"nat_set {x. x >= 0 & P x}"
|
huffman@31708
|
364 |
"nat_set (int ` C)"
|
huffman@31708
|
365 |
"nat_set A \<Longrightarrow> x : A \<Longrightarrow> is_nat x"
|
huffman@31708
|
366 |
by (simp_all only: transfer_nat_int_set_function_closures is_nat_def)
|
huffman@31708
|
367 |
|
huffman@31708
|
368 |
lemma transfer_int_nat_set_relations:
|
huffman@31708
|
369 |
"nat_set A \<Longrightarrow> finite A = finite (nat ` A)"
|
huffman@31708
|
370 |
"is_nat x \<Longrightarrow> nat_set A \<Longrightarrow> (x : A) = (nat x : nat ` A)"
|
huffman@31708
|
371 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A = B) = (nat ` A = nat ` B)"
|
huffman@31708
|
372 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A < B) = (nat ` A < nat ` B)"
|
huffman@31708
|
373 |
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A <= B) = (nat ` A <= nat ` B)"
|
huffman@31708
|
374 |
by (simp_all only: is_nat_def transfer_nat_int_set_relations
|
huffman@31708
|
375 |
transfer_nat_int_set_return_embed nat_0_le)
|
huffman@31708
|
376 |
|
huffman@31708
|
377 |
lemma transfer_int_nat_set_return_embed: "nat ` int ` A = A"
|
huffman@31708
|
378 |
by (simp only: transfer_nat_int_set_relations
|
huffman@31708
|
379 |
transfer_nat_int_set_function_closures
|
huffman@31708
|
380 |
transfer_nat_int_set_return_embed nat_0_le)
|
huffman@31708
|
381 |
|
huffman@31708
|
382 |
lemma transfer_int_nat_set_cong: "(!!x. P x = P' x) \<Longrightarrow>
|
huffman@31708
|
383 |
{(x::nat). P x} = {x. P' x}"
|
huffman@31708
|
384 |
by auto
|
huffman@31708
|
385 |
|
haftmann@35644
|
386 |
declare transfer_morphism_int_nat [transfer add
|
huffman@31708
|
387 |
return: transfer_int_nat_set_functions
|
huffman@31708
|
388 |
transfer_int_nat_set_function_closures
|
huffman@31708
|
389 |
transfer_int_nat_set_relations
|
huffman@31708
|
390 |
transfer_int_nat_set_return_embed
|
huffman@31708
|
391 |
cong: transfer_int_nat_set_cong
|
huffman@31708
|
392 |
]
|
huffman@31708
|
393 |
|
huffman@31708
|
394 |
|
haftmann@33318
|
395 |
text {* setsum and setprod *}
|
huffman@31708
|
396 |
|
huffman@31708
|
397 |
(* this handles the case where the *domain* of f is int *)
|
huffman@31708
|
398 |
lemma transfer_int_nat_sum_prod:
|
huffman@31708
|
399 |
"nat_set A \<Longrightarrow> setsum f A = setsum (%x. f (int x)) (nat ` A)"
|
huffman@31708
|
400 |
"nat_set A \<Longrightarrow> setprod f A = setprod (%x. f (int x)) (nat ` A)"
|
haftmann@57418
|
401 |
apply (subst setsum.reindex)
|
huffman@31708
|
402 |
apply (unfold inj_on_def nat_set_def, auto simp add: eq_nat_nat_iff)
|
haftmann@57418
|
403 |
apply (subst setprod.reindex)
|
huffman@31708
|
404 |
apply (unfold inj_on_def nat_set_def o_def, auto simp add: eq_nat_nat_iff
|
haftmann@57418
|
405 |
cong: setprod.cong)
|
huffman@31708
|
406 |
done
|
huffman@31708
|
407 |
|
huffman@31708
|
408 |
(* this handles the case where the *range* of f is int *)
|
huffman@31708
|
409 |
lemma transfer_int_nat_sum_prod2:
|
huffman@31708
|
410 |
"(!!x. x:A \<Longrightarrow> is_nat (f x)) \<Longrightarrow> setsum f A = int(setsum (%x. nat (f x)) A)"
|
huffman@31708
|
411 |
"(!!x. x:A \<Longrightarrow> is_nat (f x)) \<Longrightarrow>
|
huffman@31708
|
412 |
setprod f A = int(setprod (%x. nat (f x)) A)"
|
huffman@31708
|
413 |
unfolding is_nat_def
|
huffman@31708
|
414 |
apply (subst int_setsum, auto)
|
haftmann@57418
|
415 |
apply (subst int_setprod, auto simp add: cong: setprod.cong)
|
huffman@31708
|
416 |
done
|
huffman@31708
|
417 |
|
haftmann@35644
|
418 |
declare transfer_morphism_int_nat [transfer add
|
huffman@31708
|
419 |
return: transfer_int_nat_sum_prod transfer_int_nat_sum_prod2
|
haftmann@57418
|
420 |
cong: setsum.cong setprod.cong]
|
huffman@31708
|
421 |
|
huffman@31708
|
422 |
end
|