haftmann@28685
|
1 |
(* Title: HOL/Orderings.thy
|
nipkow@15524
|
2 |
Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson
|
nipkow@15524
|
3 |
*)
|
nipkow@15524
|
4 |
|
wenzelm@58889
|
5 |
section {* Abstract orderings *}
|
nipkow@15524
|
6 |
|
nipkow@15524
|
7 |
theory Orderings
|
haftmann@35301
|
8 |
imports HOL
|
wenzelm@46950
|
9 |
keywords "print_orders" :: diag
|
nipkow@15524
|
10 |
begin
|
nipkow@15524
|
11 |
|
wenzelm@48891
|
12 |
ML_file "~~/src/Provers/order.ML"
|
wenzelm@48891
|
13 |
ML_file "~~/src/Provers/quasi.ML" (* FIXME unused? *)
|
wenzelm@48891
|
14 |
|
haftmann@51487
|
15 |
subsection {* Abstract ordering *}
|
haftmann@51487
|
16 |
|
haftmann@51487
|
17 |
locale ordering =
|
haftmann@51487
|
18 |
fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<preceq>" 50)
|
haftmann@51487
|
19 |
and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<prec>" 50)
|
haftmann@51487
|
20 |
assumes strict_iff_order: "a \<prec> b \<longleftrightarrow> a \<preceq> b \<and> a \<noteq> b"
|
haftmann@51487
|
21 |
assumes refl: "a \<preceq> a" -- {* not @{text iff}: makes problems due to multiple (dual) interpretations *}
|
haftmann@51487
|
22 |
and antisym: "a \<preceq> b \<Longrightarrow> b \<preceq> a \<Longrightarrow> a = b"
|
haftmann@51487
|
23 |
and trans: "a \<preceq> b \<Longrightarrow> b \<preceq> c \<Longrightarrow> a \<preceq> c"
|
haftmann@51487
|
24 |
begin
|
haftmann@51487
|
25 |
|
haftmann@51487
|
26 |
lemma strict_implies_order:
|
haftmann@51487
|
27 |
"a \<prec> b \<Longrightarrow> a \<preceq> b"
|
haftmann@51487
|
28 |
by (simp add: strict_iff_order)
|
haftmann@51487
|
29 |
|
haftmann@51487
|
30 |
lemma strict_implies_not_eq:
|
haftmann@51487
|
31 |
"a \<prec> b \<Longrightarrow> a \<noteq> b"
|
haftmann@51487
|
32 |
by (simp add: strict_iff_order)
|
haftmann@51487
|
33 |
|
haftmann@51487
|
34 |
lemma not_eq_order_implies_strict:
|
haftmann@51487
|
35 |
"a \<noteq> b \<Longrightarrow> a \<preceq> b \<Longrightarrow> a \<prec> b"
|
haftmann@51487
|
36 |
by (simp add: strict_iff_order)
|
haftmann@51487
|
37 |
|
haftmann@51487
|
38 |
lemma order_iff_strict:
|
haftmann@51487
|
39 |
"a \<preceq> b \<longleftrightarrow> a \<prec> b \<or> a = b"
|
haftmann@51487
|
40 |
by (auto simp add: strict_iff_order refl)
|
haftmann@51487
|
41 |
|
haftmann@51487
|
42 |
lemma irrefl: -- {* not @{text iff}: makes problems due to multiple (dual) interpretations *}
|
haftmann@51487
|
43 |
"\<not> a \<prec> a"
|
haftmann@51487
|
44 |
by (simp add: strict_iff_order)
|
haftmann@51487
|
45 |
|
haftmann@51487
|
46 |
lemma asym:
|
haftmann@51487
|
47 |
"a \<prec> b \<Longrightarrow> b \<prec> a \<Longrightarrow> False"
|
haftmann@51487
|
48 |
by (auto simp add: strict_iff_order intro: antisym)
|
haftmann@51487
|
49 |
|
haftmann@51487
|
50 |
lemma strict_trans1:
|
haftmann@51487
|
51 |
"a \<preceq> b \<Longrightarrow> b \<prec> c \<Longrightarrow> a \<prec> c"
|
haftmann@51487
|
52 |
by (auto simp add: strict_iff_order intro: trans antisym)
|
haftmann@51487
|
53 |
|
haftmann@51487
|
54 |
lemma strict_trans2:
|
haftmann@51487
|
55 |
"a \<prec> b \<Longrightarrow> b \<preceq> c \<Longrightarrow> a \<prec> c"
|
haftmann@51487
|
56 |
by (auto simp add: strict_iff_order intro: trans antisym)
|
haftmann@51487
|
57 |
|
haftmann@51487
|
58 |
lemma strict_trans:
|
haftmann@51487
|
59 |
"a \<prec> b \<Longrightarrow> b \<prec> c \<Longrightarrow> a \<prec> c"
|
haftmann@51487
|
60 |
by (auto intro: strict_trans1 strict_implies_order)
|
haftmann@51487
|
61 |
|
haftmann@51487
|
62 |
end
|
haftmann@51487
|
63 |
|
haftmann@51487
|
64 |
locale ordering_top = ordering +
|
haftmann@51487
|
65 |
fixes top :: "'a"
|
haftmann@51487
|
66 |
assumes extremum [simp]: "a \<preceq> top"
|
haftmann@51487
|
67 |
begin
|
haftmann@51487
|
68 |
|
haftmann@51487
|
69 |
lemma extremum_uniqueI:
|
haftmann@51487
|
70 |
"top \<preceq> a \<Longrightarrow> a = top"
|
haftmann@51487
|
71 |
by (rule antisym) auto
|
haftmann@51487
|
72 |
|
haftmann@51487
|
73 |
lemma extremum_unique:
|
haftmann@51487
|
74 |
"top \<preceq> a \<longleftrightarrow> a = top"
|
haftmann@51487
|
75 |
by (auto intro: antisym)
|
haftmann@51487
|
76 |
|
haftmann@51487
|
77 |
lemma extremum_strict [simp]:
|
haftmann@51487
|
78 |
"\<not> (top \<prec> a)"
|
haftmann@51487
|
79 |
using extremum [of a] by (auto simp add: order_iff_strict intro: asym irrefl)
|
haftmann@51487
|
80 |
|
haftmann@51487
|
81 |
lemma not_eq_extremum:
|
haftmann@51487
|
82 |
"a \<noteq> top \<longleftrightarrow> a \<prec> top"
|
haftmann@51487
|
83 |
by (auto simp add: order_iff_strict intro: not_eq_order_implies_strict extremum)
|
haftmann@51487
|
84 |
|
haftmann@51487
|
85 |
end
|
haftmann@51487
|
86 |
|
haftmann@51487
|
87 |
|
haftmann@35092
|
88 |
subsection {* Syntactic orders *}
|
haftmann@35092
|
89 |
|
haftmann@35092
|
90 |
class ord =
|
haftmann@35092
|
91 |
fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
|
haftmann@35092
|
92 |
and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
|
haftmann@35092
|
93 |
begin
|
haftmann@35092
|
94 |
|
haftmann@35092
|
95 |
notation
|
haftmann@35092
|
96 |
less_eq ("op <=") and
|
haftmann@35092
|
97 |
less_eq ("(_/ <= _)" [51, 51] 50) and
|
haftmann@35092
|
98 |
less ("op <") and
|
haftmann@35092
|
99 |
less ("(_/ < _)" [51, 51] 50)
|
haftmann@35092
|
100 |
|
haftmann@35092
|
101 |
notation (xsymbols)
|
haftmann@35092
|
102 |
less_eq ("op \<le>") and
|
haftmann@35092
|
103 |
less_eq ("(_/ \<le> _)" [51, 51] 50)
|
haftmann@35092
|
104 |
|
haftmann@35092
|
105 |
notation (HTML output)
|
haftmann@35092
|
106 |
less_eq ("op \<le>") and
|
haftmann@35092
|
107 |
less_eq ("(_/ \<le> _)" [51, 51] 50)
|
haftmann@35092
|
108 |
|
haftmann@35092
|
109 |
abbreviation (input)
|
haftmann@35092
|
110 |
greater_eq (infix ">=" 50) where
|
haftmann@35092
|
111 |
"x >= y \<equiv> y <= x"
|
haftmann@35092
|
112 |
|
haftmann@35092
|
113 |
notation (input)
|
haftmann@35092
|
114 |
greater_eq (infix "\<ge>" 50)
|
haftmann@35092
|
115 |
|
haftmann@35092
|
116 |
abbreviation (input)
|
haftmann@35092
|
117 |
greater (infix ">" 50) where
|
haftmann@35092
|
118 |
"x > y \<equiv> y < x"
|
haftmann@35092
|
119 |
|
haftmann@35092
|
120 |
end
|
haftmann@35092
|
121 |
|
haftmann@35092
|
122 |
|
haftmann@27682
|
123 |
subsection {* Quasi orders *}
|
nipkow@15524
|
124 |
|
haftmann@27682
|
125 |
class preorder = ord +
|
haftmann@27682
|
126 |
assumes less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> (y \<le> x)"
|
haftmann@25062
|
127 |
and order_refl [iff]: "x \<le> x"
|
haftmann@25062
|
128 |
and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z"
|
haftmann@21248
|
129 |
begin
|
haftmann@21248
|
130 |
|
nipkow@15524
|
131 |
text {* Reflexivity. *}
|
nipkow@15524
|
132 |
|
haftmann@25062
|
133 |
lemma eq_refl: "x = y \<Longrightarrow> x \<le> y"
|
nipkow@15524
|
134 |
-- {* This form is useful with the classical reasoner. *}
|
nipkow@23212
|
135 |
by (erule ssubst) (rule order_refl)
|
nipkow@15524
|
136 |
|
haftmann@25062
|
137 |
lemma less_irrefl [iff]: "\<not> x < x"
|
haftmann@27682
|
138 |
by (simp add: less_le_not_le)
|
haftmann@27682
|
139 |
|
haftmann@27682
|
140 |
lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y"
|
haftmann@27682
|
141 |
unfolding less_le_not_le by blast
|
haftmann@27682
|
142 |
|
haftmann@27682
|
143 |
|
haftmann@27682
|
144 |
text {* Asymmetry. *}
|
haftmann@27682
|
145 |
|
haftmann@27682
|
146 |
lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)"
|
haftmann@27682
|
147 |
by (simp add: less_le_not_le)
|
haftmann@27682
|
148 |
|
haftmann@27682
|
149 |
lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P"
|
haftmann@27682
|
150 |
by (drule less_not_sym, erule contrapos_np) simp
|
haftmann@27682
|
151 |
|
haftmann@27682
|
152 |
|
haftmann@27682
|
153 |
text {* Transitivity. *}
|
haftmann@27682
|
154 |
|
haftmann@27682
|
155 |
lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z"
|
haftmann@27682
|
156 |
by (auto simp add: less_le_not_le intro: order_trans)
|
haftmann@27682
|
157 |
|
haftmann@27682
|
158 |
lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z"
|
haftmann@27682
|
159 |
by (auto simp add: less_le_not_le intro: order_trans)
|
haftmann@27682
|
160 |
|
haftmann@27682
|
161 |
lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z"
|
haftmann@27682
|
162 |
by (auto simp add: less_le_not_le intro: order_trans)
|
haftmann@27682
|
163 |
|
haftmann@27682
|
164 |
|
haftmann@27682
|
165 |
text {* Useful for simplification, but too risky to include by default. *}
|
haftmann@27682
|
166 |
|
haftmann@27682
|
167 |
lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True"
|
haftmann@27682
|
168 |
by (blast elim: less_asym)
|
haftmann@27682
|
169 |
|
haftmann@27682
|
170 |
lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True"
|
haftmann@27682
|
171 |
by (blast elim: less_asym)
|
haftmann@27682
|
172 |
|
haftmann@27682
|
173 |
|
haftmann@27682
|
174 |
text {* Transitivity rules for calculational reasoning *}
|
haftmann@27682
|
175 |
|
haftmann@27682
|
176 |
lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P"
|
haftmann@27682
|
177 |
by (rule less_asym)
|
haftmann@27682
|
178 |
|
haftmann@27682
|
179 |
|
haftmann@27682
|
180 |
text {* Dual order *}
|
haftmann@27682
|
181 |
|
haftmann@27682
|
182 |
lemma dual_preorder:
|
haftmann@36635
|
183 |
"class.preorder (op \<ge>) (op >)"
|
haftmann@28823
|
184 |
proof qed (auto simp add: less_le_not_le intro: order_trans)
|
haftmann@27682
|
185 |
|
haftmann@27682
|
186 |
end
|
haftmann@27682
|
187 |
|
haftmann@27682
|
188 |
|
haftmann@27682
|
189 |
subsection {* Partial orders *}
|
haftmann@27682
|
190 |
|
haftmann@27682
|
191 |
class order = preorder +
|
haftmann@27682
|
192 |
assumes antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y"
|
haftmann@27682
|
193 |
begin
|
haftmann@27682
|
194 |
|
haftmann@51487
|
195 |
lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y"
|
haftmann@51487
|
196 |
by (auto simp add: less_le_not_le intro: antisym)
|
haftmann@51487
|
197 |
|
haftmann@54868
|
198 |
sublocale order!: ordering less_eq less + dual_order!: ordering greater_eq greater
|
haftmann@51487
|
199 |
by default (auto intro: antisym order_trans simp add: less_le)
|
haftmann@51487
|
200 |
|
haftmann@51487
|
201 |
|
haftmann@51487
|
202 |
text {* Reflexivity. *}
|
nipkow@15524
|
203 |
|
haftmann@25062
|
204 |
lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y"
|
nipkow@15524
|
205 |
-- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
|
haftmann@51546
|
206 |
by (fact order.order_iff_strict)
|
nipkow@15524
|
207 |
|
haftmann@25062
|
208 |
lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y"
|
nipkow@23212
|
209 |
unfolding less_le by blast
|
nipkow@15524
|
210 |
|
haftmann@21329
|
211 |
|
haftmann@21329
|
212 |
text {* Useful for simplification, but too risky to include by default. *}
|
haftmann@21329
|
213 |
|
haftmann@25062
|
214 |
lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False"
|
nipkow@23212
|
215 |
by auto
|
haftmann@21329
|
216 |
|
haftmann@25062
|
217 |
lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False"
|
nipkow@23212
|
218 |
by auto
|
haftmann@21329
|
219 |
|
haftmann@21329
|
220 |
|
haftmann@21329
|
221 |
text {* Transitivity rules for calculational reasoning *}
|
haftmann@21329
|
222 |
|
haftmann@25062
|
223 |
lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b"
|
haftmann@51546
|
224 |
by (fact order.not_eq_order_implies_strict)
|
haftmann@21329
|
225 |
|
haftmann@25062
|
226 |
lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b"
|
haftmann@51546
|
227 |
by (rule order.not_eq_order_implies_strict)
|
haftmann@21329
|
228 |
|
nipkow@15524
|
229 |
|
nipkow@15524
|
230 |
text {* Asymmetry. *}
|
nipkow@15524
|
231 |
|
haftmann@25062
|
232 |
lemma eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x"
|
nipkow@23212
|
233 |
by (blast intro: antisym)
|
nipkow@15524
|
234 |
|
haftmann@25062
|
235 |
lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y"
|
nipkow@23212
|
236 |
by (blast intro: antisym)
|
nipkow@15524
|
237 |
|
haftmann@25062
|
238 |
lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y"
|
haftmann@51546
|
239 |
by (fact order.strict_implies_not_eq)
|
haftmann@21248
|
240 |
|
haftmann@21083
|
241 |
|
haftmann@27107
|
242 |
text {* Least value operator *}
|
haftmann@27107
|
243 |
|
haftmann@27299
|
244 |
definition (in ord)
|
haftmann@27107
|
245 |
Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where
|
haftmann@27107
|
246 |
"Least P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y))"
|
haftmann@27107
|
247 |
|
haftmann@27107
|
248 |
lemma Least_equality:
|
haftmann@27107
|
249 |
assumes "P x"
|
haftmann@27107
|
250 |
and "\<And>y. P y \<Longrightarrow> x \<le> y"
|
haftmann@27107
|
251 |
shows "Least P = x"
|
haftmann@27107
|
252 |
unfolding Least_def by (rule the_equality)
|
haftmann@27107
|
253 |
(blast intro: assms antisym)+
|
haftmann@27107
|
254 |
|
haftmann@27107
|
255 |
lemma LeastI2_order:
|
haftmann@27107
|
256 |
assumes "P x"
|
haftmann@27107
|
257 |
and "\<And>y. P y \<Longrightarrow> x \<le> y"
|
haftmann@27107
|
258 |
and "\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Q x"
|
haftmann@27107
|
259 |
shows "Q (Least P)"
|
haftmann@27107
|
260 |
unfolding Least_def by (rule theI2)
|
haftmann@27107
|
261 |
(blast intro: assms antisym)+
|
haftmann@27107
|
262 |
|
haftmann@27107
|
263 |
|
haftmann@26014
|
264 |
text {* Dual order *}
|
haftmann@22916
|
265 |
|
haftmann@26014
|
266 |
lemma dual_order:
|
haftmann@36635
|
267 |
"class.order (op \<ge>) (op >)"
|
haftmann@27682
|
268 |
by (intro_locales, rule dual_preorder) (unfold_locales, rule antisym)
|
haftmann@22916
|
269 |
|
haftmann@21248
|
270 |
end
|
nipkow@15524
|
271 |
|
haftmann@21329
|
272 |
|
haftmann@56545
|
273 |
text {* Alternative introduction rule with bias towards strict order *}
|
haftmann@56545
|
274 |
|
haftmann@56545
|
275 |
lemma order_strictI:
|
haftmann@56545
|
276 |
fixes less (infix "\<sqsubset>" 50)
|
haftmann@56545
|
277 |
and less_eq (infix "\<sqsubseteq>" 50)
|
haftmann@56545
|
278 |
assumes less_eq_less: "\<And>a b. a \<sqsubseteq> b \<longleftrightarrow> a \<sqsubset> b \<or> a = b"
|
haftmann@56545
|
279 |
assumes asym: "\<And>a b. a \<sqsubset> b \<Longrightarrow> \<not> b \<sqsubset> a"
|
haftmann@56545
|
280 |
assumes irrefl: "\<And>a. \<not> a \<sqsubset> a"
|
haftmann@56545
|
281 |
assumes trans: "\<And>a b c. a \<sqsubset> b \<Longrightarrow> b \<sqsubset> c \<Longrightarrow> a \<sqsubset> c"
|
haftmann@56545
|
282 |
shows "class.order less_eq less"
|
haftmann@56545
|
283 |
proof
|
haftmann@56545
|
284 |
fix a b
|
haftmann@56545
|
285 |
show "a \<sqsubset> b \<longleftrightarrow> a \<sqsubseteq> b \<and> \<not> b \<sqsubseteq> a"
|
haftmann@56545
|
286 |
by (auto simp add: less_eq_less asym irrefl)
|
haftmann@56545
|
287 |
next
|
haftmann@56545
|
288 |
fix a
|
haftmann@56545
|
289 |
show "a \<sqsubseteq> a"
|
haftmann@56545
|
290 |
by (auto simp add: less_eq_less)
|
haftmann@56545
|
291 |
next
|
haftmann@56545
|
292 |
fix a b c
|
haftmann@56545
|
293 |
assume "a \<sqsubseteq> b" and "b \<sqsubseteq> c" then show "a \<sqsubseteq> c"
|
haftmann@56545
|
294 |
by (auto simp add: less_eq_less intro: trans)
|
haftmann@56545
|
295 |
next
|
haftmann@56545
|
296 |
fix a b
|
haftmann@56545
|
297 |
assume "a \<sqsubseteq> b" and "b \<sqsubseteq> a" then show "a = b"
|
haftmann@56545
|
298 |
by (auto simp add: less_eq_less asym)
|
haftmann@56545
|
299 |
qed
|
haftmann@56545
|
300 |
|
haftmann@56545
|
301 |
|
haftmann@21329
|
302 |
subsection {* Linear (total) orders *}
|
haftmann@21329
|
303 |
|
haftmann@22316
|
304 |
class linorder = order +
|
haftmann@25207
|
305 |
assumes linear: "x \<le> y \<or> y \<le> x"
|
haftmann@21248
|
306 |
begin
|
haftmann@21248
|
307 |
|
haftmann@25062
|
308 |
lemma less_linear: "x < y \<or> x = y \<or> y < x"
|
nipkow@23212
|
309 |
unfolding less_le using less_le linear by blast
|
haftmann@21248
|
310 |
|
haftmann@25062
|
311 |
lemma le_less_linear: "x \<le> y \<or> y < x"
|
nipkow@23212
|
312 |
by (simp add: le_less less_linear)
|
haftmann@21248
|
313 |
|
haftmann@21248
|
314 |
lemma le_cases [case_names le ge]:
|
haftmann@25062
|
315 |
"(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P"
|
nipkow@23212
|
316 |
using linear by blast
|
haftmann@21248
|
317 |
|
haftmann@22384
|
318 |
lemma linorder_cases [case_names less equal greater]:
|
haftmann@25062
|
319 |
"(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P"
|
nipkow@23212
|
320 |
using less_linear by blast
|
haftmann@21248
|
321 |
|
hoelzl@57447
|
322 |
lemma linorder_wlog[case_names le sym]:
|
hoelzl@57447
|
323 |
"(\<And>a b. a \<le> b \<Longrightarrow> P a b) \<Longrightarrow> (\<And>a b. P b a \<Longrightarrow> P a b) \<Longrightarrow> P a b"
|
hoelzl@57447
|
324 |
by (cases rule: le_cases[of a b]) blast+
|
hoelzl@57447
|
325 |
|
haftmann@25062
|
326 |
lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x"
|
nipkow@23212
|
327 |
apply (simp add: less_le)
|
nipkow@23212
|
328 |
using linear apply (blast intro: antisym)
|
nipkow@23212
|
329 |
done
|
nipkow@23212
|
330 |
|
nipkow@23212
|
331 |
lemma not_less_iff_gr_or_eq:
|
haftmann@25062
|
332 |
"\<not>(x < y) \<longleftrightarrow> (x > y | x = y)"
|
nipkow@23212
|
333 |
apply(simp add:not_less le_less)
|
nipkow@23212
|
334 |
apply blast
|
nipkow@23212
|
335 |
done
|
nipkow@15524
|
336 |
|
haftmann@25062
|
337 |
lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x"
|
nipkow@23212
|
338 |
apply (simp add: less_le)
|
nipkow@23212
|
339 |
using linear apply (blast intro: antisym)
|
nipkow@23212
|
340 |
done
|
nipkow@15524
|
341 |
|
haftmann@25062
|
342 |
lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x"
|
nipkow@23212
|
343 |
by (cut_tac x = x and y = y in less_linear, auto)
|
nipkow@15524
|
344 |
|
haftmann@25062
|
345 |
lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R"
|
nipkow@23212
|
346 |
by (simp add: neq_iff) blast
|
nipkow@15524
|
347 |
|
haftmann@25062
|
348 |
lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y"
|
nipkow@23212
|
349 |
by (blast intro: antisym dest: not_less [THEN iffD1])
|
nipkow@15524
|
350 |
|
haftmann@25062
|
351 |
lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y"
|
nipkow@23212
|
352 |
by (blast intro: antisym dest: not_less [THEN iffD1])
|
nipkow@15524
|
353 |
|
haftmann@25062
|
354 |
lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y"
|
nipkow@23212
|
355 |
by (blast intro: antisym dest: not_less [THEN iffD1])
|
nipkow@15524
|
356 |
|
haftmann@25062
|
357 |
lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x"
|
nipkow@23212
|
358 |
unfolding not_less .
|
paulson@16796
|
359 |
|
haftmann@25062
|
360 |
lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y"
|
nipkow@23212
|
361 |
unfolding not_less .
|
paulson@16796
|
362 |
|
paulson@16796
|
363 |
(*FIXME inappropriate name (or delete altogether)*)
|
haftmann@25062
|
364 |
lemma not_leE: "\<not> y \<le> x \<Longrightarrow> x < y"
|
nipkow@23212
|
365 |
unfolding not_le .
|
haftmann@21248
|
366 |
|
haftmann@26014
|
367 |
text {* Dual order *}
|
haftmann@22916
|
368 |
|
haftmann@26014
|
369 |
lemma dual_linorder:
|
haftmann@36635
|
370 |
"class.linorder (op \<ge>) (op >)"
|
haftmann@36635
|
371 |
by (rule class.linorder.intro, rule dual_order) (unfold_locales, rule linear)
|
haftmann@22916
|
372 |
|
haftmann@21248
|
373 |
end
|
haftmann@21248
|
374 |
|
haftmann@23948
|
375 |
|
haftmann@56545
|
376 |
text {* Alternative introduction rule with bias towards strict order *}
|
haftmann@56545
|
377 |
|
haftmann@56545
|
378 |
lemma linorder_strictI:
|
haftmann@56545
|
379 |
fixes less (infix "\<sqsubset>" 50)
|
haftmann@56545
|
380 |
and less_eq (infix "\<sqsubseteq>" 50)
|
haftmann@56545
|
381 |
assumes "class.order less_eq less"
|
haftmann@56545
|
382 |
assumes trichotomy: "\<And>a b. a \<sqsubset> b \<or> a = b \<or> b \<sqsubset> a"
|
haftmann@56545
|
383 |
shows "class.linorder less_eq less"
|
haftmann@56545
|
384 |
proof -
|
haftmann@56545
|
385 |
interpret order less_eq less
|
haftmann@56545
|
386 |
by (fact `class.order less_eq less`)
|
haftmann@56545
|
387 |
show ?thesis
|
haftmann@56545
|
388 |
proof
|
haftmann@56545
|
389 |
fix a b
|
haftmann@56545
|
390 |
show "a \<sqsubseteq> b \<or> b \<sqsubseteq> a"
|
haftmann@56545
|
391 |
using trichotomy by (auto simp add: le_less)
|
haftmann@56545
|
392 |
qed
|
haftmann@56545
|
393 |
qed
|
haftmann@56545
|
394 |
|
haftmann@56545
|
395 |
|
haftmann@21083
|
396 |
subsection {* Reasoning tools setup *}
|
haftmann@21083
|
397 |
|
haftmann@21091
|
398 |
ML {*
|
ballarin@24641
|
399 |
signature ORDERS =
|
ballarin@24641
|
400 |
sig
|
ballarin@24641
|
401 |
val print_structures: Proof.context -> unit
|
wenzelm@32215
|
402 |
val order_tac: Proof.context -> thm list -> int -> tactic
|
wenzelm@58826
|
403 |
val add_struct: string * term list -> string -> attribute
|
wenzelm@58826
|
404 |
val del_struct: string * term list -> attribute
|
ballarin@24641
|
405 |
end;
|
haftmann@21091
|
406 |
|
ballarin@24641
|
407 |
structure Orders: ORDERS =
|
haftmann@21248
|
408 |
struct
|
ballarin@24641
|
409 |
|
wenzelm@56508
|
410 |
(* context data *)
|
ballarin@24641
|
411 |
|
ballarin@24641
|
412 |
fun struct_eq ((s1: string, ts1), (s2, ts2)) =
|
wenzelm@56508
|
413 |
s1 = s2 andalso eq_list (op aconv) (ts1, ts2);
|
ballarin@24641
|
414 |
|
wenzelm@33519
|
415 |
structure Data = Generic_Data
|
ballarin@24641
|
416 |
(
|
ballarin@24641
|
417 |
type T = ((string * term list) * Order_Tac.less_arith) list;
|
ballarin@24641
|
418 |
(* Order structures:
|
ballarin@24641
|
419 |
identifier of the structure, list of operations and record of theorems
|
ballarin@24641
|
420 |
needed to set up the transitivity reasoner,
|
ballarin@24641
|
421 |
identifier and operations identify the structure uniquely. *)
|
ballarin@24641
|
422 |
val empty = [];
|
ballarin@24641
|
423 |
val extend = I;
|
wenzelm@33519
|
424 |
fun merge data = AList.join struct_eq (K fst) data;
|
ballarin@24641
|
425 |
);
|
ballarin@24641
|
426 |
|
ballarin@24641
|
427 |
fun print_structures ctxt =
|
ballarin@24641
|
428 |
let
|
ballarin@24641
|
429 |
val structs = Data.get (Context.Proof ctxt);
|
ballarin@24641
|
430 |
fun pretty_term t = Pretty.block
|
wenzelm@24920
|
431 |
[Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1,
|
ballarin@24641
|
432 |
Pretty.str "::", Pretty.brk 1,
|
wenzelm@24920
|
433 |
Pretty.quote (Syntax.pretty_typ ctxt (type_of t))];
|
ballarin@24641
|
434 |
fun pretty_struct ((s, ts), _) = Pretty.block
|
ballarin@24641
|
435 |
[Pretty.str s, Pretty.str ":", Pretty.brk 1,
|
ballarin@24641
|
436 |
Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))];
|
ballarin@24641
|
437 |
in
|
wenzelm@51579
|
438 |
Pretty.writeln (Pretty.big_list "order structures:" (map pretty_struct structs))
|
ballarin@24641
|
439 |
end;
|
ballarin@24641
|
440 |
|
wenzelm@56508
|
441 |
val _ =
|
wenzelm@59936
|
442 |
Outer_Syntax.command @{command_keyword print_orders}
|
wenzelm@56508
|
443 |
"print order structures available to transitivity reasoner"
|
wenzelm@60097
|
444 |
(Scan.succeed (Toplevel.keep (print_structures o Toplevel.context_of)));
|
haftmann@21091
|
445 |
|
wenzelm@56508
|
446 |
|
wenzelm@56508
|
447 |
(* tactics *)
|
wenzelm@56508
|
448 |
|
wenzelm@56508
|
449 |
fun struct_tac ((s, ops), thms) ctxt facts =
|
ballarin@24641
|
450 |
let
|
wenzelm@56508
|
451 |
val [eq, le, less] = ops;
|
berghofe@30107
|
452 |
fun decomp thy (@{const Trueprop} $ t) =
|
wenzelm@56508
|
453 |
let
|
wenzelm@56508
|
454 |
fun excluded t =
|
wenzelm@56508
|
455 |
(* exclude numeric types: linear arithmetic subsumes transitivity *)
|
wenzelm@56508
|
456 |
let val T = type_of t
|
wenzelm@56508
|
457 |
in
|
wenzelm@56508
|
458 |
T = HOLogic.natT orelse T = HOLogic.intT orelse T = HOLogic.realT
|
wenzelm@56508
|
459 |
end;
|
wenzelm@56508
|
460 |
fun rel (bin_op $ t1 $ t2) =
|
wenzelm@56508
|
461 |
if excluded t1 then NONE
|
wenzelm@56508
|
462 |
else if Pattern.matches thy (eq, bin_op) then SOME (t1, "=", t2)
|
wenzelm@56508
|
463 |
else if Pattern.matches thy (le, bin_op) then SOME (t1, "<=", t2)
|
wenzelm@56508
|
464 |
else if Pattern.matches thy (less, bin_op) then SOME (t1, "<", t2)
|
wenzelm@56508
|
465 |
else NONE
|
wenzelm@56508
|
466 |
| rel _ = NONE;
|
wenzelm@56508
|
467 |
fun dec (Const (@{const_name Not}, _) $ t) =
|
wenzelm@56508
|
468 |
(case rel t of NONE =>
|
wenzelm@56508
|
469 |
NONE
|
wenzelm@56508
|
470 |
| SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2))
|
wenzelm@56508
|
471 |
| dec x = rel x;
|
wenzelm@56508
|
472 |
in dec t end
|
wenzelm@56508
|
473 |
| decomp _ _ = NONE;
|
ballarin@24641
|
474 |
in
|
wenzelm@56508
|
475 |
(case s of
|
wenzelm@56508
|
476 |
"order" => Order_Tac.partial_tac decomp thms ctxt facts
|
wenzelm@56508
|
477 |
| "linorder" => Order_Tac.linear_tac decomp thms ctxt facts
|
wenzelm@56508
|
478 |
| _ => error ("Unknown order kind " ^ quote s ^ " encountered in transitivity reasoner"))
|
ballarin@24641
|
479 |
end
|
ballarin@24641
|
480 |
|
wenzelm@56508
|
481 |
fun order_tac ctxt facts =
|
wenzelm@56508
|
482 |
FIRST' (map (fn s => CHANGED o struct_tac s ctxt facts) (Data.get (Context.Proof ctxt)));
|
ballarin@24641
|
483 |
|
ballarin@24641
|
484 |
|
wenzelm@56508
|
485 |
(* attributes *)
|
ballarin@24641
|
486 |
|
wenzelm@58826
|
487 |
fun add_struct s tag =
|
ballarin@24641
|
488 |
Thm.declaration_attribute
|
ballarin@24641
|
489 |
(fn thm => Data.map (AList.map_default struct_eq (s, Order_Tac.empty TrueI) (Order_Tac.update tag thm)));
|
ballarin@24641
|
490 |
fun del_struct s =
|
ballarin@24641
|
491 |
Thm.declaration_attribute
|
ballarin@24641
|
492 |
(fn _ => Data.map (AList.delete struct_eq s));
|
ballarin@24641
|
493 |
|
haftmann@21091
|
494 |
end;
|
haftmann@21091
|
495 |
*}
|
haftmann@21091
|
496 |
|
wenzelm@58826
|
497 |
attribute_setup order = {*
|
wenzelm@58826
|
498 |
Scan.lift ((Args.add -- Args.name >> (fn (_, s) => SOME s) || Args.del >> K NONE) --|
|
wenzelm@58826
|
499 |
Args.colon (* FIXME || Scan.succeed true *) ) -- Scan.lift Args.name --
|
wenzelm@58826
|
500 |
Scan.repeat Args.term
|
wenzelm@58826
|
501 |
>> (fn ((SOME tag, n), ts) => Orders.add_struct (n, ts) tag
|
wenzelm@58826
|
502 |
| ((NONE, n), ts) => Orders.del_struct (n, ts))
|
wenzelm@58826
|
503 |
*} "theorems controlling transitivity reasoner"
|
wenzelm@58826
|
504 |
|
wenzelm@47432
|
505 |
method_setup order = {*
|
wenzelm@47432
|
506 |
Scan.succeed (fn ctxt => SIMPLE_METHOD' (Orders.order_tac ctxt []))
|
wenzelm@47432
|
507 |
*} "transitivity reasoner"
|
ballarin@24641
|
508 |
|
ballarin@24641
|
509 |
|
ballarin@24641
|
510 |
text {* Declarations to set up transitivity reasoner of partial and linear orders. *}
|
ballarin@24641
|
511 |
|
haftmann@25076
|
512 |
context order
|
haftmann@25076
|
513 |
begin
|
haftmann@25076
|
514 |
|
ballarin@24641
|
515 |
(* The type constraint on @{term op =} below is necessary since the operation
|
ballarin@24641
|
516 |
is not a parameter of the locale. *)
|
haftmann@25076
|
517 |
|
haftmann@27689
|
518 |
declare less_irrefl [THEN notE, order add less_reflE: order "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "op <=" "op <"]
|
haftmann@27689
|
519 |
|
haftmann@27689
|
520 |
declare order_refl [order add le_refl: order "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
521 |
|
haftmann@27689
|
522 |
declare less_imp_le [order add less_imp_le: order "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
523 |
|
haftmann@27689
|
524 |
declare antisym [order add eqI: order "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
525 |
|
haftmann@27689
|
526 |
declare eq_refl [order add eqD1: order "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
527 |
|
haftmann@27689
|
528 |
declare sym [THEN eq_refl, order add eqD2: order "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
529 |
|
haftmann@27689
|
530 |
declare less_trans [order add less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
531 |
|
haftmann@27689
|
532 |
declare less_le_trans [order add less_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
533 |
|
haftmann@27689
|
534 |
declare le_less_trans [order add le_less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
535 |
|
haftmann@27689
|
536 |
declare order_trans [order add le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
537 |
|
haftmann@27689
|
538 |
declare le_neq_trans [order add le_neq_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
539 |
|
haftmann@27689
|
540 |
declare neq_le_trans [order add neq_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
541 |
|
haftmann@27689
|
542 |
declare less_imp_neq [order add less_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
543 |
|
haftmann@27689
|
544 |
declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
545 |
|
haftmann@27689
|
546 |
declare not_sym [order add not_sym: order "op = :: 'a => 'a => bool" "op <=" "op <"]
|
ballarin@24641
|
547 |
|
haftmann@25076
|
548 |
end
|
haftmann@25076
|
549 |
|
haftmann@25076
|
550 |
context linorder
|
haftmann@25076
|
551 |
begin
|
ballarin@24641
|
552 |
|
haftmann@27689
|
553 |
declare [[order del: order "op = :: 'a => 'a => bool" "op <=" "op <"]]
|
haftmann@27689
|
554 |
|
haftmann@27689
|
555 |
declare less_irrefl [THEN notE, order add less_reflE: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
556 |
|
haftmann@27689
|
557 |
declare order_refl [order add le_refl: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
558 |
|
haftmann@27689
|
559 |
declare less_imp_le [order add less_imp_le: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
560 |
|
haftmann@27689
|
561 |
declare not_less [THEN iffD2, order add not_lessI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
562 |
|
haftmann@27689
|
563 |
declare not_le [THEN iffD2, order add not_leI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
564 |
|
haftmann@27689
|
565 |
declare not_less [THEN iffD1, order add not_lessD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
566 |
|
haftmann@27689
|
567 |
declare not_le [THEN iffD1, order add not_leD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
568 |
|
haftmann@27689
|
569 |
declare antisym [order add eqI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
570 |
|
haftmann@27689
|
571 |
declare eq_refl [order add eqD1: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@25076
|
572 |
|
haftmann@27689
|
573 |
declare sym [THEN eq_refl, order add eqD2: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
574 |
|
haftmann@27689
|
575 |
declare less_trans [order add less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
576 |
|
haftmann@27689
|
577 |
declare less_le_trans [order add less_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
578 |
|
haftmann@27689
|
579 |
declare le_less_trans [order add le_less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
580 |
|
haftmann@27689
|
581 |
declare order_trans [order add le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
582 |
|
haftmann@27689
|
583 |
declare le_neq_trans [order add le_neq_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
584 |
|
haftmann@27689
|
585 |
declare neq_le_trans [order add neq_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
586 |
|
haftmann@27689
|
587 |
declare less_imp_neq [order add less_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
588 |
|
haftmann@27689
|
589 |
declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
haftmann@27689
|
590 |
|
haftmann@27689
|
591 |
declare not_sym [order add not_sym: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
|
ballarin@24641
|
592 |
|
haftmann@25076
|
593 |
end
|
haftmann@25076
|
594 |
|
haftmann@21083
|
595 |
setup {*
|
wenzelm@56509
|
596 |
map_theory_simpset (fn ctxt0 => ctxt0 addSolver
|
wenzelm@56509
|
597 |
mk_solver "Transitivity" (fn ctxt => Orders.order_tac ctxt (Simplifier.prems_of ctxt)))
|
wenzelm@56509
|
598 |
(*Adding the transitivity reasoners also as safe solvers showed a slight
|
wenzelm@56509
|
599 |
speed up, but the reasoning strength appears to be not higher (at least
|
wenzelm@56509
|
600 |
no breaking of additional proofs in the entire HOL distribution, as
|
wenzelm@56509
|
601 |
of 5 March 2004, was observed).*)
|
wenzelm@56509
|
602 |
*}
|
nipkow@15524
|
603 |
|
wenzelm@56509
|
604 |
ML {*
|
wenzelm@56509
|
605 |
local
|
wenzelm@56509
|
606 |
fun prp t thm = Thm.prop_of thm = t; (* FIXME proper aconv!? *)
|
wenzelm@56509
|
607 |
in
|
nipkow@15524
|
608 |
|
wenzelm@56509
|
609 |
fun antisym_le_simproc ctxt ct =
|
wenzelm@59582
|
610 |
(case Thm.term_of ct of
|
wenzelm@56509
|
611 |
(le as Const (_, T)) $ r $ s =>
|
wenzelm@56509
|
612 |
(let
|
wenzelm@56509
|
613 |
val prems = Simplifier.prems_of ctxt;
|
wenzelm@56509
|
614 |
val less = Const (@{const_name less}, T);
|
wenzelm@56509
|
615 |
val t = HOLogic.mk_Trueprop(le $ s $ r);
|
wenzelm@56509
|
616 |
in
|
wenzelm@56509
|
617 |
(case find_first (prp t) prems of
|
wenzelm@56509
|
618 |
NONE =>
|
wenzelm@56509
|
619 |
let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) in
|
wenzelm@56509
|
620 |
(case find_first (prp t) prems of
|
wenzelm@56509
|
621 |
NONE => NONE
|
wenzelm@56509
|
622 |
| SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1})))
|
wenzelm@56509
|
623 |
end
|
wenzelm@56509
|
624 |
| SOME thm => SOME (mk_meta_eq (thm RS @{thm order_class.antisym_conv})))
|
wenzelm@56509
|
625 |
end handle THM _ => NONE)
|
wenzelm@56509
|
626 |
| _ => NONE);
|
nipkow@15524
|
627 |
|
wenzelm@56509
|
628 |
fun antisym_less_simproc ctxt ct =
|
wenzelm@59582
|
629 |
(case Thm.term_of ct of
|
wenzelm@56509
|
630 |
NotC $ ((less as Const(_,T)) $ r $ s) =>
|
wenzelm@56509
|
631 |
(let
|
wenzelm@56509
|
632 |
val prems = Simplifier.prems_of ctxt;
|
wenzelm@56509
|
633 |
val le = Const (@{const_name less_eq}, T);
|
wenzelm@56509
|
634 |
val t = HOLogic.mk_Trueprop(le $ r $ s);
|
wenzelm@56509
|
635 |
in
|
wenzelm@56509
|
636 |
(case find_first (prp t) prems of
|
wenzelm@56509
|
637 |
NONE =>
|
wenzelm@56509
|
638 |
let val t = HOLogic.mk_Trueprop (NotC $ (less $ s $ r)) in
|
wenzelm@56509
|
639 |
(case find_first (prp t) prems of
|
wenzelm@56509
|
640 |
NONE => NONE
|
wenzelm@56509
|
641 |
| SOME thm => SOME (mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3})))
|
wenzelm@56509
|
642 |
end
|
wenzelm@56509
|
643 |
| SOME thm => SOME (mk_meta_eq (thm RS @{thm linorder_class.antisym_conv2})))
|
wenzelm@56509
|
644 |
end handle THM _ => NONE)
|
wenzelm@56509
|
645 |
| _ => NONE);
|
haftmann@21083
|
646 |
|
wenzelm@56509
|
647 |
end;
|
haftmann@21083
|
648 |
*}
|
nipkow@15524
|
649 |
|
wenzelm@56509
|
650 |
simproc_setup antisym_le ("(x::'a::order) \<le> y") = "K antisym_le_simproc"
|
wenzelm@56509
|
651 |
simproc_setup antisym_less ("\<not> (x::'a::linorder) < y") = "K antisym_less_simproc"
|
wenzelm@56509
|
652 |
|
nipkow@15524
|
653 |
|
haftmann@21083
|
654 |
subsection {* Bounded quantifiers *}
|
haftmann@21083
|
655 |
|
haftmann@21083
|
656 |
syntax
|
wenzelm@21180
|
657 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
658 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
659 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
660 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10)
|
haftmann@21083
|
661 |
|
wenzelm@21180
|
662 |
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3ALL _>_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
663 |
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3EX _>_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
664 |
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _>=_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
665 |
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3EX _>=_./ _)" [0, 0, 10] 10)
|
haftmann@21083
|
666 |
|
haftmann@21083
|
667 |
syntax (xsymbols)
|
wenzelm@21180
|
668 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
669 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
670 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
671 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
|
haftmann@21083
|
672 |
|
wenzelm@21180
|
673 |
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
674 |
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
675 |
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
676 |
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
|
haftmann@21083
|
677 |
|
haftmann@21083
|
678 |
syntax (HOL)
|
wenzelm@21180
|
679 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3! _<_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
680 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3? _<_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
681 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3! _<=_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
682 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10)
|
haftmann@21083
|
683 |
|
haftmann@21083
|
684 |
syntax (HTML output)
|
wenzelm@21180
|
685 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
686 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
687 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
688 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
|
haftmann@21083
|
689 |
|
wenzelm@21180
|
690 |
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
691 |
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
692 |
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
|
wenzelm@21180
|
693 |
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
|
haftmann@21083
|
694 |
|
haftmann@21083
|
695 |
translations
|
haftmann@21083
|
696 |
"ALL x<y. P" => "ALL x. x < y \<longrightarrow> P"
|
haftmann@21083
|
697 |
"EX x<y. P" => "EX x. x < y \<and> P"
|
haftmann@21083
|
698 |
"ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P"
|
haftmann@21083
|
699 |
"EX x<=y. P" => "EX x. x <= y \<and> P"
|
haftmann@21083
|
700 |
"ALL x>y. P" => "ALL x. x > y \<longrightarrow> P"
|
haftmann@21083
|
701 |
"EX x>y. P" => "EX x. x > y \<and> P"
|
haftmann@21083
|
702 |
"ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P"
|
haftmann@21083
|
703 |
"EX x>=y. P" => "EX x. x >= y \<and> P"
|
haftmann@21083
|
704 |
|
haftmann@21083
|
705 |
print_translation {*
|
haftmann@21083
|
706 |
let
|
wenzelm@42287
|
707 |
val All_binder = Mixfix.binder_name @{const_syntax All};
|
wenzelm@42287
|
708 |
val Ex_binder = Mixfix.binder_name @{const_syntax Ex};
|
haftmann@38786
|
709 |
val impl = @{const_syntax HOL.implies};
|
haftmann@38795
|
710 |
val conj = @{const_syntax HOL.conj};
|
haftmann@22916
|
711 |
val less = @{const_syntax less};
|
haftmann@22916
|
712 |
val less_eq = @{const_syntax less_eq};
|
wenzelm@21180
|
713 |
|
wenzelm@21180
|
714 |
val trans =
|
wenzelm@35115
|
715 |
[((All_binder, impl, less),
|
wenzelm@35115
|
716 |
(@{syntax_const "_All_less"}, @{syntax_const "_All_greater"})),
|
wenzelm@35115
|
717 |
((All_binder, impl, less_eq),
|
wenzelm@35115
|
718 |
(@{syntax_const "_All_less_eq"}, @{syntax_const "_All_greater_eq"})),
|
wenzelm@35115
|
719 |
((Ex_binder, conj, less),
|
wenzelm@35115
|
720 |
(@{syntax_const "_Ex_less"}, @{syntax_const "_Ex_greater"})),
|
wenzelm@35115
|
721 |
((Ex_binder, conj, less_eq),
|
wenzelm@35115
|
722 |
(@{syntax_const "_Ex_less_eq"}, @{syntax_const "_Ex_greater_eq"}))];
|
wenzelm@21180
|
723 |
|
wenzelm@35115
|
724 |
fun matches_bound v t =
|
wenzelm@35115
|
725 |
(case t of
|
wenzelm@35364
|
726 |
Const (@{syntax_const "_bound"}, _) $ Free (v', _) => v = v'
|
wenzelm@35115
|
727 |
| _ => false);
|
wenzelm@35115
|
728 |
fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false);
|
wenzelm@49660
|
729 |
fun mk x c n P = Syntax.const c $ Syntax_Trans.mark_bound_body x $ n $ P;
|
wenzelm@21180
|
730 |
|
wenzelm@52143
|
731 |
fun tr' q = (q, fn _ =>
|
wenzelm@52143
|
732 |
(fn [Const (@{syntax_const "_bound"}, _) $ Free (v, T),
|
wenzelm@35364
|
733 |
Const (c, _) $ (Const (d, _) $ t $ u) $ P] =>
|
wenzelm@35115
|
734 |
(case AList.lookup (op =) trans (q, c, d) of
|
wenzelm@35115
|
735 |
NONE => raise Match
|
wenzelm@35115
|
736 |
| SOME (l, g) =>
|
wenzelm@49660
|
737 |
if matches_bound v t andalso not (contains_var v u) then mk (v, T) l u P
|
wenzelm@49660
|
738 |
else if matches_bound v u andalso not (contains_var v t) then mk (v, T) g t P
|
wenzelm@35115
|
739 |
else raise Match)
|
wenzelm@52143
|
740 |
| _ => raise Match));
|
wenzelm@21524
|
741 |
in [tr' All_binder, tr' Ex_binder] end
|
haftmann@21083
|
742 |
*}
|
haftmann@21083
|
743 |
|
haftmann@21083
|
744 |
|
haftmann@21383
|
745 |
subsection {* Transitivity reasoning *}
|
haftmann@21383
|
746 |
|
haftmann@25193
|
747 |
context ord
|
haftmann@25193
|
748 |
begin
|
haftmann@21383
|
749 |
|
haftmann@25193
|
750 |
lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c"
|
haftmann@25193
|
751 |
by (rule subst)
|
haftmann@21383
|
752 |
|
haftmann@25193
|
753 |
lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c"
|
haftmann@25193
|
754 |
by (rule ssubst)
|
haftmann@21383
|
755 |
|
haftmann@25193
|
756 |
lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c"
|
haftmann@25193
|
757 |
by (rule subst)
|
haftmann@25193
|
758 |
|
haftmann@25193
|
759 |
lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c"
|
haftmann@25193
|
760 |
by (rule ssubst)
|
haftmann@25193
|
761 |
|
haftmann@25193
|
762 |
end
|
haftmann@21383
|
763 |
|
haftmann@21383
|
764 |
lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==>
|
haftmann@21383
|
765 |
(!!x y. x < y ==> f x < f y) ==> f a < c"
|
haftmann@21383
|
766 |
proof -
|
haftmann@21383
|
767 |
assume r: "!!x y. x < y ==> f x < f y"
|
haftmann@21383
|
768 |
assume "a < b" hence "f a < f b" by (rule r)
|
haftmann@21383
|
769 |
also assume "f b < c"
|
haftmann@34250
|
770 |
finally (less_trans) show ?thesis .
|
haftmann@21383
|
771 |
qed
|
haftmann@21383
|
772 |
|
haftmann@21383
|
773 |
lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==>
|
haftmann@21383
|
774 |
(!!x y. x < y ==> f x < f y) ==> a < f c"
|
haftmann@21383
|
775 |
proof -
|
haftmann@21383
|
776 |
assume r: "!!x y. x < y ==> f x < f y"
|
haftmann@21383
|
777 |
assume "a < f b"
|
haftmann@21383
|
778 |
also assume "b < c" hence "f b < f c" by (rule r)
|
haftmann@34250
|
779 |
finally (less_trans) show ?thesis .
|
haftmann@21383
|
780 |
qed
|
haftmann@21383
|
781 |
|
haftmann@21383
|
782 |
lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==>
|
haftmann@21383
|
783 |
(!!x y. x <= y ==> f x <= f y) ==> f a < c"
|
haftmann@21383
|
784 |
proof -
|
haftmann@21383
|
785 |
assume r: "!!x y. x <= y ==> f x <= f y"
|
haftmann@21383
|
786 |
assume "a <= b" hence "f a <= f b" by (rule r)
|
haftmann@21383
|
787 |
also assume "f b < c"
|
haftmann@34250
|
788 |
finally (le_less_trans) show ?thesis .
|
haftmann@21383
|
789 |
qed
|
haftmann@21383
|
790 |
|
haftmann@21383
|
791 |
lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==>
|
haftmann@21383
|
792 |
(!!x y. x < y ==> f x < f y) ==> a < f c"
|
haftmann@21383
|
793 |
proof -
|
haftmann@21383
|
794 |
assume r: "!!x y. x < y ==> f x < f y"
|
haftmann@21383
|
795 |
assume "a <= f b"
|
haftmann@21383
|
796 |
also assume "b < c" hence "f b < f c" by (rule r)
|
haftmann@34250
|
797 |
finally (le_less_trans) show ?thesis .
|
haftmann@21383
|
798 |
qed
|
haftmann@21383
|
799 |
|
haftmann@21383
|
800 |
lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==>
|
haftmann@21383
|
801 |
(!!x y. x < y ==> f x < f y) ==> f a < c"
|
haftmann@21383
|
802 |
proof -
|
haftmann@21383
|
803 |
assume r: "!!x y. x < y ==> f x < f y"
|
haftmann@21383
|
804 |
assume "a < b" hence "f a < f b" by (rule r)
|
haftmann@21383
|
805 |
also assume "f b <= c"
|
haftmann@34250
|
806 |
finally (less_le_trans) show ?thesis .
|
haftmann@21383
|
807 |
qed
|
haftmann@21383
|
808 |
|
haftmann@21383
|
809 |
lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==>
|
haftmann@21383
|
810 |
(!!x y. x <= y ==> f x <= f y) ==> a < f c"
|
haftmann@21383
|
811 |
proof -
|
haftmann@21383
|
812 |
assume r: "!!x y. x <= y ==> f x <= f y"
|
haftmann@21383
|
813 |
assume "a < f b"
|
haftmann@21383
|
814 |
also assume "b <= c" hence "f b <= f c" by (rule r)
|
haftmann@34250
|
815 |
finally (less_le_trans) show ?thesis .
|
haftmann@21383
|
816 |
qed
|
haftmann@21383
|
817 |
|
haftmann@21383
|
818 |
lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==>
|
haftmann@21383
|
819 |
(!!x y. x <= y ==> f x <= f y) ==> a <= f c"
|
haftmann@21383
|
820 |
proof -
|
haftmann@21383
|
821 |
assume r: "!!x y. x <= y ==> f x <= f y"
|
haftmann@21383
|
822 |
assume "a <= f b"
|
haftmann@21383
|
823 |
also assume "b <= c" hence "f b <= f c" by (rule r)
|
haftmann@21383
|
824 |
finally (order_trans) show ?thesis .
|
haftmann@21383
|
825 |
qed
|
haftmann@21383
|
826 |
|
haftmann@21383
|
827 |
lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==>
|
haftmann@21383
|
828 |
(!!x y. x <= y ==> f x <= f y) ==> f a <= c"
|
haftmann@21383
|
829 |
proof -
|
haftmann@21383
|
830 |
assume r: "!!x y. x <= y ==> f x <= f y"
|
haftmann@21383
|
831 |
assume "a <= b" hence "f a <= f b" by (rule r)
|
haftmann@21383
|
832 |
also assume "f b <= c"
|
haftmann@21383
|
833 |
finally (order_trans) show ?thesis .
|
haftmann@21383
|
834 |
qed
|
haftmann@21383
|
835 |
|
haftmann@21383
|
836 |
lemma ord_le_eq_subst: "a <= b ==> f b = c ==>
|
haftmann@21383
|
837 |
(!!x y. x <= y ==> f x <= f y) ==> f a <= c"
|
haftmann@21383
|
838 |
proof -
|
haftmann@21383
|
839 |
assume r: "!!x y. x <= y ==> f x <= f y"
|
haftmann@21383
|
840 |
assume "a <= b" hence "f a <= f b" by (rule r)
|
haftmann@21383
|
841 |
also assume "f b = c"
|
haftmann@21383
|
842 |
finally (ord_le_eq_trans) show ?thesis .
|
haftmann@21383
|
843 |
qed
|
haftmann@21383
|
844 |
|
haftmann@21383
|
845 |
lemma ord_eq_le_subst: "a = f b ==> b <= c ==>
|
haftmann@21383
|
846 |
(!!x y. x <= y ==> f x <= f y) ==> a <= f c"
|
haftmann@21383
|
847 |
proof -
|
haftmann@21383
|
848 |
assume r: "!!x y. x <= y ==> f x <= f y"
|
haftmann@21383
|
849 |
assume "a = f b"
|
haftmann@21383
|
850 |
also assume "b <= c" hence "f b <= f c" by (rule r)
|
haftmann@21383
|
851 |
finally (ord_eq_le_trans) show ?thesis .
|
haftmann@21383
|
852 |
qed
|
haftmann@21383
|
853 |
|
haftmann@21383
|
854 |
lemma ord_less_eq_subst: "a < b ==> f b = c ==>
|
haftmann@21383
|
855 |
(!!x y. x < y ==> f x < f y) ==> f a < c"
|
haftmann@21383
|
856 |
proof -
|
haftmann@21383
|
857 |
assume r: "!!x y. x < y ==> f x < f y"
|
haftmann@21383
|
858 |
assume "a < b" hence "f a < f b" by (rule r)
|
haftmann@21383
|
859 |
also assume "f b = c"
|
haftmann@21383
|
860 |
finally (ord_less_eq_trans) show ?thesis .
|
haftmann@21383
|
861 |
qed
|
haftmann@21383
|
862 |
|
haftmann@21383
|
863 |
lemma ord_eq_less_subst: "a = f b ==> b < c ==>
|
haftmann@21383
|
864 |
(!!x y. x < y ==> f x < f y) ==> a < f c"
|
haftmann@21383
|
865 |
proof -
|
haftmann@21383
|
866 |
assume r: "!!x y. x < y ==> f x < f y"
|
haftmann@21383
|
867 |
assume "a = f b"
|
haftmann@21383
|
868 |
also assume "b < c" hence "f b < f c" by (rule r)
|
haftmann@21383
|
869 |
finally (ord_eq_less_trans) show ?thesis .
|
haftmann@21383
|
870 |
qed
|
haftmann@21383
|
871 |
|
haftmann@21383
|
872 |
text {*
|
haftmann@21383
|
873 |
Note that this list of rules is in reverse order of priorities.
|
haftmann@21383
|
874 |
*}
|
haftmann@21383
|
875 |
|
haftmann@27682
|
876 |
lemmas [trans] =
|
haftmann@21383
|
877 |
order_less_subst2
|
haftmann@21383
|
878 |
order_less_subst1
|
haftmann@21383
|
879 |
order_le_less_subst2
|
haftmann@21383
|
880 |
order_le_less_subst1
|
haftmann@21383
|
881 |
order_less_le_subst2
|
haftmann@21383
|
882 |
order_less_le_subst1
|
haftmann@21383
|
883 |
order_subst2
|
haftmann@21383
|
884 |
order_subst1
|
haftmann@21383
|
885 |
ord_le_eq_subst
|
haftmann@21383
|
886 |
ord_eq_le_subst
|
haftmann@21383
|
887 |
ord_less_eq_subst
|
haftmann@21383
|
888 |
ord_eq_less_subst
|
haftmann@21383
|
889 |
forw_subst
|
haftmann@21383
|
890 |
back_subst
|
haftmann@21383
|
891 |
rev_mp
|
haftmann@21383
|
892 |
mp
|
haftmann@27682
|
893 |
|
haftmann@27682
|
894 |
lemmas (in order) [trans] =
|
haftmann@27682
|
895 |
neq_le_trans
|
haftmann@27682
|
896 |
le_neq_trans
|
haftmann@27682
|
897 |
|
haftmann@27682
|
898 |
lemmas (in preorder) [trans] =
|
haftmann@27682
|
899 |
less_trans
|
haftmann@27682
|
900 |
less_asym'
|
haftmann@27682
|
901 |
le_less_trans
|
haftmann@27682
|
902 |
less_le_trans
|
haftmann@21383
|
903 |
order_trans
|
haftmann@27682
|
904 |
|
haftmann@27682
|
905 |
lemmas (in order) [trans] =
|
haftmann@27682
|
906 |
antisym
|
haftmann@27682
|
907 |
|
haftmann@27682
|
908 |
lemmas (in ord) [trans] =
|
haftmann@27682
|
909 |
ord_le_eq_trans
|
haftmann@27682
|
910 |
ord_eq_le_trans
|
haftmann@27682
|
911 |
ord_less_eq_trans
|
haftmann@27682
|
912 |
ord_eq_less_trans
|
haftmann@27682
|
913 |
|
haftmann@27682
|
914 |
lemmas [trans] =
|
haftmann@27682
|
915 |
trans
|
haftmann@27682
|
916 |
|
haftmann@27682
|
917 |
lemmas order_trans_rules =
|
haftmann@27682
|
918 |
order_less_subst2
|
haftmann@27682
|
919 |
order_less_subst1
|
haftmann@27682
|
920 |
order_le_less_subst2
|
haftmann@27682
|
921 |
order_le_less_subst1
|
haftmann@27682
|
922 |
order_less_le_subst2
|
haftmann@27682
|
923 |
order_less_le_subst1
|
haftmann@27682
|
924 |
order_subst2
|
haftmann@27682
|
925 |
order_subst1
|
haftmann@27682
|
926 |
ord_le_eq_subst
|
haftmann@27682
|
927 |
ord_eq_le_subst
|
haftmann@27682
|
928 |
ord_less_eq_subst
|
haftmann@27682
|
929 |
ord_eq_less_subst
|
haftmann@27682
|
930 |
forw_subst
|
haftmann@27682
|
931 |
back_subst
|
haftmann@27682
|
932 |
rev_mp
|
haftmann@27682
|
933 |
mp
|
haftmann@27682
|
934 |
neq_le_trans
|
haftmann@27682
|
935 |
le_neq_trans
|
haftmann@27682
|
936 |
less_trans
|
haftmann@27682
|
937 |
less_asym'
|
haftmann@27682
|
938 |
le_less_trans
|
haftmann@27682
|
939 |
less_le_trans
|
haftmann@27682
|
940 |
order_trans
|
haftmann@27682
|
941 |
antisym
|
haftmann@21383
|
942 |
ord_le_eq_trans
|
haftmann@21383
|
943 |
ord_eq_le_trans
|
haftmann@21383
|
944 |
ord_less_eq_trans
|
haftmann@21383
|
945 |
ord_eq_less_trans
|
haftmann@21383
|
946 |
trans
|
haftmann@21383
|
947 |
|
haftmann@21083
|
948 |
text {* These support proving chains of decreasing inequalities
|
haftmann@21083
|
949 |
a >= b >= c ... in Isar proofs. *}
|
haftmann@21083
|
950 |
|
blanchet@45221
|
951 |
lemma xt1 [no_atp]:
|
haftmann@21083
|
952 |
"a = b ==> b > c ==> a > c"
|
haftmann@21083
|
953 |
"a > b ==> b = c ==> a > c"
|
haftmann@21083
|
954 |
"a = b ==> b >= c ==> a >= c"
|
haftmann@21083
|
955 |
"a >= b ==> b = c ==> a >= c"
|
haftmann@21083
|
956 |
"(x::'a::order) >= y ==> y >= x ==> x = y"
|
haftmann@21083
|
957 |
"(x::'a::order) >= y ==> y >= z ==> x >= z"
|
haftmann@21083
|
958 |
"(x::'a::order) > y ==> y >= z ==> x > z"
|
haftmann@21083
|
959 |
"(x::'a::order) >= y ==> y > z ==> x > z"
|
wenzelm@23417
|
960 |
"(a::'a::order) > b ==> b > a ==> P"
|
haftmann@21083
|
961 |
"(x::'a::order) > y ==> y > z ==> x > z"
|
haftmann@21083
|
962 |
"(a::'a::order) >= b ==> a ~= b ==> a > b"
|
haftmann@21083
|
963 |
"(a::'a::order) ~= b ==> a >= b ==> a > b"
|
haftmann@21083
|
964 |
"a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c"
|
haftmann@21083
|
965 |
"a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c"
|
haftmann@21083
|
966 |
"a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"
|
haftmann@21083
|
967 |
"a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c"
|
haftmann@25076
|
968 |
by auto
|
haftmann@21083
|
969 |
|
blanchet@45221
|
970 |
lemma xt2 [no_atp]:
|
haftmann@21083
|
971 |
"(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"
|
haftmann@21083
|
972 |
by (subgoal_tac "f b >= f c", force, force)
|
haftmann@21083
|
973 |
|
blanchet@45221
|
974 |
lemma xt3 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==>
|
haftmann@21083
|
975 |
(!!x y. x >= y ==> f x >= f y) ==> f a >= c"
|
haftmann@21083
|
976 |
by (subgoal_tac "f a >= f b", force, force)
|
haftmann@21083
|
977 |
|
blanchet@45221
|
978 |
lemma xt4 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) >= c ==>
|
haftmann@21083
|
979 |
(!!x y. x >= y ==> f x >= f y) ==> a > f c"
|
haftmann@21083
|
980 |
by (subgoal_tac "f b >= f c", force, force)
|
haftmann@21083
|
981 |
|
blanchet@45221
|
982 |
lemma xt5 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) >= c==>
|
haftmann@21083
|
983 |
(!!x y. x > y ==> f x > f y) ==> f a > c"
|
haftmann@21083
|
984 |
by (subgoal_tac "f a > f b", force, force)
|
haftmann@21083
|
985 |
|
blanchet@45221
|
986 |
lemma xt6 [no_atp]: "(a::'a::order) >= f b ==> b > c ==>
|
haftmann@21083
|
987 |
(!!x y. x > y ==> f x > f y) ==> a > f c"
|
haftmann@21083
|
988 |
by (subgoal_tac "f b > f c", force, force)
|
haftmann@21083
|
989 |
|
blanchet@45221
|
990 |
lemma xt7 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) > c ==>
|
haftmann@21083
|
991 |
(!!x y. x >= y ==> f x >= f y) ==> f a > c"
|
haftmann@21083
|
992 |
by (subgoal_tac "f a >= f b", force, force)
|
haftmann@21083
|
993 |
|
blanchet@45221
|
994 |
lemma xt8 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) > c ==>
|
haftmann@21083
|
995 |
(!!x y. x > y ==> f x > f y) ==> a > f c"
|
haftmann@21083
|
996 |
by (subgoal_tac "f b > f c", force, force)
|
haftmann@21083
|
997 |
|
blanchet@45221
|
998 |
lemma xt9 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) > c ==>
|
haftmann@21083
|
999 |
(!!x y. x > y ==> f x > f y) ==> f a > c"
|
haftmann@21083
|
1000 |
by (subgoal_tac "f a > f b", force, force)
|
haftmann@21083
|
1001 |
|
blanchet@54147
|
1002 |
lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9
|
haftmann@21083
|
1003 |
|
haftmann@21083
|
1004 |
(*
|
haftmann@21083
|
1005 |
Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands
|
haftmann@21083
|
1006 |
for the wrong thing in an Isar proof.
|
haftmann@21083
|
1007 |
|
haftmann@21083
|
1008 |
The extra transitivity rules can be used as follows:
|
haftmann@21083
|
1009 |
|
haftmann@21083
|
1010 |
lemma "(a::'a::order) > z"
|
haftmann@21083
|
1011 |
proof -
|
haftmann@21083
|
1012 |
have "a >= b" (is "_ >= ?rhs")
|
haftmann@21083
|
1013 |
sorry
|
haftmann@21083
|
1014 |
also have "?rhs >= c" (is "_ >= ?rhs")
|
haftmann@21083
|
1015 |
sorry
|
haftmann@21083
|
1016 |
also (xtrans) have "?rhs = d" (is "_ = ?rhs")
|
haftmann@21083
|
1017 |
sorry
|
haftmann@21083
|
1018 |
also (xtrans) have "?rhs >= e" (is "_ >= ?rhs")
|
haftmann@21083
|
1019 |
sorry
|
haftmann@21083
|
1020 |
also (xtrans) have "?rhs > f" (is "_ > ?rhs")
|
haftmann@21083
|
1021 |
sorry
|
haftmann@21083
|
1022 |
also (xtrans) have "?rhs > z"
|
haftmann@21083
|
1023 |
sorry
|
haftmann@21083
|
1024 |
finally (xtrans) show ?thesis .
|
haftmann@21083
|
1025 |
qed
|
haftmann@21083
|
1026 |
|
haftmann@21083
|
1027 |
Alternatively, one can use "declare xtrans [trans]" and then
|
haftmann@21083
|
1028 |
leave out the "(xtrans)" above.
|
haftmann@21083
|
1029 |
*)
|
haftmann@21083
|
1030 |
|
haftmann@23881
|
1031 |
|
haftmann@54860
|
1032 |
subsection {* Monotonicity *}
|
haftmann@21083
|
1033 |
|
haftmann@25076
|
1034 |
context order
|
haftmann@25076
|
1035 |
begin
|
haftmann@25076
|
1036 |
|
haftmann@30298
|
1037 |
definition mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where
|
haftmann@25076
|
1038 |
"mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)"
|
haftmann@25076
|
1039 |
|
haftmann@25076
|
1040 |
lemma monoI [intro?]:
|
haftmann@25076
|
1041 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>order"
|
haftmann@25076
|
1042 |
shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f"
|
haftmann@25076
|
1043 |
unfolding mono_def by iprover
|
haftmann@21216
|
1044 |
|
haftmann@25076
|
1045 |
lemma monoD [dest?]:
|
haftmann@25076
|
1046 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>order"
|
haftmann@25076
|
1047 |
shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
|
haftmann@25076
|
1048 |
unfolding mono_def by iprover
|
haftmann@25076
|
1049 |
|
haftmann@51263
|
1050 |
lemma monoE:
|
haftmann@51263
|
1051 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>order"
|
haftmann@51263
|
1052 |
assumes "mono f"
|
haftmann@51263
|
1053 |
assumes "x \<le> y"
|
haftmann@51263
|
1054 |
obtains "f x \<le> f y"
|
haftmann@51263
|
1055 |
proof
|
haftmann@51263
|
1056 |
from assms show "f x \<le> f y" by (simp add: mono_def)
|
haftmann@51263
|
1057 |
qed
|
haftmann@51263
|
1058 |
|
hoelzl@56020
|
1059 |
definition antimono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where
|
hoelzl@56020
|
1060 |
"antimono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<ge> f y)"
|
hoelzl@56020
|
1061 |
|
hoelzl@56020
|
1062 |
lemma antimonoI [intro?]:
|
hoelzl@56020
|
1063 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>order"
|
hoelzl@56020
|
1064 |
shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<ge> f y) \<Longrightarrow> antimono f"
|
hoelzl@56020
|
1065 |
unfolding antimono_def by iprover
|
hoelzl@56020
|
1066 |
|
hoelzl@56020
|
1067 |
lemma antimonoD [dest?]:
|
hoelzl@56020
|
1068 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>order"
|
hoelzl@56020
|
1069 |
shows "antimono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<ge> f y"
|
hoelzl@56020
|
1070 |
unfolding antimono_def by iprover
|
hoelzl@56020
|
1071 |
|
hoelzl@56020
|
1072 |
lemma antimonoE:
|
hoelzl@56020
|
1073 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>order"
|
hoelzl@56020
|
1074 |
assumes "antimono f"
|
hoelzl@56020
|
1075 |
assumes "x \<le> y"
|
hoelzl@56020
|
1076 |
obtains "f x \<ge> f y"
|
hoelzl@56020
|
1077 |
proof
|
hoelzl@56020
|
1078 |
from assms show "f x \<ge> f y" by (simp add: antimono_def)
|
hoelzl@56020
|
1079 |
qed
|
hoelzl@56020
|
1080 |
|
haftmann@30298
|
1081 |
definition strict_mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where
|
haftmann@30298
|
1082 |
"strict_mono f \<longleftrightarrow> (\<forall>x y. x < y \<longrightarrow> f x < f y)"
|
haftmann@30298
|
1083 |
|
haftmann@30298
|
1084 |
lemma strict_monoI [intro?]:
|
haftmann@30298
|
1085 |
assumes "\<And>x y. x < y \<Longrightarrow> f x < f y"
|
haftmann@30298
|
1086 |
shows "strict_mono f"
|
haftmann@30298
|
1087 |
using assms unfolding strict_mono_def by auto
|
haftmann@30298
|
1088 |
|
haftmann@30298
|
1089 |
lemma strict_monoD [dest?]:
|
haftmann@30298
|
1090 |
"strict_mono f \<Longrightarrow> x < y \<Longrightarrow> f x < f y"
|
haftmann@30298
|
1091 |
unfolding strict_mono_def by auto
|
haftmann@30298
|
1092 |
|
haftmann@30298
|
1093 |
lemma strict_mono_mono [dest?]:
|
haftmann@30298
|
1094 |
assumes "strict_mono f"
|
haftmann@30298
|
1095 |
shows "mono f"
|
haftmann@30298
|
1096 |
proof (rule monoI)
|
haftmann@30298
|
1097 |
fix x y
|
haftmann@30298
|
1098 |
assume "x \<le> y"
|
haftmann@30298
|
1099 |
show "f x \<le> f y"
|
haftmann@30298
|
1100 |
proof (cases "x = y")
|
haftmann@30298
|
1101 |
case True then show ?thesis by simp
|
haftmann@30298
|
1102 |
next
|
haftmann@30298
|
1103 |
case False with `x \<le> y` have "x < y" by simp
|
haftmann@30298
|
1104 |
with assms strict_monoD have "f x < f y" by auto
|
haftmann@30298
|
1105 |
then show ?thesis by simp
|
haftmann@30298
|
1106 |
qed
|
haftmann@30298
|
1107 |
qed
|
haftmann@30298
|
1108 |
|
haftmann@25076
|
1109 |
end
|
haftmann@25076
|
1110 |
|
haftmann@25076
|
1111 |
context linorder
|
haftmann@25076
|
1112 |
begin
|
haftmann@25076
|
1113 |
|
haftmann@51263
|
1114 |
lemma mono_invE:
|
haftmann@51263
|
1115 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>order"
|
haftmann@51263
|
1116 |
assumes "mono f"
|
haftmann@51263
|
1117 |
assumes "f x < f y"
|
haftmann@51263
|
1118 |
obtains "x \<le> y"
|
haftmann@51263
|
1119 |
proof
|
haftmann@51263
|
1120 |
show "x \<le> y"
|
haftmann@51263
|
1121 |
proof (rule ccontr)
|
haftmann@51263
|
1122 |
assume "\<not> x \<le> y"
|
haftmann@51263
|
1123 |
then have "y \<le> x" by simp
|
haftmann@51263
|
1124 |
with `mono f` obtain "f y \<le> f x" by (rule monoE)
|
haftmann@51263
|
1125 |
with `f x < f y` show False by simp
|
haftmann@51263
|
1126 |
qed
|
haftmann@51263
|
1127 |
qed
|
haftmann@51263
|
1128 |
|
haftmann@30298
|
1129 |
lemma strict_mono_eq:
|
haftmann@30298
|
1130 |
assumes "strict_mono f"
|
haftmann@30298
|
1131 |
shows "f x = f y \<longleftrightarrow> x = y"
|
haftmann@30298
|
1132 |
proof
|
haftmann@30298
|
1133 |
assume "f x = f y"
|
haftmann@30298
|
1134 |
show "x = y" proof (cases x y rule: linorder_cases)
|
haftmann@30298
|
1135 |
case less with assms strict_monoD have "f x < f y" by auto
|
haftmann@30298
|
1136 |
with `f x = f y` show ?thesis by simp
|
haftmann@30298
|
1137 |
next
|
haftmann@30298
|
1138 |
case equal then show ?thesis .
|
haftmann@30298
|
1139 |
next
|
haftmann@30298
|
1140 |
case greater with assms strict_monoD have "f y < f x" by auto
|
haftmann@30298
|
1141 |
with `f x = f y` show ?thesis by simp
|
haftmann@30298
|
1142 |
qed
|
haftmann@30298
|
1143 |
qed simp
|
haftmann@30298
|
1144 |
|
haftmann@30298
|
1145 |
lemma strict_mono_less_eq:
|
haftmann@30298
|
1146 |
assumes "strict_mono f"
|
haftmann@30298
|
1147 |
shows "f x \<le> f y \<longleftrightarrow> x \<le> y"
|
haftmann@30298
|
1148 |
proof
|
haftmann@30298
|
1149 |
assume "x \<le> y"
|
haftmann@30298
|
1150 |
with assms strict_mono_mono monoD show "f x \<le> f y" by auto
|
haftmann@30298
|
1151 |
next
|
haftmann@30298
|
1152 |
assume "f x \<le> f y"
|
haftmann@30298
|
1153 |
show "x \<le> y" proof (rule ccontr)
|
haftmann@30298
|
1154 |
assume "\<not> x \<le> y" then have "y < x" by simp
|
haftmann@30298
|
1155 |
with assms strict_monoD have "f y < f x" by auto
|
haftmann@30298
|
1156 |
with `f x \<le> f y` show False by simp
|
haftmann@30298
|
1157 |
qed
|
haftmann@30298
|
1158 |
qed
|
haftmann@30298
|
1159 |
|
haftmann@30298
|
1160 |
lemma strict_mono_less:
|
haftmann@30298
|
1161 |
assumes "strict_mono f"
|
haftmann@30298
|
1162 |
shows "f x < f y \<longleftrightarrow> x < y"
|
haftmann@30298
|
1163 |
using assms
|
haftmann@30298
|
1164 |
by (auto simp add: less_le Orderings.less_le strict_mono_eq strict_mono_less_eq)
|
haftmann@30298
|
1165 |
|
haftmann@54860
|
1166 |
end
|
haftmann@54860
|
1167 |
|
haftmann@54860
|
1168 |
|
haftmann@54861
|
1169 |
subsection {* min and max -- fundamental *}
|
haftmann@54860
|
1170 |
|
haftmann@54860
|
1171 |
definition (in ord) min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
|
haftmann@54860
|
1172 |
"min a b = (if a \<le> b then a else b)"
|
haftmann@54860
|
1173 |
|
haftmann@54860
|
1174 |
definition (in ord) max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
|
haftmann@54860
|
1175 |
"max a b = (if a \<le> b then b else a)"
|
haftmann@54860
|
1176 |
|
noschinl@45931
|
1177 |
lemma min_absorb1: "x \<le> y \<Longrightarrow> min x y = x"
|
haftmann@54861
|
1178 |
by (simp add: min_def)
|
haftmann@21383
|
1179 |
|
haftmann@54857
|
1180 |
lemma max_absorb2: "x \<le> y \<Longrightarrow> max x y = y"
|
haftmann@54861
|
1181 |
by (simp add: max_def)
|
haftmann@21383
|
1182 |
|
noschinl@45931
|
1183 |
lemma min_absorb2: "(y\<Colon>'a\<Colon>order) \<le> x \<Longrightarrow> min x y = y"
|
haftmann@54861
|
1184 |
by (simp add:min_def)
|
noschinl@45893
|
1185 |
|
noschinl@45931
|
1186 |
lemma max_absorb1: "(y\<Colon>'a\<Colon>order) \<le> x \<Longrightarrow> max x y = x"
|
haftmann@54861
|
1187 |
by (simp add: max_def)
|
noschinl@45893
|
1188 |
|
noschinl@45893
|
1189 |
|
haftmann@43813
|
1190 |
subsection {* (Unique) top and bottom elements *}
|
haftmann@28685
|
1191 |
|
haftmann@52729
|
1192 |
class bot =
|
haftmann@43853
|
1193 |
fixes bot :: 'a ("\<bottom>")
|
haftmann@52729
|
1194 |
|
haftmann@52729
|
1195 |
class order_bot = order + bot +
|
haftmann@51487
|
1196 |
assumes bot_least: "\<bottom> \<le> a"
|
haftmann@54868
|
1197 |
begin
|
haftmann@51487
|
1198 |
|
haftmann@54868
|
1199 |
sublocale bot!: ordering_top greater_eq greater bot
|
haftmann@51546
|
1200 |
by default (fact bot_least)
|
haftmann@51487
|
1201 |
|
haftmann@43853
|
1202 |
lemma le_bot:
|
haftmann@43853
|
1203 |
"a \<le> \<bottom> \<Longrightarrow> a = \<bottom>"
|
haftmann@51487
|
1204 |
by (fact bot.extremum_uniqueI)
|
haftmann@43853
|
1205 |
|
haftmann@43816
|
1206 |
lemma bot_unique:
|
haftmann@43853
|
1207 |
"a \<le> \<bottom> \<longleftrightarrow> a = \<bottom>"
|
haftmann@51487
|
1208 |
by (fact bot.extremum_unique)
|
haftmann@43853
|
1209 |
|
haftmann@51487
|
1210 |
lemma not_less_bot:
|
haftmann@51487
|
1211 |
"\<not> a < \<bottom>"
|
haftmann@51487
|
1212 |
by (fact bot.extremum_strict)
|
haftmann@43816
|
1213 |
|
haftmann@43814
|
1214 |
lemma bot_less:
|
haftmann@43853
|
1215 |
"a \<noteq> \<bottom> \<longleftrightarrow> \<bottom> < a"
|
haftmann@51487
|
1216 |
by (fact bot.not_eq_extremum)
|
haftmann@43814
|
1217 |
|
haftmann@43814
|
1218 |
end
|
haftmann@41082
|
1219 |
|
haftmann@52729
|
1220 |
class top =
|
haftmann@43853
|
1221 |
fixes top :: 'a ("\<top>")
|
haftmann@52729
|
1222 |
|
haftmann@52729
|
1223 |
class order_top = order + top +
|
haftmann@51487
|
1224 |
assumes top_greatest: "a \<le> \<top>"
|
haftmann@54868
|
1225 |
begin
|
haftmann@51487
|
1226 |
|
haftmann@54868
|
1227 |
sublocale top!: ordering_top less_eq less top
|
haftmann@51546
|
1228 |
by default (fact top_greatest)
|
haftmann@51487
|
1229 |
|
haftmann@43853
|
1230 |
lemma top_le:
|
haftmann@43853
|
1231 |
"\<top> \<le> a \<Longrightarrow> a = \<top>"
|
haftmann@51487
|
1232 |
by (fact top.extremum_uniqueI)
|
haftmann@43853
|
1233 |
|
haftmann@43816
|
1234 |
lemma top_unique:
|
haftmann@43853
|
1235 |
"\<top> \<le> a \<longleftrightarrow> a = \<top>"
|
haftmann@51487
|
1236 |
by (fact top.extremum_unique)
|
haftmann@43853
|
1237 |
|
haftmann@51487
|
1238 |
lemma not_top_less:
|
haftmann@51487
|
1239 |
"\<not> \<top> < a"
|
haftmann@51487
|
1240 |
by (fact top.extremum_strict)
|
haftmann@43816
|
1241 |
|
haftmann@43814
|
1242 |
lemma less_top:
|
haftmann@43853
|
1243 |
"a \<noteq> \<top> \<longleftrightarrow> a < \<top>"
|
haftmann@51487
|
1244 |
by (fact top.not_eq_extremum)
|
haftmann@43814
|
1245 |
|
haftmann@43814
|
1246 |
end
|
haftmann@28685
|
1247 |
|
haftmann@28685
|
1248 |
|
haftmann@27823
|
1249 |
subsection {* Dense orders *}
|
haftmann@27823
|
1250 |
|
hoelzl@53216
|
1251 |
class dense_order = order +
|
hoelzl@51329
|
1252 |
assumes dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)"
|
hoelzl@51329
|
1253 |
|
hoelzl@53216
|
1254 |
class dense_linorder = linorder + dense_order
|
hoelzl@35579
|
1255 |
begin
|
haftmann@27823
|
1256 |
|
hoelzl@35579
|
1257 |
lemma dense_le:
|
hoelzl@35579
|
1258 |
fixes y z :: 'a
|
hoelzl@35579
|
1259 |
assumes "\<And>x. x < y \<Longrightarrow> x \<le> z"
|
hoelzl@35579
|
1260 |
shows "y \<le> z"
|
hoelzl@35579
|
1261 |
proof (rule ccontr)
|
hoelzl@35579
|
1262 |
assume "\<not> ?thesis"
|
hoelzl@35579
|
1263 |
hence "z < y" by simp
|
hoelzl@35579
|
1264 |
from dense[OF this]
|
hoelzl@35579
|
1265 |
obtain x where "x < y" and "z < x" by safe
|
hoelzl@35579
|
1266 |
moreover have "x \<le> z" using assms[OF `x < y`] .
|
hoelzl@35579
|
1267 |
ultimately show False by auto
|
hoelzl@35579
|
1268 |
qed
|
hoelzl@35579
|
1269 |
|
hoelzl@35579
|
1270 |
lemma dense_le_bounded:
|
hoelzl@35579
|
1271 |
fixes x y z :: 'a
|
hoelzl@35579
|
1272 |
assumes "x < y"
|
hoelzl@35579
|
1273 |
assumes *: "\<And>w. \<lbrakk> x < w ; w < y \<rbrakk> \<Longrightarrow> w \<le> z"
|
hoelzl@35579
|
1274 |
shows "y \<le> z"
|
hoelzl@35579
|
1275 |
proof (rule dense_le)
|
hoelzl@35579
|
1276 |
fix w assume "w < y"
|
hoelzl@35579
|
1277 |
from dense[OF `x < y`] obtain u where "x < u" "u < y" by safe
|
hoelzl@35579
|
1278 |
from linear[of u w]
|
hoelzl@35579
|
1279 |
show "w \<le> z"
|
hoelzl@35579
|
1280 |
proof (rule disjE)
|
hoelzl@35579
|
1281 |
assume "u \<le> w"
|
hoelzl@35579
|
1282 |
from less_le_trans[OF `x < u` `u \<le> w`] `w < y`
|
hoelzl@35579
|
1283 |
show "w \<le> z" by (rule *)
|
hoelzl@35579
|
1284 |
next
|
hoelzl@35579
|
1285 |
assume "w \<le> u"
|
hoelzl@35579
|
1286 |
from `w \<le> u` *[OF `x < u` `u < y`]
|
hoelzl@35579
|
1287 |
show "w \<le> z" by (rule order_trans)
|
hoelzl@35579
|
1288 |
qed
|
hoelzl@35579
|
1289 |
qed
|
hoelzl@35579
|
1290 |
|
hoelzl@51329
|
1291 |
lemma dense_ge:
|
hoelzl@51329
|
1292 |
fixes y z :: 'a
|
hoelzl@51329
|
1293 |
assumes "\<And>x. z < x \<Longrightarrow> y \<le> x"
|
hoelzl@51329
|
1294 |
shows "y \<le> z"
|
hoelzl@51329
|
1295 |
proof (rule ccontr)
|
hoelzl@51329
|
1296 |
assume "\<not> ?thesis"
|
hoelzl@51329
|
1297 |
hence "z < y" by simp
|
hoelzl@51329
|
1298 |
from dense[OF this]
|
hoelzl@51329
|
1299 |
obtain x where "x < y" and "z < x" by safe
|
hoelzl@51329
|
1300 |
moreover have "y \<le> x" using assms[OF `z < x`] .
|
hoelzl@51329
|
1301 |
ultimately show False by auto
|
hoelzl@51329
|
1302 |
qed
|
hoelzl@51329
|
1303 |
|
hoelzl@51329
|
1304 |
lemma dense_ge_bounded:
|
hoelzl@51329
|
1305 |
fixes x y z :: 'a
|
hoelzl@51329
|
1306 |
assumes "z < x"
|
hoelzl@51329
|
1307 |
assumes *: "\<And>w. \<lbrakk> z < w ; w < x \<rbrakk> \<Longrightarrow> y \<le> w"
|
hoelzl@51329
|
1308 |
shows "y \<le> z"
|
hoelzl@51329
|
1309 |
proof (rule dense_ge)
|
hoelzl@51329
|
1310 |
fix w assume "z < w"
|
hoelzl@51329
|
1311 |
from dense[OF `z < x`] obtain u where "z < u" "u < x" by safe
|
hoelzl@51329
|
1312 |
from linear[of u w]
|
hoelzl@51329
|
1313 |
show "y \<le> w"
|
hoelzl@51329
|
1314 |
proof (rule disjE)
|
hoelzl@51329
|
1315 |
assume "w \<le> u"
|
hoelzl@51329
|
1316 |
from `z < w` le_less_trans[OF `w \<le> u` `u < x`]
|
hoelzl@51329
|
1317 |
show "y \<le> w" by (rule *)
|
hoelzl@51329
|
1318 |
next
|
hoelzl@51329
|
1319 |
assume "u \<le> w"
|
hoelzl@51329
|
1320 |
from *[OF `z < u` `u < x`] `u \<le> w`
|
hoelzl@51329
|
1321 |
show "y \<le> w" by (rule order_trans)
|
hoelzl@51329
|
1322 |
qed
|
hoelzl@51329
|
1323 |
qed
|
hoelzl@51329
|
1324 |
|
hoelzl@35579
|
1325 |
end
|
haftmann@27823
|
1326 |
|
hoelzl@51329
|
1327 |
class no_top = order +
|
hoelzl@51329
|
1328 |
assumes gt_ex: "\<exists>y. x < y"
|
hoelzl@51329
|
1329 |
|
hoelzl@51329
|
1330 |
class no_bot = order +
|
hoelzl@51329
|
1331 |
assumes lt_ex: "\<exists>y. y < x"
|
hoelzl@51329
|
1332 |
|
hoelzl@53216
|
1333 |
class unbounded_dense_linorder = dense_linorder + no_top + no_bot
|
hoelzl@51329
|
1334 |
|
haftmann@51546
|
1335 |
|
haftmann@27823
|
1336 |
subsection {* Wellorders *}
|
haftmann@27823
|
1337 |
|
haftmann@27823
|
1338 |
class wellorder = linorder +
|
haftmann@27823
|
1339 |
assumes less_induct [case_names less]: "(\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P a"
|
haftmann@27823
|
1340 |
begin
|
haftmann@27823
|
1341 |
|
haftmann@27823
|
1342 |
lemma wellorder_Least_lemma:
|
haftmann@27823
|
1343 |
fixes k :: 'a
|
haftmann@27823
|
1344 |
assumes "P k"
|
haftmann@34250
|
1345 |
shows LeastI: "P (LEAST x. P x)" and Least_le: "(LEAST x. P x) \<le> k"
|
haftmann@27823
|
1346 |
proof -
|
haftmann@27823
|
1347 |
have "P (LEAST x. P x) \<and> (LEAST x. P x) \<le> k"
|
haftmann@27823
|
1348 |
using assms proof (induct k rule: less_induct)
|
haftmann@27823
|
1349 |
case (less x) then have "P x" by simp
|
haftmann@27823
|
1350 |
show ?case proof (rule classical)
|
haftmann@27823
|
1351 |
assume assm: "\<not> (P (LEAST a. P a) \<and> (LEAST a. P a) \<le> x)"
|
haftmann@27823
|
1352 |
have "\<And>y. P y \<Longrightarrow> x \<le> y"
|
haftmann@27823
|
1353 |
proof (rule classical)
|
haftmann@27823
|
1354 |
fix y
|
hoelzl@38705
|
1355 |
assume "P y" and "\<not> x \<le> y"
|
haftmann@27823
|
1356 |
with less have "P (LEAST a. P a)" and "(LEAST a. P a) \<le> y"
|
haftmann@27823
|
1357 |
by (auto simp add: not_le)
|
haftmann@27823
|
1358 |
with assm have "x < (LEAST a. P a)" and "(LEAST a. P a) \<le> y"
|
haftmann@27823
|
1359 |
by auto
|
haftmann@27823
|
1360 |
then show "x \<le> y" by auto
|
haftmann@27823
|
1361 |
qed
|
haftmann@27823
|
1362 |
with `P x` have Least: "(LEAST a. P a) = x"
|
haftmann@27823
|
1363 |
by (rule Least_equality)
|
haftmann@27823
|
1364 |
with `P x` show ?thesis by simp
|
haftmann@27823
|
1365 |
qed
|
haftmann@27823
|
1366 |
qed
|
haftmann@27823
|
1367 |
then show "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" by auto
|
haftmann@27823
|
1368 |
qed
|
haftmann@27823
|
1369 |
|
haftmann@27823
|
1370 |
-- "The following 3 lemmas are due to Brian Huffman"
|
haftmann@27823
|
1371 |
lemma LeastI_ex: "\<exists>x. P x \<Longrightarrow> P (Least P)"
|
haftmann@27823
|
1372 |
by (erule exE) (erule LeastI)
|
haftmann@27823
|
1373 |
|
haftmann@27823
|
1374 |
lemma LeastI2:
|
haftmann@27823
|
1375 |
"P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)"
|
haftmann@27823
|
1376 |
by (blast intro: LeastI)
|
haftmann@27823
|
1377 |
|
haftmann@27823
|
1378 |
lemma LeastI2_ex:
|
haftmann@27823
|
1379 |
"\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)"
|
haftmann@27823
|
1380 |
by (blast intro: LeastI_ex)
|
haftmann@27823
|
1381 |
|
hoelzl@38705
|
1382 |
lemma LeastI2_wellorder:
|
hoelzl@38705
|
1383 |
assumes "P a"
|
hoelzl@38705
|
1384 |
and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a"
|
hoelzl@38705
|
1385 |
shows "Q (Least P)"
|
hoelzl@38705
|
1386 |
proof (rule LeastI2_order)
|
hoelzl@38705
|
1387 |
show "P (Least P)" using `P a` by (rule LeastI)
|
hoelzl@38705
|
1388 |
next
|
hoelzl@38705
|
1389 |
fix y assume "P y" thus "Least P \<le> y" by (rule Least_le)
|
hoelzl@38705
|
1390 |
next
|
hoelzl@38705
|
1391 |
fix x assume "P x" "\<forall>y. P y \<longrightarrow> x \<le> y" thus "Q x" by (rule assms(2))
|
hoelzl@38705
|
1392 |
qed
|
hoelzl@38705
|
1393 |
|
haftmann@27823
|
1394 |
lemma not_less_Least: "k < (LEAST x. P x) \<Longrightarrow> \<not> P k"
|
haftmann@27823
|
1395 |
apply (simp (no_asm_use) add: not_le [symmetric])
|
haftmann@27823
|
1396 |
apply (erule contrapos_nn)
|
haftmann@27823
|
1397 |
apply (erule Least_le)
|
haftmann@27823
|
1398 |
done
|
haftmann@27823
|
1399 |
|
hoelzl@38705
|
1400 |
end
|
haftmann@27823
|
1401 |
|
haftmann@28685
|
1402 |
|
haftmann@46631
|
1403 |
subsection {* Order on @{typ bool} *}
|
haftmann@28685
|
1404 |
|
haftmann@52729
|
1405 |
instantiation bool :: "{order_bot, order_top, linorder}"
|
haftmann@28685
|
1406 |
begin
|
haftmann@28685
|
1407 |
|
haftmann@28685
|
1408 |
definition
|
haftmann@41080
|
1409 |
le_bool_def [simp]: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q"
|
haftmann@28685
|
1410 |
|
haftmann@28685
|
1411 |
definition
|
haftmann@41080
|
1412 |
[simp]: "(P\<Colon>bool) < Q \<longleftrightarrow> \<not> P \<and> Q"
|
haftmann@28685
|
1413 |
|
haftmann@28685
|
1414 |
definition
|
haftmann@46631
|
1415 |
[simp]: "\<bottom> \<longleftrightarrow> False"
|
haftmann@28685
|
1416 |
|
haftmann@28685
|
1417 |
definition
|
haftmann@46631
|
1418 |
[simp]: "\<top> \<longleftrightarrow> True"
|
haftmann@28685
|
1419 |
|
haftmann@28685
|
1420 |
instance proof
|
haftmann@41080
|
1421 |
qed auto
|
haftmann@28685
|
1422 |
|
nipkow@15524
|
1423 |
end
|
haftmann@28685
|
1424 |
|
haftmann@28685
|
1425 |
lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q"
|
haftmann@41080
|
1426 |
by simp
|
haftmann@28685
|
1427 |
|
haftmann@28685
|
1428 |
lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q"
|
haftmann@41080
|
1429 |
by simp
|
haftmann@28685
|
1430 |
|
haftmann@28685
|
1431 |
lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R"
|
haftmann@41080
|
1432 |
by simp
|
haftmann@28685
|
1433 |
|
haftmann@28685
|
1434 |
lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q"
|
haftmann@41080
|
1435 |
by simp
|
haftmann@32899
|
1436 |
|
haftmann@46631
|
1437 |
lemma bot_boolE: "\<bottom> \<Longrightarrow> P"
|
haftmann@41080
|
1438 |
by simp
|
haftmann@32899
|
1439 |
|
haftmann@46631
|
1440 |
lemma top_boolI: \<top>
|
haftmann@41080
|
1441 |
by simp
|
haftmann@28685
|
1442 |
|
haftmann@28685
|
1443 |
lemma [code]:
|
haftmann@28685
|
1444 |
"False \<le> b \<longleftrightarrow> True"
|
haftmann@28685
|
1445 |
"True \<le> b \<longleftrightarrow> b"
|
haftmann@28685
|
1446 |
"False < b \<longleftrightarrow> b"
|
haftmann@28685
|
1447 |
"True < b \<longleftrightarrow> False"
|
haftmann@41080
|
1448 |
by simp_all
|
haftmann@28685
|
1449 |
|
haftmann@28685
|
1450 |
|
haftmann@46631
|
1451 |
subsection {* Order on @{typ "_ \<Rightarrow> _"} *}
|
haftmann@28685
|
1452 |
|
haftmann@28685
|
1453 |
instantiation "fun" :: (type, ord) ord
|
haftmann@28685
|
1454 |
begin
|
haftmann@28685
|
1455 |
|
haftmann@28685
|
1456 |
definition
|
haftmann@37767
|
1457 |
le_fun_def: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)"
|
haftmann@28685
|
1458 |
|
haftmann@28685
|
1459 |
definition
|
haftmann@41080
|
1460 |
"(f\<Colon>'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> (g \<le> f)"
|
haftmann@28685
|
1461 |
|
haftmann@28685
|
1462 |
instance ..
|
haftmann@28685
|
1463 |
|
haftmann@28685
|
1464 |
end
|
haftmann@28685
|
1465 |
|
haftmann@28685
|
1466 |
instance "fun" :: (type, preorder) preorder proof
|
haftmann@28685
|
1467 |
qed (auto simp add: le_fun_def less_fun_def
|
huffman@44921
|
1468 |
intro: order_trans antisym)
|
haftmann@28685
|
1469 |
|
haftmann@28685
|
1470 |
instance "fun" :: (type, order) order proof
|
huffman@44921
|
1471 |
qed (auto simp add: le_fun_def intro: antisym)
|
haftmann@28685
|
1472 |
|
haftmann@41082
|
1473 |
instantiation "fun" :: (type, bot) bot
|
haftmann@41082
|
1474 |
begin
|
haftmann@41082
|
1475 |
|
haftmann@41082
|
1476 |
definition
|
haftmann@46631
|
1477 |
"\<bottom> = (\<lambda>x. \<bottom>)"
|
haftmann@41082
|
1478 |
|
haftmann@52729
|
1479 |
instance ..
|
haftmann@52729
|
1480 |
|
haftmann@52729
|
1481 |
end
|
haftmann@52729
|
1482 |
|
haftmann@52729
|
1483 |
instantiation "fun" :: (type, order_bot) order_bot
|
haftmann@52729
|
1484 |
begin
|
haftmann@52729
|
1485 |
|
haftmann@49769
|
1486 |
lemma bot_apply [simp, code]:
|
haftmann@46631
|
1487 |
"\<bottom> x = \<bottom>"
|
haftmann@41082
|
1488 |
by (simp add: bot_fun_def)
|
haftmann@41082
|
1489 |
|
haftmann@41082
|
1490 |
instance proof
|
noschinl@46884
|
1491 |
qed (simp add: le_fun_def)
|
haftmann@41082
|
1492 |
|
haftmann@41082
|
1493 |
end
|
haftmann@41082
|
1494 |
|
haftmann@28685
|
1495 |
instantiation "fun" :: (type, top) top
|
haftmann@28685
|
1496 |
begin
|
haftmann@28685
|
1497 |
|
haftmann@28685
|
1498 |
definition
|
haftmann@46631
|
1499 |
[no_atp]: "\<top> = (\<lambda>x. \<top>)"
|
haftmann@28685
|
1500 |
|
haftmann@52729
|
1501 |
instance ..
|
haftmann@52729
|
1502 |
|
haftmann@52729
|
1503 |
end
|
haftmann@52729
|
1504 |
|
haftmann@52729
|
1505 |
instantiation "fun" :: (type, order_top) order_top
|
haftmann@52729
|
1506 |
begin
|
haftmann@52729
|
1507 |
|
haftmann@49769
|
1508 |
lemma top_apply [simp, code]:
|
haftmann@46631
|
1509 |
"\<top> x = \<top>"
|
haftmann@41080
|
1510 |
by (simp add: top_fun_def)
|
haftmann@41080
|
1511 |
|
haftmann@28685
|
1512 |
instance proof
|
noschinl@46884
|
1513 |
qed (simp add: le_fun_def)
|
haftmann@28685
|
1514 |
|
haftmann@28685
|
1515 |
end
|
haftmann@28685
|
1516 |
|
haftmann@28685
|
1517 |
lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g"
|
haftmann@28685
|
1518 |
unfolding le_fun_def by simp
|
haftmann@28685
|
1519 |
|
haftmann@28685
|
1520 |
lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P"
|
haftmann@28685
|
1521 |
unfolding le_fun_def by simp
|
haftmann@28685
|
1522 |
|
haftmann@28685
|
1523 |
lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x"
|
haftmann@54860
|
1524 |
by (rule le_funE)
|
haftmann@28685
|
1525 |
|
hoelzl@59000
|
1526 |
lemma mono_compose: "mono Q \<Longrightarrow> mono (\<lambda>i x. Q i (f x))"
|
hoelzl@59000
|
1527 |
unfolding mono_def le_fun_def by auto
|
hoelzl@59000
|
1528 |
|
haftmann@34250
|
1529 |
|
haftmann@46631
|
1530 |
subsection {* Order on unary and binary predicates *}
|
haftmann@46631
|
1531 |
|
haftmann@46631
|
1532 |
lemma predicate1I:
|
haftmann@46631
|
1533 |
assumes PQ: "\<And>x. P x \<Longrightarrow> Q x"
|
haftmann@46631
|
1534 |
shows "P \<le> Q"
|
haftmann@46631
|
1535 |
apply (rule le_funI)
|
haftmann@46631
|
1536 |
apply (rule le_boolI)
|
haftmann@46631
|
1537 |
apply (rule PQ)
|
haftmann@46631
|
1538 |
apply assumption
|
haftmann@46631
|
1539 |
done
|
haftmann@46631
|
1540 |
|
haftmann@46631
|
1541 |
lemma predicate1D:
|
haftmann@46631
|
1542 |
"P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x"
|
haftmann@46631
|
1543 |
apply (erule le_funE)
|
haftmann@46631
|
1544 |
apply (erule le_boolE)
|
haftmann@46631
|
1545 |
apply assumption+
|
haftmann@46631
|
1546 |
done
|
haftmann@46631
|
1547 |
|
haftmann@46631
|
1548 |
lemma rev_predicate1D:
|
haftmann@46631
|
1549 |
"P x \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x"
|
haftmann@46631
|
1550 |
by (rule predicate1D)
|
haftmann@46631
|
1551 |
|
haftmann@46631
|
1552 |
lemma predicate2I:
|
haftmann@46631
|
1553 |
assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y"
|
haftmann@46631
|
1554 |
shows "P \<le> Q"
|
haftmann@46631
|
1555 |
apply (rule le_funI)+
|
haftmann@46631
|
1556 |
apply (rule le_boolI)
|
haftmann@46631
|
1557 |
apply (rule PQ)
|
haftmann@46631
|
1558 |
apply assumption
|
haftmann@46631
|
1559 |
done
|
haftmann@46631
|
1560 |
|
haftmann@46631
|
1561 |
lemma predicate2D:
|
haftmann@46631
|
1562 |
"P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y"
|
haftmann@46631
|
1563 |
apply (erule le_funE)+
|
haftmann@46631
|
1564 |
apply (erule le_boolE)
|
haftmann@46631
|
1565 |
apply assumption+
|
haftmann@46631
|
1566 |
done
|
haftmann@46631
|
1567 |
|
haftmann@46631
|
1568 |
lemma rev_predicate2D:
|
haftmann@46631
|
1569 |
"P x y \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x y"
|
haftmann@46631
|
1570 |
by (rule predicate2D)
|
haftmann@46631
|
1571 |
|
haftmann@46631
|
1572 |
lemma bot1E [no_atp]: "\<bottom> x \<Longrightarrow> P"
|
haftmann@46631
|
1573 |
by (simp add: bot_fun_def)
|
haftmann@46631
|
1574 |
|
haftmann@46631
|
1575 |
lemma bot2E: "\<bottom> x y \<Longrightarrow> P"
|
haftmann@46631
|
1576 |
by (simp add: bot_fun_def)
|
haftmann@46631
|
1577 |
|
haftmann@46631
|
1578 |
lemma top1I: "\<top> x"
|
haftmann@46631
|
1579 |
by (simp add: top_fun_def)
|
haftmann@46631
|
1580 |
|
haftmann@46631
|
1581 |
lemma top2I: "\<top> x y"
|
haftmann@46631
|
1582 |
by (simp add: top_fun_def)
|
haftmann@46631
|
1583 |
|
haftmann@46631
|
1584 |
|
haftmann@34250
|
1585 |
subsection {* Name duplicates *}
|
haftmann@34250
|
1586 |
|
haftmann@34250
|
1587 |
lemmas order_eq_refl = preorder_class.eq_refl
|
haftmann@34250
|
1588 |
lemmas order_less_irrefl = preorder_class.less_irrefl
|
haftmann@34250
|
1589 |
lemmas order_less_imp_le = preorder_class.less_imp_le
|
haftmann@34250
|
1590 |
lemmas order_less_not_sym = preorder_class.less_not_sym
|
haftmann@34250
|
1591 |
lemmas order_less_asym = preorder_class.less_asym
|
haftmann@34250
|
1592 |
lemmas order_less_trans = preorder_class.less_trans
|
haftmann@34250
|
1593 |
lemmas order_le_less_trans = preorder_class.le_less_trans
|
haftmann@34250
|
1594 |
lemmas order_less_le_trans = preorder_class.less_le_trans
|
haftmann@34250
|
1595 |
lemmas order_less_imp_not_less = preorder_class.less_imp_not_less
|
haftmann@34250
|
1596 |
lemmas order_less_imp_triv = preorder_class.less_imp_triv
|
haftmann@34250
|
1597 |
lemmas order_less_asym' = preorder_class.less_asym'
|
haftmann@34250
|
1598 |
|
haftmann@34250
|
1599 |
lemmas order_less_le = order_class.less_le
|
haftmann@34250
|
1600 |
lemmas order_le_less = order_class.le_less
|
haftmann@34250
|
1601 |
lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq
|
haftmann@34250
|
1602 |
lemmas order_less_imp_not_eq = order_class.less_imp_not_eq
|
haftmann@34250
|
1603 |
lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2
|
haftmann@34250
|
1604 |
lemmas order_neq_le_trans = order_class.neq_le_trans
|
haftmann@34250
|
1605 |
lemmas order_le_neq_trans = order_class.le_neq_trans
|
haftmann@34250
|
1606 |
lemmas order_antisym = order_class.antisym
|
haftmann@34250
|
1607 |
lemmas order_eq_iff = order_class.eq_iff
|
haftmann@34250
|
1608 |
lemmas order_antisym_conv = order_class.antisym_conv
|
haftmann@34250
|
1609 |
|
haftmann@34250
|
1610 |
lemmas linorder_linear = linorder_class.linear
|
haftmann@34250
|
1611 |
lemmas linorder_less_linear = linorder_class.less_linear
|
haftmann@34250
|
1612 |
lemmas linorder_le_less_linear = linorder_class.le_less_linear
|
haftmann@34250
|
1613 |
lemmas linorder_le_cases = linorder_class.le_cases
|
haftmann@34250
|
1614 |
lemmas linorder_not_less = linorder_class.not_less
|
haftmann@34250
|
1615 |
lemmas linorder_not_le = linorder_class.not_le
|
haftmann@34250
|
1616 |
lemmas linorder_neq_iff = linorder_class.neq_iff
|
haftmann@34250
|
1617 |
lemmas linorder_neqE = linorder_class.neqE
|
haftmann@34250
|
1618 |
lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1
|
haftmann@34250
|
1619 |
lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2
|
haftmann@34250
|
1620 |
lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3
|
haftmann@34250
|
1621 |
|
haftmann@28685
|
1622 |
end
|
haftmann@51487
|
1623 |
|