src/HOL/Real/HahnBanach/README.html
author webertj
Sun Nov 14 01:40:27 2004 +0100 (2004-11-14)
changeset 15283 f21466450330
parent 7927 b50446a33c16
child 15582 7219facb3fd0
permissions -rw-r--r--
DOCTYPE declaration added
webertj@15283
     1
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
webertj@15283
     2
wenzelm@7655
     3
<HTML><HEAD><TITLE>HOL/Real/HahnBanach/README</TITLE></HEAD><BODY>
wenzelm@7655
     4
webertj@15283
     5
<H3>The Hahn-Banach Theorem for Real Vector Spaces (Isabelle/Isar)</H3>
wenzelm@7655
     6
webertj@15283
     7
Author: Gertrud Bauer, Technische Universit&auml;t M&uuml;nchen<P>
wenzelm@7655
     8
wenzelm@7655
     9
This directory contains the proof of the Hahn-Banach theorem for real vectorspaces,
wenzelm@7655
    10
following H. Heuser, Funktionalanalysis, p. 228 -232.
wenzelm@7655
    11
The Hahn-Banach theorem is one of the fundamental theorems of functioal analysis.
wenzelm@7655
    12
It is a conclusion of Zorn's lemma.<P>
wenzelm@7655
    13
wenzelm@7655
    14
Two different formaulations of the theorem are presented, one for general real vectorspaces
wenzelm@7655
    15
and its application to normed vectorspaces. <P>
wenzelm@7655
    16
wenzelm@7655
    17
The theorem says, that every continous linearform, defined on arbitrary subspaces
wenzelm@7655
    18
(not only one-dimensional subspaces), can be extended to a continous linearform on
wenzelm@7655
    19
the whole vectorspace.
wenzelm@7655
    20
wenzelm@7655
    21
wenzelm@7655
    22
<HR>
wenzelm@7655
    23
wenzelm@7655
    24
<ADDRESS>
wenzelm@7655
    25
<A NAME="bauerg@in.tum.de" HREF="mailto:bauerg@in.tum.de">bauerg@in.tum.de</A>
wenzelm@7655
    26
</ADDRESS>
wenzelm@7655
    27
wenzelm@7655
    28
</BODY></HTML>
wenzelm@7655
    29