src/HOL/Map.thy
author haftmann
Tue Jun 02 16:23:43 2009 +0200 (2009-06-02)
changeset 31380 f25536c0bb80
parent 31080 21ffc770ebc0
child 32236 0203e1006f1b
permissions -rw-r--r--
added/moved lemmas by Andreas Lochbihler
nipkow@3981
     1
(*  Title:      HOL/Map.thy
nipkow@3981
     2
    Author:     Tobias Nipkow, based on a theory by David von Oheimb
webertj@13908
     3
    Copyright   1997-2003 TU Muenchen
nipkow@3981
     4
nipkow@3981
     5
The datatype of `maps' (written ~=>); strongly resembles maps in VDM.
nipkow@3981
     6
*)
nipkow@3981
     7
nipkow@13914
     8
header {* Maps *}
nipkow@13914
     9
nipkow@15131
    10
theory Map
nipkow@15140
    11
imports List
nipkow@15131
    12
begin
nipkow@3981
    13
haftmann@30935
    14
types ('a,'b) "~=>" = "'a => 'b option"  (infixr "~=>" 0)
oheimb@14100
    15
translations (type) "a ~=> b " <= (type) "a => b option"
nipkow@3981
    16
wenzelm@19656
    17
syntax (xsymbols)
haftmann@25490
    18
  "~=>" :: "[type, type] => type"  (infixr "\<rightharpoonup>" 0)
wenzelm@19656
    19
nipkow@19378
    20
abbreviation
wenzelm@21404
    21
  empty :: "'a ~=> 'b" where
nipkow@19378
    22
  "empty == %x. None"
nipkow@19378
    23
wenzelm@19656
    24
definition
haftmann@25670
    25
  map_comp :: "('b ~=> 'c) => ('a ~=> 'b) => ('a ~=> 'c)"  (infixl "o'_m" 55) where
wenzelm@20800
    26
  "f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)"
nipkow@19378
    27
wenzelm@21210
    28
notation (xsymbols)
wenzelm@19656
    29
  map_comp  (infixl "\<circ>\<^sub>m" 55)
wenzelm@19656
    30
wenzelm@20800
    31
definition
wenzelm@21404
    32
  map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)"  (infixl "++" 100) where
wenzelm@20800
    33
  "m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)"
wenzelm@20800
    34
wenzelm@21404
    35
definition
wenzelm@21404
    36
  restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)"  (infixl "|`"  110) where
wenzelm@20800
    37
  "m|`A = (\<lambda>x. if x : A then m x else None)"
nipkow@13910
    38
wenzelm@21210
    39
notation (latex output)
wenzelm@19656
    40
  restrict_map  ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
wenzelm@19656
    41
wenzelm@20800
    42
definition
wenzelm@21404
    43
  dom :: "('a ~=> 'b) => 'a set" where
wenzelm@20800
    44
  "dom m = {a. m a ~= None}"
wenzelm@20800
    45
wenzelm@21404
    46
definition
wenzelm@21404
    47
  ran :: "('a ~=> 'b) => 'b set" where
wenzelm@20800
    48
  "ran m = {b. EX a. m a = Some b}"
wenzelm@20800
    49
wenzelm@21404
    50
definition
wenzelm@21404
    51
  map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool"  (infix "\<subseteq>\<^sub>m" 50) where
wenzelm@20800
    52
  "(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)"
wenzelm@20800
    53
wenzelm@20800
    54
consts
wenzelm@20800
    55
  map_of :: "('a * 'b) list => 'a ~=> 'b"
wenzelm@20800
    56
  map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)"
wenzelm@20800
    57
nipkow@14180
    58
nonterminals
nipkow@14180
    59
  maplets maplet
nipkow@14180
    60
oheimb@5300
    61
syntax
nipkow@14180
    62
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /|->/ _")
nipkow@14180
    63
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[|->]/ _")
nipkow@14180
    64
  ""         :: "maplet => maplets"             ("_")
nipkow@14180
    65
  "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
nipkow@14180
    66
  "_MapUpd"  :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
nipkow@14180
    67
  "_Map"     :: "maplets => 'a ~=> 'b"            ("(1[_])")
nipkow@3981
    68
wenzelm@12114
    69
syntax (xsymbols)
nipkow@14180
    70
  "_maplet"  :: "['a, 'a] => maplet"             ("_ /\<mapsto>/ _")
nipkow@14180
    71
  "_maplets" :: "['a, 'a] => maplet"             ("_ /[\<mapsto>]/ _")
nipkow@14180
    72
oheimb@5300
    73
translations
nipkow@14180
    74
  "_MapUpd m (_Maplets xy ms)"  == "_MapUpd (_MapUpd m xy) ms"
nipkow@14180
    75
  "_MapUpd m (_maplet  x y)"    == "m(x:=Some y)"
nipkow@14180
    76
  "_MapUpd m (_maplets x y)"    == "map_upds m x y"
wenzelm@19947
    77
  "_Map ms"                     == "_MapUpd (CONST empty) ms"
nipkow@14180
    78
  "_Map (_Maplets ms1 ms2)"     <= "_MapUpd (_Map ms1) ms2"
nipkow@14180
    79
  "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3"
nipkow@14180
    80
berghofe@5183
    81
primrec
berghofe@5183
    82
  "map_of [] = empty"
oheimb@5300
    83
  "map_of (p#ps) = (map_of ps)(fst p |-> snd p)"
oheimb@5300
    84
haftmann@25965
    85
declare map_of.simps [code del]
haftmann@25965
    86
haftmann@25965
    87
lemma map_of_Cons_code [code]: 
haftmann@25965
    88
  "map_of [] k = None"
haftmann@25965
    89
  "map_of ((l, v) # ps) k = (if l = k then Some v else map_of ps k)"
haftmann@25965
    90
  by simp_all
haftmann@25965
    91
wenzelm@20800
    92
defs
haftmann@28562
    93
  map_upds_def [code]: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))"
wenzelm@20800
    94
wenzelm@20800
    95
wenzelm@17399
    96
subsection {* @{term [source] empty} *}
webertj@13908
    97
wenzelm@20800
    98
lemma empty_upd_none [simp]: "empty(x := None) = empty"
nipkow@24331
    99
by (rule ext) simp
webertj@13908
   100
webertj@13908
   101
wenzelm@17399
   102
subsection {* @{term [source] map_upd} *}
webertj@13908
   103
webertj@13908
   104
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t"
nipkow@24331
   105
by (rule ext) simp
webertj@13908
   106
wenzelm@20800
   107
lemma map_upd_nonempty [simp]: "t(k|->x) ~= empty"
wenzelm@20800
   108
proof
wenzelm@20800
   109
  assume "t(k \<mapsto> x) = empty"
wenzelm@20800
   110
  then have "(t(k \<mapsto> x)) k = None" by simp
wenzelm@20800
   111
  then show False by simp
wenzelm@20800
   112
qed
webertj@13908
   113
wenzelm@20800
   114
lemma map_upd_eqD1:
wenzelm@20800
   115
  assumes "m(a\<mapsto>x) = n(a\<mapsto>y)"
wenzelm@20800
   116
  shows "x = y"
wenzelm@20800
   117
proof -
wenzelm@20800
   118
  from prems have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp
wenzelm@20800
   119
  then show ?thesis by simp
wenzelm@20800
   120
qed
oheimb@14100
   121
wenzelm@20800
   122
lemma map_upd_Some_unfold:
nipkow@24331
   123
  "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"
nipkow@24331
   124
by auto
oheimb@14100
   125
wenzelm@20800
   126
lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A"
nipkow@24331
   127
by auto
nipkow@15303
   128
webertj@13908
   129
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))"
nipkow@24331
   130
unfolding image_def
nipkow@24331
   131
apply (simp (no_asm_use) add:full_SetCompr_eq)
nipkow@24331
   132
apply (rule finite_subset)
nipkow@24331
   133
 prefer 2 apply assumption
nipkow@24331
   134
apply (auto)
nipkow@24331
   135
done
webertj@13908
   136
webertj@13908
   137
wenzelm@17399
   138
subsection {* @{term [source] map_of} *}
webertj@13908
   139
nipkow@15304
   140
lemma map_of_eq_None_iff:
nipkow@24331
   141
  "(map_of xys x = None) = (x \<notin> fst ` (set xys))"
nipkow@24331
   142
by (induct xys) simp_all
nipkow@15304
   143
nipkow@24331
   144
lemma map_of_is_SomeD: "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys"
nipkow@24331
   145
apply (induct xys)
nipkow@24331
   146
 apply simp
nipkow@24331
   147
apply (clarsimp split: if_splits)
nipkow@24331
   148
done
nipkow@15304
   149
wenzelm@20800
   150
lemma map_of_eq_Some_iff [simp]:
nipkow@24331
   151
  "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)"
nipkow@24331
   152
apply (induct xys)
nipkow@24331
   153
 apply simp
nipkow@24331
   154
apply (auto simp: map_of_eq_None_iff [symmetric])
nipkow@24331
   155
done
nipkow@15304
   156
wenzelm@20800
   157
lemma Some_eq_map_of_iff [simp]:
nipkow@24331
   158
  "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)"
nipkow@24331
   159
by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric])
nipkow@15304
   160
paulson@17724
   161
lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk>
wenzelm@20800
   162
    \<Longrightarrow> map_of xys x = Some y"
nipkow@24331
   163
apply (induct xys)
nipkow@24331
   164
 apply simp
nipkow@24331
   165
apply force
nipkow@24331
   166
done
nipkow@15304
   167
wenzelm@20800
   168
lemma map_of_zip_is_None [simp]:
nipkow@24331
   169
  "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)"
nipkow@24331
   170
by (induct rule: list_induct2) simp_all
nipkow@15110
   171
haftmann@26443
   172
lemma map_of_zip_is_Some:
haftmann@26443
   173
  assumes "length xs = length ys"
haftmann@26443
   174
  shows "x \<in> set xs \<longleftrightarrow> (\<exists>y. map_of (zip xs ys) x = Some y)"
haftmann@26443
   175
using assms by (induct rule: list_induct2) simp_all
haftmann@26443
   176
haftmann@26443
   177
lemma map_of_zip_upd:
haftmann@26443
   178
  fixes x :: 'a and xs :: "'a list" and ys zs :: "'b list"
haftmann@26443
   179
  assumes "length ys = length xs"
haftmann@26443
   180
    and "length zs = length xs"
haftmann@26443
   181
    and "x \<notin> set xs"
haftmann@26443
   182
    and "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)"
haftmann@26443
   183
  shows "map_of (zip xs ys) = map_of (zip xs zs)"
haftmann@26443
   184
proof
haftmann@26443
   185
  fix x' :: 'a
haftmann@26443
   186
  show "map_of (zip xs ys) x' = map_of (zip xs zs) x'"
haftmann@26443
   187
  proof (cases "x = x'")
haftmann@26443
   188
    case True
haftmann@26443
   189
    from assms True map_of_zip_is_None [of xs ys x']
haftmann@26443
   190
      have "map_of (zip xs ys) x' = None" by simp
haftmann@26443
   191
    moreover from assms True map_of_zip_is_None [of xs zs x']
haftmann@26443
   192
      have "map_of (zip xs zs) x' = None" by simp
haftmann@26443
   193
    ultimately show ?thesis by simp
haftmann@26443
   194
  next
haftmann@26443
   195
    case False from assms
haftmann@26443
   196
      have "(map_of (zip xs ys)(x \<mapsto> y)) x' = (map_of (zip xs zs)(x \<mapsto> z)) x'" by auto
haftmann@26443
   197
    with False show ?thesis by simp
haftmann@26443
   198
  qed
haftmann@26443
   199
qed
haftmann@26443
   200
haftmann@26443
   201
lemma map_of_zip_inject:
haftmann@26443
   202
  assumes "length ys = length xs"
haftmann@26443
   203
    and "length zs = length xs"
haftmann@26443
   204
    and dist: "distinct xs"
haftmann@26443
   205
    and map_of: "map_of (zip xs ys) = map_of (zip xs zs)"
haftmann@26443
   206
  shows "ys = zs"
haftmann@26443
   207
using assms(1) assms(2)[symmetric] using dist map_of proof (induct ys xs zs rule: list_induct3)
haftmann@26443
   208
  case Nil show ?case by simp
haftmann@26443
   209
next
haftmann@26443
   210
  case (Cons y ys x xs z zs)
haftmann@26443
   211
  from `map_of (zip (x#xs) (y#ys)) = map_of (zip (x#xs) (z#zs))`
haftmann@26443
   212
    have map_of: "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" by simp
haftmann@26443
   213
  from Cons have "length ys = length xs" and "length zs = length xs"
haftmann@26443
   214
    and "x \<notin> set xs" by simp_all
haftmann@26443
   215
  then have "map_of (zip xs ys) = map_of (zip xs zs)" using map_of by (rule map_of_zip_upd)
haftmann@26443
   216
  with Cons.hyps `distinct (x # xs)` have "ys = zs" by simp
haftmann@26443
   217
  moreover from map_of have "y = z" by (rule map_upd_eqD1)
haftmann@26443
   218
  ultimately show ?case by simp
haftmann@26443
   219
qed
haftmann@26443
   220
nipkow@15110
   221
lemma finite_range_map_of: "finite (range (map_of xys))"
nipkow@24331
   222
apply (induct xys)
nipkow@24331
   223
 apply (simp_all add: image_constant)
nipkow@24331
   224
apply (rule finite_subset)
nipkow@24331
   225
 prefer 2 apply assumption
nipkow@24331
   226
apply auto
nipkow@24331
   227
done
nipkow@15110
   228
wenzelm@20800
   229
lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs"
nipkow@24331
   230
by (induct xs) (simp, atomize (full), auto)
webertj@13908
   231
wenzelm@20800
   232
lemma map_of_mapk_SomeI:
nipkow@24331
   233
  "inj f ==> map_of t k = Some x ==>
nipkow@24331
   234
   map_of (map (split (%k. Pair (f k))) t) (f k) = Some x"
nipkow@24331
   235
by (induct t) (auto simp add: inj_eq)
webertj@13908
   236
wenzelm@20800
   237
lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x"
nipkow@24331
   238
by (induct l) auto
webertj@13908
   239
wenzelm@20800
   240
lemma map_of_filter_in:
nipkow@24331
   241
  "map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (split P) xs) k = Some z"
nipkow@24331
   242
by (induct xs) auto
webertj@13908
   243
nipkow@30235
   244
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = Option.map f (map_of xs x)"
nipkow@24331
   245
by (induct xs) auto
webertj@13908
   246
webertj@13908
   247
nipkow@30235
   248
subsection {* @{const Option.map} related *}
webertj@13908
   249
nipkow@30235
   250
lemma option_map_o_empty [simp]: "Option.map f o empty = empty"
nipkow@24331
   251
by (rule ext) simp
webertj@13908
   252
wenzelm@20800
   253
lemma option_map_o_map_upd [simp]:
nipkow@30235
   254
  "Option.map f o m(a|->b) = (Option.map f o m)(a|->f b)"
nipkow@24331
   255
by (rule ext) simp
wenzelm@20800
   256
webertj@13908
   257
wenzelm@17399
   258
subsection {* @{term [source] map_comp} related *}
schirmer@17391
   259
wenzelm@20800
   260
lemma map_comp_empty [simp]:
nipkow@24331
   261
  "m \<circ>\<^sub>m empty = empty"
nipkow@24331
   262
  "empty \<circ>\<^sub>m m = empty"
nipkow@24331
   263
by (auto simp add: map_comp_def intro: ext split: option.splits)
schirmer@17391
   264
wenzelm@20800
   265
lemma map_comp_simps [simp]:
nipkow@24331
   266
  "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None"
nipkow@24331
   267
  "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'"
nipkow@24331
   268
by (auto simp add: map_comp_def)
schirmer@17391
   269
schirmer@17391
   270
lemma map_comp_Some_iff:
nipkow@24331
   271
  "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)"
nipkow@24331
   272
by (auto simp add: map_comp_def split: option.splits)
schirmer@17391
   273
schirmer@17391
   274
lemma map_comp_None_iff:
nipkow@24331
   275
  "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) "
nipkow@24331
   276
by (auto simp add: map_comp_def split: option.splits)
webertj@13908
   277
wenzelm@20800
   278
oheimb@14100
   279
subsection {* @{text "++"} *}
webertj@13908
   280
nipkow@14025
   281
lemma map_add_empty[simp]: "m ++ empty = m"
nipkow@24331
   282
by(simp add: map_add_def)
webertj@13908
   283
nipkow@14025
   284
lemma empty_map_add[simp]: "empty ++ m = m"
nipkow@24331
   285
by (rule ext) (simp add: map_add_def split: option.split)
webertj@13908
   286
nipkow@14025
   287
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"
nipkow@24331
   288
by (rule ext) (simp add: map_add_def split: option.split)
wenzelm@20800
   289
wenzelm@20800
   290
lemma map_add_Some_iff:
nipkow@24331
   291
  "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)"
nipkow@24331
   292
by (simp add: map_add_def split: option.split)
nipkow@14025
   293
wenzelm@20800
   294
lemma map_add_SomeD [dest!]:
nipkow@24331
   295
  "(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x"
nipkow@24331
   296
by (rule map_add_Some_iff [THEN iffD1])
webertj@13908
   297
wenzelm@20800
   298
lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx"
nipkow@24331
   299
by (subst map_add_Some_iff) fast
webertj@13908
   300
nipkow@14025
   301
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)"
nipkow@24331
   302
by (simp add: map_add_def split: option.split)
webertj@13908
   303
nipkow@14025
   304
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)"
nipkow@24331
   305
by (rule ext) (simp add: map_add_def)
webertj@13908
   306
nipkow@14186
   307
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)"
nipkow@24331
   308
by (simp add: map_upds_def)
nipkow@14186
   309
wenzelm@20800
   310
lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs"
nipkow@24331
   311
unfolding map_add_def
nipkow@24331
   312
apply (induct xs)
nipkow@24331
   313
 apply simp
nipkow@24331
   314
apply (rule ext)
nipkow@24331
   315
apply (simp split add: option.split)
nipkow@24331
   316
done
webertj@13908
   317
nipkow@14025
   318
lemma finite_range_map_of_map_add:
wenzelm@20800
   319
  "finite (range f) ==> finite (range (f ++ map_of l))"
nipkow@24331
   320
apply (induct l)
nipkow@24331
   321
 apply (auto simp del: fun_upd_apply)
nipkow@24331
   322
apply (erule finite_range_updI)
nipkow@24331
   323
done
webertj@13908
   324
wenzelm@20800
   325
lemma inj_on_map_add_dom [iff]:
nipkow@24331
   326
  "inj_on (m ++ m') (dom m') = inj_on m' (dom m')"
nipkow@24331
   327
by (fastsimp simp: map_add_def dom_def inj_on_def split: option.splits)
wenzelm@20800
   328
nipkow@15304
   329
wenzelm@17399
   330
subsection {* @{term [source] restrict_map} *}
oheimb@14100
   331
wenzelm@20800
   332
lemma restrict_map_to_empty [simp]: "m|`{} = empty"
nipkow@24331
   333
by (simp add: restrict_map_def)
nipkow@14186
   334
haftmann@31380
   335
lemma restrict_map_insert: "f |` (insert a A) = (f |` A)(a := f a)"
haftmann@31380
   336
by (auto simp add: restrict_map_def intro: ext)
haftmann@31380
   337
wenzelm@20800
   338
lemma restrict_map_empty [simp]: "empty|`D = empty"
nipkow@24331
   339
by (simp add: restrict_map_def)
nipkow@14186
   340
nipkow@15693
   341
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x"
nipkow@24331
   342
by (simp add: restrict_map_def)
oheimb@14100
   343
nipkow@15693
   344
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None"
nipkow@24331
   345
by (simp add: restrict_map_def)
oheimb@14100
   346
nipkow@15693
   347
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"
nipkow@24331
   348
by (auto simp: restrict_map_def ran_def split: split_if_asm)
oheimb@14100
   349
nipkow@15693
   350
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A"
nipkow@24331
   351
by (auto simp: restrict_map_def dom_def split: split_if_asm)
oheimb@14100
   352
nipkow@15693
   353
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
nipkow@24331
   354
by (rule ext) (auto simp: restrict_map_def)
oheimb@14100
   355
nipkow@15693
   356
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)"
nipkow@24331
   357
by (rule ext) (auto simp: restrict_map_def)
oheimb@14100
   358
wenzelm@20800
   359
lemma restrict_fun_upd [simp]:
nipkow@24331
   360
  "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
nipkow@24331
   361
by (simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   362
wenzelm@20800
   363
lemma fun_upd_None_restrict [simp]:
nipkow@24331
   364
  "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)"
nipkow@24331
   365
by (simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   366
wenzelm@20800
   367
lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
nipkow@24331
   368
by (simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   369
wenzelm@20800
   370
lemma fun_upd_restrict_conv [simp]:
nipkow@24331
   371
  "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
nipkow@24331
   372
by (simp add: restrict_map_def expand_fun_eq)
nipkow@14186
   373
oheimb@14100
   374
wenzelm@17399
   375
subsection {* @{term [source] map_upds} *}
nipkow@14025
   376
wenzelm@20800
   377
lemma map_upds_Nil1 [simp]: "m([] [|->] bs) = m"
nipkow@24331
   378
by (simp add: map_upds_def)
nipkow@14025
   379
wenzelm@20800
   380
lemma map_upds_Nil2 [simp]: "m(as [|->] []) = m"
nipkow@24331
   381
by (simp add:map_upds_def)
wenzelm@20800
   382
wenzelm@20800
   383
lemma map_upds_Cons [simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)"
nipkow@24331
   384
by (simp add:map_upds_def)
nipkow@14025
   385
wenzelm@20800
   386
lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow>
nipkow@24331
   387
  m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)"
nipkow@24331
   388
apply(induct xs)
nipkow@24331
   389
 apply (clarsimp simp add: neq_Nil_conv)
nipkow@24331
   390
apply (case_tac ys)
nipkow@24331
   391
 apply simp
nipkow@24331
   392
apply simp
nipkow@24331
   393
done
nipkow@14187
   394
wenzelm@20800
   395
lemma map_upds_list_update2_drop [simp]:
wenzelm@20800
   396
  "\<lbrakk>size xs \<le> i; i < size ys\<rbrakk>
wenzelm@20800
   397
    \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)"
nipkow@24331
   398
apply (induct xs arbitrary: m ys i)
nipkow@24331
   399
 apply simp
nipkow@24331
   400
apply (case_tac ys)
nipkow@24331
   401
 apply simp
nipkow@24331
   402
apply (simp split: nat.split)
nipkow@24331
   403
done
nipkow@14025
   404
wenzelm@20800
   405
lemma map_upd_upds_conv_if:
wenzelm@20800
   406
  "(f(x|->y))(xs [|->] ys) =
wenzelm@20800
   407
   (if x : set(take (length ys) xs) then f(xs [|->] ys)
wenzelm@20800
   408
                                    else (f(xs [|->] ys))(x|->y))"
nipkow@24331
   409
apply (induct xs arbitrary: x y ys f)
nipkow@24331
   410
 apply simp
nipkow@24331
   411
apply (case_tac ys)
nipkow@24331
   412
 apply (auto split: split_if simp: fun_upd_twist)
nipkow@24331
   413
done
nipkow@14025
   414
nipkow@14025
   415
lemma map_upds_twist [simp]:
nipkow@24331
   416
  "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)"
nipkow@24331
   417
using set_take_subset by (fastsimp simp add: map_upd_upds_conv_if)
nipkow@14025
   418
wenzelm@20800
   419
lemma map_upds_apply_nontin [simp]:
nipkow@24331
   420
  "x ~: set xs ==> (f(xs[|->]ys)) x = f x"
nipkow@24331
   421
apply (induct xs arbitrary: ys)
nipkow@24331
   422
 apply simp
nipkow@24331
   423
apply (case_tac ys)
nipkow@24331
   424
 apply (auto simp: map_upd_upds_conv_if)
nipkow@24331
   425
done
nipkow@14025
   426
wenzelm@20800
   427
lemma fun_upds_append_drop [simp]:
nipkow@24331
   428
  "size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)"
nipkow@24331
   429
apply (induct xs arbitrary: m ys)
nipkow@24331
   430
 apply simp
nipkow@24331
   431
apply (case_tac ys)
nipkow@24331
   432
 apply simp_all
nipkow@24331
   433
done
nipkow@14300
   434
wenzelm@20800
   435
lemma fun_upds_append2_drop [simp]:
nipkow@24331
   436
  "size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)"
nipkow@24331
   437
apply (induct xs arbitrary: m ys)
nipkow@24331
   438
 apply simp
nipkow@24331
   439
apply (case_tac ys)
nipkow@24331
   440
 apply simp_all
nipkow@24331
   441
done
nipkow@14300
   442
nipkow@14300
   443
wenzelm@20800
   444
lemma restrict_map_upds[simp]:
wenzelm@20800
   445
  "\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
wenzelm@20800
   446
    \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)"
nipkow@24331
   447
apply (induct xs arbitrary: m ys)
nipkow@24331
   448
 apply simp
nipkow@24331
   449
apply (case_tac ys)
nipkow@24331
   450
 apply simp
nipkow@24331
   451
apply (simp add: Diff_insert [symmetric] insert_absorb)
nipkow@24331
   452
apply (simp add: map_upd_upds_conv_if)
nipkow@24331
   453
done
nipkow@14186
   454
nipkow@14186
   455
wenzelm@17399
   456
subsection {* @{term [source] dom} *}
webertj@13908
   457
nipkow@31080
   458
lemma dom_eq_empty_conv [simp]: "dom f = {} \<longleftrightarrow> f = empty"
nipkow@31080
   459
by(auto intro!:ext simp: dom_def)
nipkow@31080
   460
webertj@13908
   461
lemma domI: "m a = Some b ==> a : dom m"
nipkow@24331
   462
by(simp add:dom_def)
oheimb@14100
   463
(* declare domI [intro]? *)
webertj@13908
   464
paulson@15369
   465
lemma domD: "a : dom m ==> \<exists>b. m a = Some b"
nipkow@24331
   466
by (cases "m a") (auto simp add: dom_def)
webertj@13908
   467
wenzelm@20800
   468
lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)"
nipkow@24331
   469
by(simp add:dom_def)
webertj@13908
   470
wenzelm@20800
   471
lemma dom_empty [simp]: "dom empty = {}"
nipkow@24331
   472
by(simp add:dom_def)
webertj@13908
   473
wenzelm@20800
   474
lemma dom_fun_upd [simp]:
nipkow@24331
   475
  "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
nipkow@24331
   476
by(auto simp add:dom_def)
webertj@13908
   477
nipkow@13937
   478
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
nipkow@24331
   479
by (induct xys) (auto simp del: fun_upd_apply)
nipkow@13937
   480
nipkow@15304
   481
lemma dom_map_of_conv_image_fst:
nipkow@24331
   482
  "dom(map_of xys) = fst ` (set xys)"
nipkow@24331
   483
by(force simp: dom_map_of)
nipkow@15304
   484
wenzelm@20800
   485
lemma dom_map_of_zip [simp]: "[| length xs = length ys; distinct xs |] ==>
nipkow@24331
   486
  dom(map_of(zip xs ys)) = set xs"
nipkow@24331
   487
by (induct rule: list_induct2) simp_all
nipkow@15110
   488
webertj@13908
   489
lemma finite_dom_map_of: "finite (dom (map_of l))"
nipkow@24331
   490
by (induct l) (auto simp add: dom_def insert_Collect [symmetric])
webertj@13908
   491
wenzelm@20800
   492
lemma dom_map_upds [simp]:
nipkow@24331
   493
  "dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m"
nipkow@24331
   494
apply (induct xs arbitrary: m ys)
nipkow@24331
   495
 apply simp
nipkow@24331
   496
apply (case_tac ys)
nipkow@24331
   497
 apply auto
nipkow@24331
   498
done
nipkow@13910
   499
wenzelm@20800
   500
lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m"
nipkow@24331
   501
by(auto simp:dom_def)
nipkow@13910
   502
wenzelm@20800
   503
lemma dom_override_on [simp]:
wenzelm@20800
   504
  "dom(override_on f g A) =
wenzelm@20800
   505
    (dom f  - {a. a : A - dom g}) Un {a. a : A Int dom g}"
nipkow@24331
   506
by(auto simp: dom_def override_on_def)
webertj@13908
   507
nipkow@14027
   508
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
nipkow@24331
   509
by (rule ext) (force simp: map_add_def dom_def split: option.split)
wenzelm@20800
   510
haftmann@29622
   511
lemma dom_const [simp]:
haftmann@29622
   512
  "dom (\<lambda>x. Some y) = UNIV"
haftmann@29622
   513
  by auto
haftmann@29622
   514
haftmann@29622
   515
lemma dom_if:
haftmann@29622
   516
  "dom (\<lambda>x. if P x then f x else g x) = dom f \<inter> {x. P x} \<union> dom g \<inter> {x. \<not> P x}"
haftmann@29622
   517
  by (auto split: if_splits)
haftmann@29622
   518
haftmann@29622
   519
nipkow@22230
   520
(* Due to John Matthews - could be rephrased with dom *)
nipkow@22230
   521
lemma finite_map_freshness:
nipkow@22230
   522
  "finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow>
nipkow@22230
   523
   \<exists>x. f x = None"
nipkow@22230
   524
by(bestsimp dest:ex_new_if_finite)
nipkow@14027
   525
haftmann@28790
   526
lemma dom_minus:
haftmann@28790
   527
  "f x = None \<Longrightarrow> dom f - insert x A = dom f - A"
haftmann@28790
   528
  unfolding dom_def by simp
haftmann@28790
   529
haftmann@28790
   530
lemma insert_dom:
haftmann@28790
   531
  "f x = Some y \<Longrightarrow> insert x (dom f) = dom f"
haftmann@28790
   532
  unfolding dom_def by auto
haftmann@28790
   533
haftmann@28790
   534
wenzelm@17399
   535
subsection {* @{term [source] ran} *}
oheimb@14100
   536
wenzelm@20800
   537
lemma ranI: "m a = Some b ==> b : ran m"
nipkow@24331
   538
by(auto simp: ran_def)
oheimb@14100
   539
(* declare ranI [intro]? *)
webertj@13908
   540
wenzelm@20800
   541
lemma ran_empty [simp]: "ran empty = {}"
nipkow@24331
   542
by(auto simp: ran_def)
webertj@13908
   543
wenzelm@20800
   544
lemma ran_map_upd [simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)"
nipkow@24331
   545
unfolding ran_def
nipkow@24331
   546
apply auto
nipkow@24331
   547
apply (subgoal_tac "aa ~= a")
nipkow@24331
   548
 apply auto
nipkow@24331
   549
done
wenzelm@20800
   550
nipkow@13910
   551
oheimb@14100
   552
subsection {* @{text "map_le"} *}
nipkow@13910
   553
kleing@13912
   554
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"
nipkow@24331
   555
by (simp add: map_le_def)
nipkow@13910
   556
paulson@17724
   557
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f"
nipkow@24331
   558
by (force simp add: map_le_def)
nipkow@14187
   559
nipkow@13910
   560
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"
nipkow@24331
   561
by (fastsimp simp add: map_le_def)
nipkow@13910
   562
paulson@17724
   563
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)"
nipkow@24331
   564
by (force simp add: map_le_def)
nipkow@14187
   565
wenzelm@20800
   566
lemma map_le_upds [simp]:
nipkow@24331
   567
  "f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)"
nipkow@24331
   568
apply (induct as arbitrary: f g bs)
nipkow@24331
   569
 apply simp
nipkow@24331
   570
apply (case_tac bs)
nipkow@24331
   571
 apply auto
nipkow@24331
   572
done
webertj@13908
   573
webertj@14033
   574
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"
nipkow@24331
   575
by (fastsimp simp add: map_le_def dom_def)
webertj@14033
   576
webertj@14033
   577
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"
nipkow@24331
   578
by (simp add: map_le_def)
webertj@14033
   579
nipkow@14187
   580
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3"
nipkow@24331
   581
by (auto simp add: map_le_def dom_def)
webertj@14033
   582
webertj@14033
   583
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"
nipkow@24331
   584
unfolding map_le_def
nipkow@24331
   585
apply (rule ext)
nipkow@24331
   586
apply (case_tac "x \<in> dom f", simp)
nipkow@24331
   587
apply (case_tac "x \<in> dom g", simp, fastsimp)
nipkow@24331
   588
done
webertj@14033
   589
webertj@14033
   590
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)"
nipkow@24331
   591
by (fastsimp simp add: map_le_def)
webertj@14033
   592
nipkow@15304
   593
lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)"
nipkow@24331
   594
by(fastsimp simp: map_add_def map_le_def expand_fun_eq split: option.splits)
nipkow@15304
   595
nipkow@15303
   596
lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h"
nipkow@24331
   597
by (fastsimp simp add: map_le_def map_add_def dom_def)
nipkow@15303
   598
nipkow@15303
   599
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h"
nipkow@24331
   600
by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits)
nipkow@15303
   601
nipkow@31080
   602
nipkow@31080
   603
lemma dom_eq_singleton_conv: "dom f = {x} \<longleftrightarrow> (\<exists>v. f = [x \<mapsto> v])"
nipkow@31080
   604
proof(rule iffI)
nipkow@31080
   605
  assume "\<exists>v. f = [x \<mapsto> v]"
nipkow@31080
   606
  thus "dom f = {x}" by(auto split: split_if_asm)
nipkow@31080
   607
next
nipkow@31080
   608
  assume "dom f = {x}"
nipkow@31080
   609
  then obtain v where "f x = Some v" by auto
nipkow@31080
   610
  hence "[x \<mapsto> v] \<subseteq>\<^sub>m f" by(auto simp add: map_le_def)
nipkow@31080
   611
  moreover have "f \<subseteq>\<^sub>m [x \<mapsto> v]" using `dom f = {x}` `f x = Some v`
nipkow@31080
   612
    by(auto simp add: map_le_def)
nipkow@31080
   613
  ultimately have "f = [x \<mapsto> v]" by-(rule map_le_antisym)
nipkow@31080
   614
  thus "\<exists>v. f = [x \<mapsto> v]" by blast
nipkow@31080
   615
qed
nipkow@31080
   616
nipkow@3981
   617
end