src/HOL/Tools/Meson/meson.ML
author blanchet
Tue Oct 05 10:59:12 2010 +0200 (2010-10-05)
changeset 39950 f3c4849868b8
parent 39941 02fcd9cd1eac
child 39953 aa54f347e5e2
permissions -rw-r--r--
got rid of overkill "meson_choice" attribute;
tuning
blanchet@39941
     1
(*  Title:      HOL/Tools/Meson/meson.ML
paulson@9840
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
blanchet@39941
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@9840
     4
wenzelm@9869
     5
The MESON resolution proof procedure for HOL.
wenzelm@29267
     6
When making clauses, avoids using the rewriter -- instead uses RS recursively.
paulson@9840
     7
*)
paulson@9840
     8
wenzelm@24300
     9
signature MESON =
paulson@15579
    10
sig
wenzelm@32955
    11
  val trace: bool Unsynchronized.ref
wenzelm@24300
    12
  val term_pair_of: indexname * (typ * 'a) -> term * 'a
wenzelm@24300
    13
  val size_of_subgoals: thm -> int
blanchet@39269
    14
  val has_too_many_clauses: Proof.context -> term -> bool
paulson@24937
    15
  val make_cnf: thm list -> thm -> Proof.context -> thm list * Proof.context
wenzelm@24300
    16
  val finish_cnf: thm list -> thm list
blanchet@38089
    17
  val presimplify: thm -> thm
wenzelm@32262
    18
  val make_nnf: Proof.context -> thm -> thm
blanchet@39950
    19
  val choice_theorems : theory -> thm list
blanchet@39950
    20
  val skolemize_with_choice_theorems : Proof.context -> thm list -> thm -> thm
blanchet@39904
    21
  val skolemize : Proof.context -> thm -> thm
wenzelm@24300
    22
  val is_fol_term: theory -> term -> bool
blanchet@35869
    23
  val make_clauses_unsorted: thm list -> thm list
wenzelm@24300
    24
  val make_clauses: thm list -> thm list
wenzelm@24300
    25
  val make_horns: thm list -> thm list
wenzelm@24300
    26
  val best_prolog_tac: (thm -> int) -> thm list -> tactic
wenzelm@24300
    27
  val depth_prolog_tac: thm list -> tactic
wenzelm@24300
    28
  val gocls: thm list -> thm list
blanchet@39900
    29
  val skolemize_prems_tac : Proof.context -> thm list -> int -> tactic
blanchet@39037
    30
  val MESON:
blanchet@39269
    31
    tactic -> (thm list -> thm list) -> (thm list -> tactic) -> Proof.context
blanchet@39269
    32
    -> int -> tactic
wenzelm@32262
    33
  val best_meson_tac: (thm -> int) -> Proof.context -> int -> tactic
wenzelm@32262
    34
  val safe_best_meson_tac: Proof.context -> int -> tactic
wenzelm@32262
    35
  val depth_meson_tac: Proof.context -> int -> tactic
wenzelm@24300
    36
  val prolog_step_tac': thm list -> int -> tactic
wenzelm@24300
    37
  val iter_deepen_prolog_tac: thm list -> tactic
wenzelm@32262
    38
  val iter_deepen_meson_tac: Proof.context -> thm list -> int -> tactic
wenzelm@24300
    39
  val make_meta_clause: thm -> thm
wenzelm@24300
    40
  val make_meta_clauses: thm list -> thm list
wenzelm@32262
    41
  val meson_tac: Proof.context -> thm list -> int -> tactic
wenzelm@32262
    42
  val setup: theory -> theory
paulson@15579
    43
end
paulson@9840
    44
blanchet@39901
    45
structure Meson : MESON =
paulson@15579
    46
struct
paulson@9840
    47
wenzelm@32955
    48
val trace = Unsynchronized.ref false;
wenzelm@32955
    49
fun trace_msg msg = if ! trace then tracing (msg ()) else ();
wenzelm@32955
    50
paulson@26562
    51
val max_clauses_default = 60;
wenzelm@38806
    52
val (max_clauses, setup) = Attrib.config_int "meson_max_clauses" (K max_clauses_default);
paulson@26562
    53
wenzelm@38802
    54
(*No known example (on 1-5-2007) needs even thirty*)
wenzelm@38802
    55
val iter_deepen_limit = 50;
wenzelm@38802
    56
haftmann@31454
    57
val disj_forward = @{thm disj_forward};
haftmann@31454
    58
val disj_forward2 = @{thm disj_forward2};
haftmann@31454
    59
val make_pos_rule = @{thm make_pos_rule};
haftmann@31454
    60
val make_pos_rule' = @{thm make_pos_rule'};
haftmann@31454
    61
val make_pos_goal = @{thm make_pos_goal};
haftmann@31454
    62
val make_neg_rule = @{thm make_neg_rule};
haftmann@31454
    63
val make_neg_rule' = @{thm make_neg_rule'};
haftmann@31454
    64
val make_neg_goal = @{thm make_neg_goal};
haftmann@31454
    65
val conj_forward = @{thm conj_forward};
haftmann@31454
    66
val all_forward = @{thm all_forward};
haftmann@31454
    67
val ex_forward = @{thm ex_forward};
haftmann@31454
    68
wenzelm@39159
    69
val not_conjD = @{thm meson_not_conjD};
wenzelm@39159
    70
val not_disjD = @{thm meson_not_disjD};
wenzelm@39159
    71
val not_notD = @{thm meson_not_notD};
wenzelm@39159
    72
val not_allD = @{thm meson_not_allD};
wenzelm@39159
    73
val not_exD = @{thm meson_not_exD};
wenzelm@39159
    74
val imp_to_disjD = @{thm meson_imp_to_disjD};
wenzelm@39159
    75
val not_impD = @{thm meson_not_impD};
wenzelm@39159
    76
val iff_to_disjD = @{thm meson_iff_to_disjD};
wenzelm@39159
    77
val not_iffD = @{thm meson_not_iffD};
wenzelm@39159
    78
val conj_exD1 = @{thm meson_conj_exD1};
wenzelm@39159
    79
val conj_exD2 = @{thm meson_conj_exD2};
wenzelm@39159
    80
val disj_exD = @{thm meson_disj_exD};
wenzelm@39159
    81
val disj_exD1 = @{thm meson_disj_exD1};
wenzelm@39159
    82
val disj_exD2 = @{thm meson_disj_exD2};
wenzelm@39159
    83
val disj_assoc = @{thm meson_disj_assoc};
wenzelm@39159
    84
val disj_comm = @{thm meson_disj_comm};
wenzelm@39159
    85
val disj_FalseD1 = @{thm meson_disj_FalseD1};
wenzelm@39159
    86
val disj_FalseD2 = @{thm meson_disj_FalseD2};
paulson@9840
    87
paulson@9840
    88
paulson@15579
    89
(**** Operators for forward proof ****)
paulson@15579
    90
paulson@20417
    91
paulson@20417
    92
(** First-order Resolution **)
paulson@20417
    93
paulson@20417
    94
fun term_pair_of (ix, (ty,t)) = (Var (ix,ty), t);
paulson@20417
    95
paulson@20417
    96
(*FIXME: currently does not "rename variables apart"*)
paulson@20417
    97
fun first_order_resolve thA thB =
wenzelm@32262
    98
  (case
wenzelm@32262
    99
    try (fn () =>
wenzelm@32262
   100
      let val thy = theory_of_thm thA
wenzelm@32262
   101
          val tmA = concl_of thA
wenzelm@32262
   102
          val Const("==>",_) $ tmB $ _ = prop_of thB
blanchet@37398
   103
          val tenv =
blanchet@37410
   104
            Pattern.first_order_match thy (tmB, tmA)
blanchet@37410
   105
                                          (Vartab.empty, Vartab.empty) |> snd
wenzelm@32262
   106
          val ct_pairs = map (pairself (cterm_of thy) o term_pair_of) (Vartab.dest tenv)
wenzelm@32262
   107
      in  thA RS (cterm_instantiate ct_pairs thB)  end) () of
wenzelm@32262
   108
    SOME th => th
blanchet@37398
   109
  | NONE => raise THM ("first_order_resolve", 0, [thA, thB]))
paulson@18175
   110
blanchet@39904
   111
(* Applying "choice" swaps the bound variable names. We tweak
blanchet@39904
   112
   "Thm.rename_boundvars"'s input to get the desired names. *)
blanchet@39930
   113
fun fix_bounds (_ $ (Const (@{const_name Ex}, _)
blanchet@39930
   114
                     $ Abs (_, _, Const (@{const_name All}, _) $ _)))
blanchet@39930
   115
               (t0 $ (Const (@{const_name All}, T1)
blanchet@39930
   116
                      $ Abs (a1, T1', Const (@{const_name Ex}, T2)
blanchet@39930
   117
                                      $ Abs (a2, T2', t')))) =
blanchet@39904
   118
    t0 $ (Const (@{const_name All}, T1)
blanchet@39904
   119
          $ Abs (a2, T1', Const (@{const_name Ex}, T2) $ Abs (a1, T2', t')))
blanchet@39930
   120
  | fix_bounds _ t = t
blanchet@39930
   121
blanchet@39930
   122
(* Hack to make it less likely that we lose our precious bound variable names in
blanchet@39930
   123
   "rename_bvs_RS" below, because of a clash. *)
blanchet@39930
   124
val protect_prefix = "_"
blanchet@39930
   125
blanchet@39930
   126
fun protect_bounds (t $ u) = protect_bounds t $ protect_bounds u
blanchet@39930
   127
  | protect_bounds (Abs (s, T, t')) =
blanchet@39930
   128
    Abs (protect_prefix ^ s, T, protect_bounds t')
blanchet@39930
   129
  | protect_bounds t = t
blanchet@39904
   130
blanchet@39904
   131
(* Forward proof while preserving bound variables names*)
paulson@24937
   132
fun rename_bvs_RS th rl =
blanchet@39904
   133
  let
blanchet@39904
   134
    val t = concl_of th
blanchet@39930
   135
    val r = concl_of rl
blanchet@39930
   136
    val th' = th RS Thm.rename_boundvars r (protect_bounds r) rl
blanchet@39904
   137
    val t' = concl_of th'
blanchet@39930
   138
  in Thm.rename_boundvars t' (fix_bounds t' t) th' end
paulson@24937
   139
paulson@24937
   140
(*raises exception if no rules apply*)
wenzelm@24300
   141
fun tryres (th, rls) =
paulson@18141
   142
  let fun tryall [] = raise THM("tryres", 0, th::rls)
paulson@24937
   143
        | tryall (rl::rls) = (rename_bvs_RS th rl handle THM _ => tryall rls)
paulson@18141
   144
  in  tryall rls  end;
wenzelm@24300
   145
paulson@21050
   146
(*Permits forward proof from rules that discharge assumptions. The supplied proof state st,
paulson@21050
   147
  e.g. from conj_forward, should have the form
paulson@21050
   148
    "[| P' ==> ?P; Q' ==> ?Q |] ==> ?P & ?Q"
paulson@21050
   149
  and the effect should be to instantiate ?P and ?Q with normalized versions of P' and Q'.*)
wenzelm@32262
   150
fun forward_res ctxt nf st =
paulson@21050
   151
  let fun forward_tacf [prem] = rtac (nf prem) 1
wenzelm@24300
   152
        | forward_tacf prems =
wenzelm@32091
   153
            error (cat_lines
wenzelm@32091
   154
              ("Bad proof state in forward_res, please inform lcp@cl.cam.ac.uk:" ::
wenzelm@32262
   155
                Display.string_of_thm ctxt st ::
wenzelm@32262
   156
                "Premises:" :: map (Display.string_of_thm ctxt) prems))
paulson@21050
   157
  in
wenzelm@37781
   158
    case Seq.pull (ALLGOALS (Misc_Legacy.METAHYPS forward_tacf) st)
paulson@21050
   159
    of SOME(th,_) => th
paulson@21050
   160
     | NONE => raise THM("forward_res", 0, [st])
paulson@21050
   161
  end;
paulson@15579
   162
paulson@20134
   163
(*Are any of the logical connectives in "bs" present in the term?*)
paulson@20134
   164
fun has_conns bs =
blanchet@39328
   165
  let fun has (Const _) = false
haftmann@38557
   166
        | has (Const(@{const_name Trueprop},_) $ p) = has p
haftmann@38557
   167
        | has (Const(@{const_name Not},_) $ p) = has p
haftmann@38795
   168
        | has (Const(@{const_name HOL.disj},_) $ p $ q) = member (op =) bs @{const_name HOL.disj} orelse has p orelse has q
haftmann@38795
   169
        | has (Const(@{const_name HOL.conj},_) $ p $ q) = member (op =) bs @{const_name HOL.conj} orelse has p orelse has q
haftmann@38557
   170
        | has (Const(@{const_name All},_) $ Abs(_,_,p)) = member (op =) bs @{const_name All} orelse has p
haftmann@38557
   171
        | has (Const(@{const_name Ex},_) $ Abs(_,_,p)) = member (op =) bs @{const_name Ex} orelse has p
wenzelm@24300
   172
        | has _ = false
paulson@15579
   173
  in  has  end;
wenzelm@24300
   174
paulson@9840
   175
paulson@15579
   176
(**** Clause handling ****)
paulson@9840
   177
haftmann@38557
   178
fun literals (Const(@{const_name Trueprop},_) $ P) = literals P
haftmann@38795
   179
  | literals (Const(@{const_name HOL.disj},_) $ P $ Q) = literals P @ literals Q
haftmann@38557
   180
  | literals (Const(@{const_name Not},_) $ P) = [(false,P)]
paulson@15579
   181
  | literals P = [(true,P)];
paulson@9840
   182
paulson@15579
   183
(*number of literals in a term*)
paulson@15579
   184
val nliterals = length o literals;
paulson@9840
   185
paulson@18389
   186
paulson@18389
   187
(*** Tautology Checking ***)
paulson@18389
   188
haftmann@38795
   189
fun signed_lits_aux (Const (@{const_name HOL.disj}, _) $ P $ Q) (poslits, neglits) =
paulson@18389
   190
      signed_lits_aux Q (signed_lits_aux P (poslits, neglits))
haftmann@38557
   191
  | signed_lits_aux (Const(@{const_name Not},_) $ P) (poslits, neglits) = (poslits, P::neglits)
paulson@18389
   192
  | signed_lits_aux P (poslits, neglits) = (P::poslits, neglits);
wenzelm@24300
   193
paulson@18389
   194
fun signed_lits th = signed_lits_aux (HOLogic.dest_Trueprop (concl_of th)) ([],[]);
paulson@18389
   195
paulson@18389
   196
(*Literals like X=X are tautologous*)
haftmann@38864
   197
fun taut_poslit (Const(@{const_name HOL.eq},_) $ t $ u) = t aconv u
haftmann@38557
   198
  | taut_poslit (Const(@{const_name True},_)) = true
paulson@18389
   199
  | taut_poslit _ = false;
paulson@18389
   200
paulson@18389
   201
fun is_taut th =
paulson@18389
   202
  let val (poslits,neglits) = signed_lits th
paulson@18389
   203
  in  exists taut_poslit poslits
paulson@18389
   204
      orelse
wenzelm@20073
   205
      exists (member (op aconv) neglits) (HOLogic.false_const :: poslits)
paulson@19894
   206
  end
wenzelm@24300
   207
  handle TERM _ => false;       (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   208
paulson@18389
   209
paulson@18389
   210
(*** To remove trivial negated equality literals from clauses ***)
paulson@18389
   211
paulson@18389
   212
(*They are typically functional reflexivity axioms and are the converses of
paulson@18389
   213
  injectivity equivalences*)
wenzelm@24300
   214
wenzelm@39159
   215
val not_refl_disj_D = @{thm meson_not_refl_disj_D};
paulson@18389
   216
paulson@20119
   217
(*Is either term a Var that does not properly occur in the other term?*)
paulson@20119
   218
fun eliminable (t as Var _, u) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   219
  | eliminable (u, t as Var _) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   220
  | eliminable _ = false;
paulson@20119
   221
paulson@18389
   222
fun refl_clause_aux 0 th = th
paulson@18389
   223
  | refl_clause_aux n th =
paulson@18389
   224
       case HOLogic.dest_Trueprop (concl_of th) of
haftmann@38795
   225
          (Const (@{const_name HOL.disj}, _) $ (Const (@{const_name HOL.disj}, _) $ _ $ _) $ _) =>
paulson@18389
   226
            refl_clause_aux n (th RS disj_assoc)    (*isolate an atom as first disjunct*)
haftmann@38864
   227
        | (Const (@{const_name HOL.disj}, _) $ (Const(@{const_name Not},_) $ (Const(@{const_name HOL.eq},_) $ t $ u)) $ _) =>
wenzelm@24300
   228
            if eliminable(t,u)
wenzelm@24300
   229
            then refl_clause_aux (n-1) (th RS not_refl_disj_D)  (*Var inequation: delete*)
wenzelm@24300
   230
            else refl_clause_aux (n-1) (th RS disj_comm)  (*not between Vars: ignore*)
haftmann@38795
   231
        | (Const (@{const_name HOL.disj}, _) $ _ $ _) => refl_clause_aux n (th RS disj_comm)
wenzelm@24300
   232
        | _ => (*not a disjunction*) th;
paulson@18389
   233
haftmann@38795
   234
fun notequal_lits_count (Const (@{const_name HOL.disj}, _) $ P $ Q) =
paulson@18389
   235
      notequal_lits_count P + notequal_lits_count Q
haftmann@38864
   236
  | notequal_lits_count (Const(@{const_name Not},_) $ (Const(@{const_name HOL.eq},_) $ _ $ _)) = 1
paulson@18389
   237
  | notequal_lits_count _ = 0;
paulson@18389
   238
paulson@18389
   239
(*Simplify a clause by applying reflexivity to its negated equality literals*)
wenzelm@24300
   240
fun refl_clause th =
paulson@18389
   241
  let val neqs = notequal_lits_count (HOLogic.dest_Trueprop (concl_of th))
paulson@19894
   242
  in  zero_var_indexes (refl_clause_aux neqs th)  end
wenzelm@24300
   243
  handle TERM _ => th;  (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   244
paulson@18389
   245
paulson@24937
   246
(*** Removal of duplicate literals ***)
paulson@24937
   247
paulson@24937
   248
(*Forward proof, passing extra assumptions as theorems to the tactic*)
blanchet@39328
   249
fun forward_res2 nf hyps st =
paulson@24937
   250
  case Seq.pull
paulson@24937
   251
        (REPEAT
wenzelm@37781
   252
         (Misc_Legacy.METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
paulson@24937
   253
         st)
paulson@24937
   254
  of SOME(th,_) => th
paulson@24937
   255
   | NONE => raise THM("forward_res2", 0, [st]);
paulson@24937
   256
paulson@24937
   257
(*Remove duplicates in P|Q by assuming ~P in Q
paulson@24937
   258
  rls (initially []) accumulates assumptions of the form P==>False*)
wenzelm@32262
   259
fun nodups_aux ctxt rls th = nodups_aux ctxt rls (th RS disj_assoc)
paulson@24937
   260
    handle THM _ => tryres(th,rls)
blanchet@39328
   261
    handle THM _ => tryres(forward_res2 (nodups_aux ctxt) rls (th RS disj_forward2),
paulson@24937
   262
                           [disj_FalseD1, disj_FalseD2, asm_rl])
paulson@24937
   263
    handle THM _ => th;
paulson@24937
   264
paulson@24937
   265
(*Remove duplicate literals, if there are any*)
wenzelm@32262
   266
fun nodups ctxt th =
paulson@24937
   267
  if has_duplicates (op =) (literals (prop_of th))
wenzelm@32262
   268
    then nodups_aux ctxt [] th
paulson@24937
   269
    else th;
paulson@24937
   270
paulson@24937
   271
paulson@18389
   272
(*** The basic CNF transformation ***)
paulson@18389
   273
blanchet@39328
   274
fun estimated_num_clauses bound t =
paulson@26562
   275
 let
blanchet@39269
   276
  fun sum x y = if x < bound andalso y < bound then x+y else bound
blanchet@39269
   277
  fun prod x y = if x < bound andalso y < bound then x*y else bound
paulson@26562
   278
  
paulson@26562
   279
  (*Estimate the number of clauses in order to detect infeasible theorems*)
haftmann@38557
   280
  fun signed_nclauses b (Const(@{const_name Trueprop},_) $ t) = signed_nclauses b t
haftmann@38557
   281
    | signed_nclauses b (Const(@{const_name Not},_) $ t) = signed_nclauses (not b) t
haftmann@38795
   282
    | signed_nclauses b (Const(@{const_name HOL.conj},_) $ t $ u) =
wenzelm@32960
   283
        if b then sum (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32960
   284
             else prod (signed_nclauses b t) (signed_nclauses b u)
haftmann@38795
   285
    | signed_nclauses b (Const(@{const_name HOL.disj},_) $ t $ u) =
wenzelm@32960
   286
        if b then prod (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32960
   287
             else sum (signed_nclauses b t) (signed_nclauses b u)
haftmann@38786
   288
    | signed_nclauses b (Const(@{const_name HOL.implies},_) $ t $ u) =
wenzelm@32960
   289
        if b then prod (signed_nclauses (not b) t) (signed_nclauses b u)
wenzelm@32960
   290
             else sum (signed_nclauses (not b) t) (signed_nclauses b u)
haftmann@38864
   291
    | signed_nclauses b (Const(@{const_name HOL.eq}, Type ("fun", [T, _])) $ t $ u) =
wenzelm@32960
   292
        if T = HOLogic.boolT then (*Boolean equality is if-and-only-if*)
wenzelm@32960
   293
            if b then sum (prod (signed_nclauses (not b) t) (signed_nclauses b u))
wenzelm@32960
   294
                          (prod (signed_nclauses (not b) u) (signed_nclauses b t))
wenzelm@32960
   295
                 else sum (prod (signed_nclauses b t) (signed_nclauses b u))
wenzelm@32960
   296
                          (prod (signed_nclauses (not b) t) (signed_nclauses (not b) u))
wenzelm@32960
   297
        else 1
haftmann@38557
   298
    | signed_nclauses b (Const(@{const_name Ex}, _) $ Abs (_,_,t)) = signed_nclauses b t
haftmann@38557
   299
    | signed_nclauses b (Const(@{const_name All},_) $ Abs (_,_,t)) = signed_nclauses b t
paulson@26562
   300
    | signed_nclauses _ _ = 1; (* literal *)
blanchet@39269
   301
 in signed_nclauses true t end
blanchet@39269
   302
blanchet@39269
   303
fun has_too_many_clauses ctxt t =
blanchet@39269
   304
  let val max_cl = Config.get ctxt max_clauses in
blanchet@39328
   305
    estimated_num_clauses (max_cl + 1) t > max_cl
blanchet@39269
   306
  end
paulson@19894
   307
paulson@15579
   308
(*Replaces universally quantified variables by FREE variables -- because
paulson@24937
   309
  assumptions may not contain scheme variables.  Later, generalize using Variable.export. *)
paulson@24937
   310
local  
paulson@24937
   311
  val spec_var = Thm.dest_arg (Thm.dest_arg (#2 (Thm.dest_implies (Thm.cprop_of spec))));
paulson@24937
   312
  val spec_varT = #T (Thm.rep_cterm spec_var);
haftmann@38557
   313
  fun name_of (Const (@{const_name All}, _) $ Abs(x,_,_)) = x | name_of _ = Name.uu;
paulson@24937
   314
in  
paulson@24937
   315
  fun freeze_spec th ctxt =
paulson@24937
   316
    let
paulson@24937
   317
      val cert = Thm.cterm_of (ProofContext.theory_of ctxt);
paulson@24937
   318
      val ([x], ctxt') = Variable.variant_fixes [name_of (HOLogic.dest_Trueprop (concl_of th))] ctxt;
paulson@24937
   319
      val spec' = Thm.instantiate ([], [(spec_var, cert (Free (x, spec_varT)))]) spec;
paulson@24937
   320
    in (th RS spec', ctxt') end
paulson@24937
   321
end;
paulson@9840
   322
paulson@15998
   323
(*Used with METAHYPS below. There is one assumption, which gets bound to prem
paulson@15998
   324
  and then normalized via function nf. The normal form is given to resolve_tac,
paulson@22515
   325
  instantiate a Boolean variable created by resolution with disj_forward. Since
paulson@22515
   326
  (nf prem) returns a LIST of theorems, we can backtrack to get all combinations.*)
paulson@15579
   327
fun resop nf [prem] = resolve_tac (nf prem) 1;
paulson@9840
   328
blanchet@39037
   329
(* Any need to extend this list with "HOL.type_class", "HOL.eq_class",
blanchet@39037
   330
   and "Pure.term"? *)
haftmann@38557
   331
val has_meta_conn = exists_Const (member (op =) ["==", "==>", "=simp=>", "all", "prop"] o #1);
paulson@20417
   332
blanchet@37410
   333
fun apply_skolem_theorem (th, rls) =
blanchet@37398
   334
  let
blanchet@37410
   335
    fun tryall [] = raise THM ("apply_skolem_theorem", 0, th::rls)
blanchet@37398
   336
      | tryall (rl :: rls) =
blanchet@37398
   337
        first_order_resolve th rl handle THM _ => tryall rls
blanchet@37398
   338
  in tryall rls end
paulson@22515
   339
blanchet@37410
   340
(* Conjunctive normal form, adding clauses from th in front of ths (for foldr).
blanchet@37410
   341
   Strips universal quantifiers and breaks up conjunctions.
blanchet@37410
   342
   Eliminates existential quantifiers using Skolemization theorems. *)
blanchet@39886
   343
fun cnf old_skolem_ths ctxt (th, ths) =
wenzelm@33222
   344
  let val ctxtr = Unsynchronized.ref ctxt   (* FIXME ??? *)
paulson@24937
   345
      fun cnf_aux (th,ths) =
wenzelm@24300
   346
        if not (can HOLogic.dest_Trueprop (prop_of th)) then ths (*meta-level: ignore*)
haftmann@38795
   347
        else if not (has_conns [@{const_name All}, @{const_name Ex}, @{const_name HOL.conj}] (prop_of th))
wenzelm@32262
   348
        then nodups ctxt th :: ths (*no work to do, terminate*)
wenzelm@24300
   349
        else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
haftmann@38795
   350
            Const (@{const_name HOL.conj}, _) => (*conjunction*)
wenzelm@24300
   351
                cnf_aux (th RS conjunct1, cnf_aux (th RS conjunct2, ths))
haftmann@38557
   352
          | Const (@{const_name All}, _) => (*universal quantifier*)
paulson@24937
   353
                let val (th',ctxt') = freeze_spec th (!ctxtr)
paulson@24937
   354
                in  ctxtr := ctxt'; cnf_aux (th', ths) end
haftmann@38557
   355
          | Const (@{const_name Ex}, _) =>
wenzelm@24300
   356
              (*existential quantifier: Insert Skolem functions*)
blanchet@39886
   357
              cnf_aux (apply_skolem_theorem (th, old_skolem_ths), ths)
haftmann@38795
   358
          | Const (@{const_name HOL.disj}, _) =>
wenzelm@24300
   359
              (*Disjunction of P, Q: Create new goal of proving ?P | ?Q and solve it using
wenzelm@24300
   360
                all combinations of converting P, Q to CNF.*)
wenzelm@24300
   361
              let val tac =
wenzelm@37781
   362
                  Misc_Legacy.METAHYPS (resop cnf_nil) 1 THEN
wenzelm@37781
   363
                   (fn st' => st' |> Misc_Legacy.METAHYPS (resop cnf_nil) 1)
wenzelm@24300
   364
              in  Seq.list_of (tac (th RS disj_forward)) @ ths  end
wenzelm@32262
   365
          | _ => nodups ctxt th :: ths  (*no work to do*)
paulson@19154
   366
      and cnf_nil th = cnf_aux (th,[])
blanchet@39269
   367
      val cls =
blanchet@39269
   368
            if has_too_many_clauses ctxt (concl_of th)
wenzelm@32960
   369
            then (trace_msg (fn () => "cnf is ignoring: " ^ Display.string_of_thm ctxt th); ths)
wenzelm@32960
   370
            else cnf_aux (th,ths)
paulson@24937
   371
  in  (cls, !ctxtr)  end;
paulson@22515
   372
blanchet@39886
   373
fun make_cnf old_skolem_ths th ctxt = cnf old_skolem_ths ctxt (th, [])
paulson@20417
   374
paulson@20417
   375
(*Generalization, removal of redundant equalities, removal of tautologies.*)
paulson@24937
   376
fun finish_cnf ths = filter (not o is_taut) (map refl_clause ths);
paulson@9840
   377
paulson@9840
   378
paulson@15579
   379
(**** Generation of contrapositives ****)
paulson@9840
   380
haftmann@38557
   381
fun is_left (Const (@{const_name Trueprop}, _) $
haftmann@38795
   382
               (Const (@{const_name HOL.disj}, _) $ (Const (@{const_name HOL.disj}, _) $ _ $ _) $ _)) = true
paulson@21102
   383
  | is_left _ = false;
wenzelm@24300
   384
paulson@15579
   385
(*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
wenzelm@24300
   386
fun assoc_right th =
paulson@21102
   387
  if is_left (prop_of th) then assoc_right (th RS disj_assoc)
paulson@21102
   388
  else th;
paulson@9840
   389
paulson@15579
   390
(*Must check for negative literal first!*)
paulson@15579
   391
val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
paulson@9840
   392
paulson@15579
   393
(*For ordinary resolution. *)
paulson@15579
   394
val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
paulson@9840
   395
paulson@15579
   396
(*Create a goal or support clause, conclusing False*)
paulson@15579
   397
fun make_goal th =   (*Must check for negative literal first!*)
paulson@15579
   398
    make_goal (tryres(th, clause_rules))
paulson@15579
   399
  handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
paulson@9840
   400
paulson@15579
   401
(*Sort clauses by number of literals*)
paulson@15579
   402
fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
paulson@9840
   403
paulson@18389
   404
fun sort_clauses ths = sort (make_ord fewerlits) ths;
paulson@9840
   405
blanchet@38099
   406
fun has_bool @{typ bool} = true
blanchet@38099
   407
  | has_bool (Type (_, Ts)) = exists has_bool Ts
blanchet@38099
   408
  | has_bool _ = false
blanchet@38099
   409
blanchet@38099
   410
fun has_fun (Type (@{type_name fun}, _)) = true
blanchet@38099
   411
  | has_fun (Type (_, Ts)) = exists has_fun Ts
blanchet@38099
   412
  | has_fun _ = false
wenzelm@24300
   413
wenzelm@24300
   414
(*Is the string the name of a connective? Really only | and Not can remain,
wenzelm@24300
   415
  since this code expects to be called on a clause form.*)
wenzelm@19875
   416
val is_conn = member (op =)
haftmann@38795
   417
    [@{const_name Trueprop}, @{const_name HOL.conj}, @{const_name HOL.disj},
haftmann@38786
   418
     @{const_name HOL.implies}, @{const_name Not},
haftmann@38557
   419
     @{const_name All}, @{const_name Ex}, @{const_name Ball}, @{const_name Bex}];
paulson@15613
   420
wenzelm@24300
   421
(*True if the term contains a function--not a logical connective--where the type
paulson@20524
   422
  of any argument contains bool.*)
wenzelm@24300
   423
val has_bool_arg_const =
paulson@15613
   424
    exists_Const
blanchet@38099
   425
      (fn (c,T) => not(is_conn c) andalso exists has_bool (binder_types T));
paulson@22381
   426
wenzelm@24300
   427
(*A higher-order instance of a first-order constant? Example is the definition of
haftmann@38622
   428
  one, 1, at a function type in theory Function_Algebras.*)
wenzelm@24300
   429
fun higher_inst_const thy (c,T) =
paulson@22381
   430
  case binder_types T of
paulson@22381
   431
      [] => false (*not a function type, OK*)
paulson@22381
   432
    | Ts => length (binder_types (Sign.the_const_type thy c)) <> length Ts;
paulson@22381
   433
paulson@24742
   434
(*Returns false if any Vars in the theorem mention type bool.
paulson@21102
   435
  Also rejects functions whose arguments are Booleans or other functions.*)
paulson@22381
   436
fun is_fol_term thy t =
haftmann@38557
   437
    Term.is_first_order ["all", @{const_name All}, @{const_name Ex}] t andalso
blanchet@38099
   438
    not (exists_subterm (fn Var (_, T) => has_bool T orelse has_fun T
blanchet@38099
   439
                           | _ => false) t orelse
blanchet@38099
   440
         has_bool_arg_const t orelse
wenzelm@24300
   441
         exists_Const (higher_inst_const thy) t orelse
wenzelm@24300
   442
         has_meta_conn t);
paulson@19204
   443
paulson@21102
   444
fun rigid t = not (is_Var (head_of t));
paulson@21102
   445
haftmann@38795
   446
fun ok4horn (Const (@{const_name Trueprop},_) $ (Const (@{const_name HOL.disj}, _) $ t $ _)) = rigid t
haftmann@38557
   447
  | ok4horn (Const (@{const_name Trueprop},_) $ t) = rigid t
paulson@21102
   448
  | ok4horn _ = false;
paulson@21102
   449
paulson@15579
   450
(*Create a meta-level Horn clause*)
wenzelm@24300
   451
fun make_horn crules th =
wenzelm@24300
   452
  if ok4horn (concl_of th)
paulson@21102
   453
  then make_horn crules (tryres(th,crules)) handle THM _ => th
paulson@21102
   454
  else th;
paulson@9840
   455
paulson@16563
   456
(*Generate Horn clauses for all contrapositives of a clause. The input, th,
paulson@16563
   457
  is a HOL disjunction.*)
wenzelm@33339
   458
fun add_contras crules th hcs =
blanchet@39328
   459
  let fun rots (0,_) = hcs
wenzelm@24300
   460
        | rots (k,th) = zero_var_indexes (make_horn crules th) ::
wenzelm@24300
   461
                        rots(k-1, assoc_right (th RS disj_comm))
paulson@15862
   462
  in case nliterals(prop_of th) of
wenzelm@24300
   463
        1 => th::hcs
paulson@15579
   464
      | n => rots(n, assoc_right th)
paulson@15579
   465
  end;
paulson@9840
   466
paulson@15579
   467
(*Use "theorem naming" to label the clauses*)
paulson@15579
   468
fun name_thms label =
wenzelm@33339
   469
    let fun name1 th (k, ths) =
wenzelm@27865
   470
          (k-1, Thm.put_name_hint (label ^ string_of_int k) th :: ths)
wenzelm@33339
   471
    in  fn ths => #2 (fold_rev name1 ths (length ths, []))  end;
paulson@9840
   472
paulson@16563
   473
(*Is the given disjunction an all-negative support clause?*)
paulson@15579
   474
fun is_negative th = forall (not o #1) (literals (prop_of th));
paulson@9840
   475
wenzelm@33317
   476
val neg_clauses = filter is_negative;
paulson@9840
   477
paulson@9840
   478
paulson@15579
   479
(***** MESON PROOF PROCEDURE *****)
paulson@9840
   480
haftmann@38557
   481
fun rhyps (Const("==>",_) $ (Const(@{const_name Trueprop},_) $ A) $ phi,
wenzelm@24300
   482
           As) = rhyps(phi, A::As)
paulson@15579
   483
  | rhyps (_, As) = As;
paulson@9840
   484
paulson@15579
   485
(** Detecting repeated assumptions in a subgoal **)
paulson@9840
   486
paulson@15579
   487
(*The stringtree detects repeated assumptions.*)
wenzelm@33245
   488
fun ins_term t net = Net.insert_term (op aconv) (t, t) net;
paulson@9840
   489
paulson@15579
   490
(*detects repetitions in a list of terms*)
paulson@15579
   491
fun has_reps [] = false
paulson@15579
   492
  | has_reps [_] = false
paulson@15579
   493
  | has_reps [t,u] = (t aconv u)
wenzelm@33245
   494
  | has_reps ts = (fold ins_term ts Net.empty; false) handle Net.INSERT => true;
paulson@9840
   495
paulson@15579
   496
(*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
paulson@18508
   497
fun TRYING_eq_assume_tac 0 st = Seq.single st
paulson@18508
   498
  | TRYING_eq_assume_tac i st =
wenzelm@31945
   499
       TRYING_eq_assume_tac (i-1) (Thm.eq_assumption i st)
paulson@18508
   500
       handle THM _ => TRYING_eq_assume_tac (i-1) st;
paulson@18508
   501
paulson@18508
   502
fun TRYALL_eq_assume_tac st = TRYING_eq_assume_tac (nprems_of st) st;
paulson@9840
   503
paulson@15579
   504
(*Loop checking: FAIL if trying to prove the same thing twice
paulson@15579
   505
  -- if *ANY* subgoal has repeated literals*)
paulson@15579
   506
fun check_tac st =
paulson@15579
   507
  if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
paulson@15579
   508
  then  Seq.empty  else  Seq.single st;
paulson@9840
   509
paulson@9840
   510
paulson@15579
   511
(* net_resolve_tac actually made it slower... *)
paulson@15579
   512
fun prolog_step_tac horns i =
paulson@15579
   513
    (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
paulson@18508
   514
    TRYALL_eq_assume_tac;
paulson@9840
   515
paulson@9840
   516
(*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
wenzelm@33339
   517
fun addconcl prem sz = size_of_term (Logic.strip_assums_concl prem) + sz;
paulson@15579
   518
wenzelm@33339
   519
fun size_of_subgoals st = fold_rev addconcl (prems_of st) 0;
paulson@15579
   520
paulson@9840
   521
paulson@9840
   522
(*Negation Normal Form*)
paulson@9840
   523
val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
wenzelm@9869
   524
               not_impD, not_iffD, not_allD, not_exD, not_notD];
paulson@15581
   525
haftmann@38557
   526
fun ok4nnf (Const (@{const_name Trueprop},_) $ (Const (@{const_name Not}, _) $ t)) = rigid t
haftmann@38557
   527
  | ok4nnf (Const (@{const_name Trueprop},_) $ t) = rigid t
paulson@21102
   528
  | ok4nnf _ = false;
paulson@21102
   529
wenzelm@32262
   530
fun make_nnf1 ctxt th =
wenzelm@24300
   531
  if ok4nnf (concl_of th)
wenzelm@32262
   532
  then make_nnf1 ctxt (tryres(th, nnf_rls))
paulson@28174
   533
    handle THM ("tryres", _, _) =>
wenzelm@32262
   534
        forward_res ctxt (make_nnf1 ctxt)
wenzelm@9869
   535
           (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
paulson@28174
   536
    handle THM ("tryres", _, _) => th
blanchet@38608
   537
  else th
paulson@9840
   538
wenzelm@24300
   539
(*The simplification removes defined quantifiers and occurrences of True and False.
paulson@20018
   540
  nnf_ss also includes the one-point simprocs,
paulson@18405
   541
  which are needed to avoid the various one-point theorems from generating junk clauses.*)
paulson@19894
   542
val nnf_simps =
blanchet@37539
   543
  @{thms simp_implies_def Ex1_def Ball_def Bex_def if_True if_False if_cancel
blanchet@37539
   544
         if_eq_cancel cases_simp}
blanchet@37539
   545
val nnf_extra_simps = @{thms split_ifs ex_simps all_simps simp_thms}
paulson@18405
   546
paulson@18405
   547
val nnf_ss =
wenzelm@24300
   548
  HOL_basic_ss addsimps nnf_extra_simps
wenzelm@24040
   549
    addsimprocs [defALL_regroup,defEX_regroup, @{simproc neq}, @{simproc let_simp}];
paulson@15872
   550
blanchet@38089
   551
val presimplify =
blanchet@39900
   552
  rewrite_rule (map safe_mk_meta_eq nnf_simps) #> simplify nnf_ss
blanchet@38089
   553
wenzelm@32262
   554
fun make_nnf ctxt th = case prems_of th of
blanchet@38606
   555
    [] => th |> presimplify |> make_nnf1 ctxt
paulson@21050
   556
  | _ => raise THM ("make_nnf: premises in argument", 0, [th]);
paulson@15581
   557
blanchet@39950
   558
fun choice_theorems thy =
blanchet@39950
   559
  try (Global_Theory.get_thm thy) "Hilbert_Choice.choice" |> the_list
blanchet@39950
   560
blanchet@39900
   561
(* Pull existential quantifiers to front. This accomplishes Skolemization for
blanchet@39900
   562
   clauses that arise from a subgoal. *)
blanchet@39950
   563
fun skolemize_with_choice_theorems ctxt choice_ths =
blanchet@39900
   564
  let
blanchet@39900
   565
    fun aux th =
blanchet@39900
   566
      if not (has_conns [@{const_name Ex}] (prop_of th)) then
blanchet@39900
   567
        th
blanchet@39900
   568
      else
blanchet@39901
   569
        tryres (th, choice_ths @
blanchet@39900
   570
                    [conj_exD1, conj_exD2, disj_exD, disj_exD1, disj_exD2])
blanchet@39900
   571
        |> aux
blanchet@39900
   572
        handle THM ("tryres", _, _) =>
blanchet@39900
   573
               tryres (th, [conj_forward, disj_forward, all_forward])
blanchet@39900
   574
               |> forward_res ctxt aux
blanchet@39900
   575
               |> aux
blanchet@39900
   576
               handle THM ("tryres", _, _) =>
blanchet@39900
   577
                      rename_bvs_RS th ex_forward
blanchet@39900
   578
                      |> forward_res ctxt aux
blanchet@39900
   579
  in aux o make_nnf ctxt end
paulson@29684
   580
blanchet@39950
   581
fun skolemize ctxt =
blanchet@39950
   582
  let val thy = ProofContext.theory_of ctxt in
blanchet@39950
   583
    skolemize_with_choice_theorems ctxt (choice_theorems thy)
blanchet@39950
   584
  end
blanchet@39904
   585
blanchet@39900
   586
(* "RS" can fail if "unify_search_bound" is too small. *)
blanchet@39900
   587
fun try_skolemize ctxt th =
blanchet@39904
   588
  try (skolemize ctxt) th
blanchet@39900
   589
  |> tap (fn NONE => trace_msg (fn () => "Failed to skolemize " ^
blanchet@39900
   590
                                         Display.string_of_thm ctxt th)
blanchet@39900
   591
           | _ => ())
paulson@25694
   592
wenzelm@33339
   593
fun add_clauses th cls =
wenzelm@36603
   594
  let val ctxt0 = Variable.global_thm_context th
wenzelm@33339
   595
      val (cnfs, ctxt) = make_cnf [] th ctxt0
paulson@24937
   596
  in Variable.export ctxt ctxt0 cnfs @ cls end;
paulson@9840
   597
paulson@9840
   598
(*Make clauses from a list of theorems, previously Skolemized and put into nnf.
paulson@9840
   599
  The resulting clauses are HOL disjunctions.*)
wenzelm@39235
   600
fun make_clauses_unsorted ths = fold_rev add_clauses ths [];
blanchet@35869
   601
val make_clauses = sort_clauses o make_clauses_unsorted;
quigley@15773
   602
paulson@16563
   603
(*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
wenzelm@9869
   604
fun make_horns ths =
paulson@9840
   605
    name_thms "Horn#"
wenzelm@33339
   606
      (distinct Thm.eq_thm_prop (fold_rev (add_contras clause_rules) ths []));
paulson@9840
   607
paulson@9840
   608
(*Could simply use nprems_of, which would count remaining subgoals -- no
paulson@9840
   609
  discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
paulson@9840
   610
wenzelm@9869
   611
fun best_prolog_tac sizef horns =
paulson@9840
   612
    BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
paulson@9840
   613
wenzelm@9869
   614
fun depth_prolog_tac horns =
paulson@9840
   615
    DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
paulson@9840
   616
paulson@9840
   617
(*Return all negative clauses, as possible goal clauses*)
paulson@9840
   618
fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
paulson@9840
   619
wenzelm@32262
   620
fun skolemize_prems_tac ctxt prems =
blanchet@39900
   621
  cut_facts_tac (map_filter (try_skolemize ctxt) prems) THEN' REPEAT o etac exE
paulson@9840
   622
paulson@22546
   623
(*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions.
paulson@22546
   624
  Function mkcl converts theorems to clauses.*)
blanchet@39037
   625
fun MESON preskolem_tac mkcl cltac ctxt i st =
paulson@16588
   626
  SELECT_GOAL
wenzelm@35625
   627
    (EVERY [Object_Logic.atomize_prems_tac 1,
paulson@23552
   628
            rtac ccontr 1,
blanchet@39269
   629
            preskolem_tac,
wenzelm@32283
   630
            Subgoal.FOCUS (fn {context = ctxt', prems = negs, ...} =>
blanchet@39269
   631
                      EVERY1 [skolemize_prems_tac ctxt negs,
wenzelm@32283
   632
                              Subgoal.FOCUS (cltac o mkcl o #prems) ctxt']) ctxt 1]) i st
wenzelm@24300
   633
  handle THM _ => no_tac st;    (*probably from make_meta_clause, not first-order*)
paulson@9840
   634
blanchet@39037
   635
paulson@9840
   636
(** Best-first search versions **)
paulson@9840
   637
paulson@16563
   638
(*ths is a list of additional clauses (HOL disjunctions) to use.*)
wenzelm@9869
   639
fun best_meson_tac sizef =
blanchet@39269
   640
  MESON all_tac make_clauses
paulson@22546
   641
    (fn cls =>
paulson@9840
   642
         THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
paulson@9840
   643
                         (has_fewer_prems 1, sizef)
paulson@9840
   644
                         (prolog_step_tac (make_horns cls) 1));
paulson@9840
   645
paulson@9840
   646
(*First, breaks the goal into independent units*)
wenzelm@32262
   647
fun safe_best_meson_tac ctxt =
wenzelm@32262
   648
     SELECT_GOAL (TRY (safe_tac (claset_of ctxt)) THEN
wenzelm@32262
   649
                  TRYALL (best_meson_tac size_of_subgoals ctxt));
paulson@9840
   650
paulson@9840
   651
(** Depth-first search version **)
paulson@9840
   652
paulson@9840
   653
val depth_meson_tac =
blanchet@39269
   654
  MESON all_tac make_clauses
paulson@22546
   655
    (fn cls => EVERY [resolve_tac (gocls cls) 1, depth_prolog_tac (make_horns cls)]);
paulson@9840
   656
paulson@9840
   657
paulson@9840
   658
(** Iterative deepening version **)
paulson@9840
   659
paulson@9840
   660
(*This version does only one inference per call;
paulson@9840
   661
  having only one eq_assume_tac speeds it up!*)
wenzelm@9869
   662
fun prolog_step_tac' horns =
blanchet@39328
   663
    let val (horn0s, _) = (*0 subgoals vs 1 or more*)
paulson@9840
   664
            take_prefix Thm.no_prems horns
paulson@9840
   665
        val nrtac = net_resolve_tac horns
paulson@9840
   666
    in  fn i => eq_assume_tac i ORELSE
paulson@9840
   667
                match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
paulson@9840
   668
                ((assume_tac i APPEND nrtac i) THEN check_tac)
paulson@9840
   669
    end;
paulson@9840
   670
wenzelm@9869
   671
fun iter_deepen_prolog_tac horns =
wenzelm@38802
   672
    ITER_DEEPEN iter_deepen_limit (has_fewer_prems 1) (prolog_step_tac' horns);
paulson@9840
   673
blanchet@39269
   674
fun iter_deepen_meson_tac ctxt ths = ctxt |> MESON all_tac make_clauses
wenzelm@32091
   675
  (fn cls =>
wenzelm@32091
   676
    (case (gocls (cls @ ths)) of
wenzelm@32091
   677
      [] => no_tac  (*no goal clauses*)
wenzelm@32091
   678
    | goes =>
wenzelm@32091
   679
        let
wenzelm@32091
   680
          val horns = make_horns (cls @ ths)
wenzelm@32955
   681
          val _ = trace_msg (fn () =>
wenzelm@32091
   682
            cat_lines ("meson method called:" ::
wenzelm@32262
   683
              map (Display.string_of_thm ctxt) (cls @ ths) @
wenzelm@32262
   684
              ["clauses:"] @ map (Display.string_of_thm ctxt) horns))
wenzelm@38802
   685
        in
wenzelm@38802
   686
          THEN_ITER_DEEPEN iter_deepen_limit
wenzelm@38802
   687
            (resolve_tac goes 1) (has_fewer_prems 1) (prolog_step_tac' horns)
wenzelm@38802
   688
        end));
paulson@9840
   689
wenzelm@32262
   690
fun meson_tac ctxt ths =
wenzelm@32262
   691
  SELECT_GOAL (TRY (safe_tac (claset_of ctxt)) THEN TRYALL (iter_deepen_meson_tac ctxt ths));
wenzelm@9869
   692
wenzelm@9869
   693
paulson@14813
   694
(**** Code to support ordinary resolution, rather than Model Elimination ****)
paulson@14744
   695
wenzelm@24300
   696
(*Convert a list of clauses (disjunctions) to meta-level clauses (==>),
paulson@15008
   697
  with no contrapositives, for ordinary resolution.*)
paulson@14744
   698
paulson@14744
   699
(*Rules to convert the head literal into a negated assumption. If the head
paulson@14744
   700
  literal is already negated, then using notEfalse instead of notEfalse'
paulson@14744
   701
  prevents a double negation.*)
wenzelm@27239
   702
val notEfalse = read_instantiate @{context} [(("R", 0), "False")] notE;
paulson@14744
   703
val notEfalse' = rotate_prems 1 notEfalse;
paulson@14744
   704
wenzelm@24300
   705
fun negated_asm_of_head th =
paulson@14744
   706
    th RS notEfalse handle THM _ => th RS notEfalse';
paulson@14744
   707
paulson@26066
   708
(*Converting one theorem from a disjunction to a meta-level clause*)
paulson@26066
   709
fun make_meta_clause th =
wenzelm@33832
   710
  let val (fth,thaw) = Drule.legacy_freeze_thaw_robust th
paulson@26066
   711
  in  
wenzelm@35845
   712
      (zero_var_indexes o Thm.varifyT_global o thaw 0 o 
paulson@26066
   713
       negated_asm_of_head o make_horn resolution_clause_rules) fth
paulson@26066
   714
  end;
wenzelm@24300
   715
paulson@14744
   716
fun make_meta_clauses ths =
paulson@14744
   717
    name_thms "MClause#"
wenzelm@22360
   718
      (distinct Thm.eq_thm_prop (map make_meta_clause ths));
paulson@14744
   719
paulson@9840
   720
end;