src/HOL/NanoJava/Equivalence.thy
author ballarin
Fri Aug 29 15:19:02 2003 +0200 (2003-08-29)
changeset 14174 f3cafd2929d5
parent 12934 6003b4f916c0
child 14565 c6dc17aab88a
permissions -rw-r--r--
Methods rule_tac etc support static (Isar) contexts.
oheimb@11376
     1
(*  Title:      HOL/NanoJava/Equivalence.thy
oheimb@11376
     2
    ID:         $Id$
oheimb@11376
     3
    Author:     David von Oheimb
oheimb@11376
     4
    Copyright   2001 Technische Universitaet Muenchen
oheimb@11376
     5
*)
oheimb@11376
     6
oheimb@11376
     7
header "Equivalence of Operational and Axiomatic Semantics"
oheimb@11376
     8
oheimb@11376
     9
theory Equivalence = OpSem + AxSem:
oheimb@11376
    10
oheimb@11376
    11
subsection "Validity"
oheimb@11376
    12
oheimb@11376
    13
constdefs
oheimb@11476
    14
  valid   :: "[assn,stmt, assn] => bool"  ("|= {(1_)}/ (_)/ {(1_)}" [3,90,3] 60)
oheimb@11476
    15
 "|=  {P} c {Q} \<equiv> \<forall>s   t. P s --> (\<exists>n. s -c  -n-> t) --> Q   t"
oheimb@11476
    16
oheimb@11476
    17
 evalid   :: "[assn,expr,vassn] => bool" ("|=e {(1_)}/ (_)/ {(1_)}" [3,90,3] 60)
oheimb@11476
    18
 "|=e {P} e {Q} \<equiv> \<forall>s v t. P s --> (\<exists>n. s -e>v-n-> t) --> Q v t"
oheimb@11476
    19
oheimb@11376
    20
oheimb@11476
    21
 nvalid   :: "[nat, triple    ] => bool" ("|=_: _"  [61,61] 60)
oheimb@11476
    22
 "|=n:  t \<equiv> let (P,c,Q) = t in \<forall>s   t. s -c  -n-> t --> P s --> Q   t"
oheimb@11376
    23
oheimb@11476
    24
envalid   :: "[nat,etriple    ] => bool" ("|=_:e _" [61,61] 60)
oheimb@11476
    25
 "|=n:e t \<equiv> let (P,e,Q) = t in \<forall>s v t. s -e>v-n-> t --> P s --> Q v t"
oheimb@11476
    26
oheimb@11476
    27
  nvalids :: "[nat,       triple set] => bool" ("||=_: _" [61,61] 60)
oheimb@11376
    28
 "||=n: T \<equiv> \<forall>t\<in>T. |=n: t"
oheimb@11376
    29
oheimb@11476
    30
 cnvalids :: "[triple set,triple set] => bool" ("_ ||=/ _"  [61,61] 60)
oheimb@11476
    31
 "A ||=  C \<equiv> \<forall>n. ||=n: A --> ||=n: C"
oheimb@11476
    32
oheimb@11476
    33
cenvalid  :: "[triple set,etriple   ] => bool" ("_ ||=e/ _" [61,61] 60)
oheimb@11476
    34
 "A ||=e t \<equiv> \<forall>n. ||=n: A --> |=n:e t"
oheimb@11376
    35
oheimb@11376
    36
syntax (xsymbols)
oheimb@11476
    37
   valid  :: "[assn,stmt, assn] => bool" ( "\<Turnstile> {(1_)}/ (_)/ {(1_)}" [3,90,3] 60)
oheimb@11486
    38
  evalid  :: "[assn,expr,vassn] => bool" ("\<Turnstile>\<^sub>e {(1_)}/ (_)/ {(1_)}" [3,90,3] 60)
oheimb@11476
    39
  nvalid  :: "[nat, triple          ] => bool" ("\<Turnstile>_: _"  [61,61] 60)
oheimb@11486
    40
 envalid  :: "[nat,etriple          ] => bool" ("\<Turnstile>_:\<^sub>e _" [61,61] 60)
oheimb@11476
    41
  nvalids :: "[nat,       triple set] => bool" ("|\<Turnstile>_: _"  [61,61] 60)
oheimb@11376
    42
 cnvalids :: "[triple set,triple set] => bool" ("_ |\<Turnstile>/ _" [61,61] 60)
oheimb@11486
    43
cenvalid  :: "[triple set,etriple   ] => bool" ("_ |\<Turnstile>\<^sub>e/ _"[61,61] 60)
oheimb@11376
    44
oheimb@11376
    45
oheimb@11476
    46
lemma nvalid_def2: "\<Turnstile>n: (P,c,Q) \<equiv> \<forall>s t. s -c-n\<rightarrow> t \<longrightarrow> P s \<longrightarrow> Q t"
oheimb@11376
    47
by (simp add: nvalid_def Let_def)
oheimb@11376
    48
oheimb@11476
    49
lemma valid_def2: "\<Turnstile> {P} c {Q} = (\<forall>n. \<Turnstile>n: (P,c,Q))"
oheimb@11476
    50
apply (simp add: valid_def nvalid_def2)
oheimb@11376
    51
apply blast
oheimb@11376
    52
done
oheimb@11376
    53
oheimb@11486
    54
lemma envalid_def2: "\<Turnstile>n:\<^sub>e (P,e,Q) \<equiv> \<forall>s v t. s -e\<succ>v-n\<rightarrow> t \<longrightarrow> P s \<longrightarrow> Q v t"
oheimb@11476
    55
by (simp add: envalid_def Let_def)
oheimb@11476
    56
oheimb@11486
    57
lemma evalid_def2: "\<Turnstile>\<^sub>e {P} e {Q} = (\<forall>n. \<Turnstile>n:\<^sub>e (P,e,Q))"
oheimb@11476
    58
apply (simp add: evalid_def envalid_def2)
oheimb@11476
    59
apply blast
oheimb@11476
    60
done
oheimb@11476
    61
oheimb@11476
    62
lemma cenvalid_def2: 
oheimb@11486
    63
  "A|\<Turnstile>\<^sub>e (P,e,Q) = (\<forall>n. |\<Turnstile>n: A \<longrightarrow> (\<forall>s v t. s -e\<succ>v-n\<rightarrow> t \<longrightarrow> P s \<longrightarrow> Q v t))"
oheimb@11476
    64
by(simp add: cenvalid_def envalid_def2) 
oheimb@11476
    65
oheimb@11376
    66
oheimb@11376
    67
subsection "Soundness"
oheimb@11376
    68
oheimb@11476
    69
declare exec_elim_cases [elim!] eval_elim_cases [elim!]
oheimb@11376
    70
oheimb@11497
    71
lemma Impl_nvalid_0: "\<Turnstile>0: (P,Impl M,Q)"
oheimb@11476
    72
by (clarsimp simp add: nvalid_def2)
oheimb@11376
    73
oheimb@11497
    74
lemma Impl_nvalid_Suc: "\<Turnstile>n: (P,body M,Q) \<Longrightarrow> \<Turnstile>Suc n: (P,Impl M,Q)"
oheimb@11476
    75
by (clarsimp simp add: nvalid_def2)
oheimb@11376
    76
oheimb@11376
    77
lemma nvalid_SucD: "\<And>t. \<Turnstile>Suc n:t \<Longrightarrow> \<Turnstile>n:t"
oheimb@11476
    78
by (force simp add: split_paired_all nvalid_def2 intro: exec_mono)
oheimb@11376
    79
oheimb@11376
    80
lemma nvalids_SucD: "Ball A (nvalid (Suc n)) \<Longrightarrow>  Ball A (nvalid n)"
oheimb@11376
    81
by (fast intro: nvalid_SucD)
oheimb@11376
    82
oheimb@11376
    83
lemma Loop_sound_lemma [rule_format (no_asm)]: 
oheimb@11476
    84
"\<forall>s t. s -c-n\<rightarrow> t \<longrightarrow> P s \<and> s<x> \<noteq> Null \<longrightarrow> P t \<Longrightarrow> 
oheimb@11476
    85
  (s -c0-n0\<rightarrow> t \<longrightarrow> P s \<longrightarrow> c0 = While (x) c \<longrightarrow> n0 = n \<longrightarrow> P t \<and> t<x> = Null)"
ballarin@14174
    86
apply (rule_tac ?P2.1="%s e v n t. True" in exec_eval.induct [THEN conjunct1])
oheimb@11376
    87
apply clarsimp+
oheimb@11376
    88
done
oheimb@11376
    89
oheimb@11376
    90
lemma Impl_sound_lemma: 
oheimb@11497
    91
"\<lbrakk>\<forall>z n. Ball (A \<union> B) (nvalid n) \<longrightarrow> Ball (f z ` Ms) (nvalid n); 
oheimb@12742
    92
  Cm\<in>Ms; Ball A (nvalid na); Ball B (nvalid na)\<rbrakk> \<Longrightarrow> nvalid na (f z Cm)"
oheimb@11376
    93
by blast
oheimb@11376
    94
oheimb@11476
    95
lemma all_conjunct2: "\<forall>l. P' l \<and> P l \<Longrightarrow> \<forall>l. P l"
oheimb@11476
    96
by fast
oheimb@11476
    97
oheimb@11476
    98
lemma all3_conjunct2: 
oheimb@11476
    99
  "\<forall>a p l. (P' a p l \<and> P a p l) \<Longrightarrow> \<forall>a p l. P a p l"
oheimb@11476
   100
by fast
oheimb@11476
   101
oheimb@11476
   102
lemma cnvalid1_eq: 
oheimb@11476
   103
  "A |\<Turnstile> {(P,c,Q)} \<equiv> \<forall>n. |\<Turnstile>n: A \<longrightarrow> (\<forall>s t. s -c-n\<rightarrow> t \<longrightarrow> P s \<longrightarrow> Q t)"
oheimb@11476
   104
by(simp add: cnvalids_def nvalids_def nvalid_def2)
oheimb@11476
   105
oheimb@11486
   106
lemma hoare_sound_main:"\<And>t. (A |\<turnstile> C \<longrightarrow> A |\<Turnstile> C) \<and> (A |\<turnstile>\<^sub>e t \<longrightarrow> A |\<Turnstile>\<^sub>e t)"
oheimb@11476
   107
apply (tactic "split_all_tac 1", rename_tac P e Q)
oheimb@11476
   108
apply (rule hoare_ehoare.induct)
nipkow@12524
   109
(*18*)
oheimb@11476
   110
apply (tactic {* ALLGOALS (REPEAT o dresolve_tac [thm "all_conjunct2", thm "all3_conjunct2"]) *})
oheimb@11476
   111
apply (tactic {* ALLGOALS (REPEAT o thin_tac "?x :  hoare") *})
oheimb@11476
   112
apply (tactic {* ALLGOALS (REPEAT o thin_tac "?x : ehoare") *})
oheimb@11476
   113
apply (simp_all only: cnvalid1_eq cenvalid_def2)
nipkow@12524
   114
                 apply fast
nipkow@12524
   115
                apply fast
nipkow@12524
   116
               apply fast
nipkow@12524
   117
              apply (clarify,tactic "smp_tac 1 1",erule(2) Loop_sound_lemma,(rule HOL.refl)+)
nipkow@12524
   118
             apply fast
nipkow@12524
   119
            apply fast
nipkow@12524
   120
           apply fast
nipkow@12524
   121
          apply fast
nipkow@12524
   122
         apply fast
nipkow@12524
   123
        apply fast
nipkow@12524
   124
       apply (clarsimp del: Meth_elim_cases) (* Call *)
nipkow@12524
   125
      apply (force del: Impl_elim_cases)
nipkow@12524
   126
     defer
nipkow@12524
   127
     prefer 4 apply blast (*  Conseq *)
nipkow@12524
   128
    prefer 4 apply blast (* eConseq *)
nipkow@12524
   129
   apply (simp_all (no_asm_use) only: cnvalids_def nvalids_def)
nipkow@12524
   130
   apply blast
nipkow@12524
   131
  apply blast
nipkow@12524
   132
 apply blast
oheimb@11376
   133
apply (rule allI)
oheimb@11565
   134
apply (rule_tac x=Z in spec)
oheimb@11376
   135
apply (induct_tac "n")
nipkow@12524
   136
 apply  (clarify intro!: Impl_nvalid_0)
oheimb@11376
   137
apply (clarify  intro!: Impl_nvalid_Suc)
oheimb@11376
   138
apply (drule nvalids_SucD)
oheimb@11497
   139
apply (simp only: all_simps)
oheimb@11376
   140
apply (erule (1) impE)
oheimb@11497
   141
apply (drule (2) Impl_sound_lemma)
nipkow@12524
   142
 apply  blast
oheimb@11497
   143
apply assumption
oheimb@11376
   144
done
oheimb@11376
   145
oheimb@11376
   146
theorem hoare_sound: "{} \<turnstile> {P} c {Q} \<Longrightarrow> \<Turnstile> {P} c {Q}"
oheimb@11376
   147
apply (simp only: valid_def2)
oheimb@11476
   148
apply (drule hoare_sound_main [THEN conjunct1, rule_format])
oheimb@11376
   149
apply (unfold cnvalids_def nvalids_def)
oheimb@11376
   150
apply fast
oheimb@11376
   151
done
oheimb@11376
   152
oheimb@11486
   153
theorem ehoare_sound: "{} \<turnstile>\<^sub>e {P} e {Q} \<Longrightarrow> \<Turnstile>\<^sub>e {P} e {Q}"
oheimb@11476
   154
apply (simp only: evalid_def2)
oheimb@11476
   155
apply (drule hoare_sound_main [THEN conjunct2, rule_format])
oheimb@11476
   156
apply (unfold cenvalid_def nvalids_def)
oheimb@11476
   157
apply fast
oheimb@11476
   158
done
oheimb@11476
   159
oheimb@11376
   160
oheimb@11376
   161
subsection "(Relative) Completeness"
oheimb@11376
   162
oheimb@11476
   163
constdefs MGT    :: "stmt => state =>  triple"
oheimb@11565
   164
         "MGT  c Z \<equiv> (\<lambda>s. Z = s, c, \<lambda>  t. \<exists>n. Z -c-  n-> t)"
oheimb@11486
   165
          MGTe   :: "expr => state => etriple"
oheimb@11565
   166
         "MGTe e Z \<equiv> (\<lambda>s. Z = s, e, \<lambda>v t. \<exists>n. Z -e>v-n-> t)"
oheimb@11486
   167
syntax (xsymbols)
oheimb@11486
   168
         MGTe    :: "expr => state => etriple" ("MGT\<^sub>e")
oheimb@11376
   169
oheimb@11376
   170
lemma MGF_implies_complete:
oheimb@11565
   171
 "\<forall>Z. {} |\<turnstile> { MGT c Z} \<Longrightarrow> \<Turnstile>  {P} c {Q} \<Longrightarrow> {} \<turnstile>  {P} c {Q}"
oheimb@11376
   172
apply (simp only: valid_def2)
oheimb@11376
   173
apply (unfold MGT_def)
oheimb@11476
   174
apply (erule hoare_ehoare.Conseq)
oheimb@11476
   175
apply (clarsimp simp add: nvalid_def2)
oheimb@11376
   176
done
oheimb@11376
   177
oheimb@11476
   178
lemma eMGF_implies_complete:
oheimb@11565
   179
 "\<forall>Z. {} |\<turnstile>\<^sub>e MGT\<^sub>e e Z \<Longrightarrow> \<Turnstile>\<^sub>e {P} e {Q} \<Longrightarrow> {} \<turnstile>\<^sub>e {P} e {Q}"
oheimb@11476
   180
apply (simp only: evalid_def2)
oheimb@11486
   181
apply (unfold MGTe_def)
oheimb@11476
   182
apply (erule hoare_ehoare.eConseq)
oheimb@11476
   183
apply (clarsimp simp add: envalid_def2)
oheimb@11476
   184
done
oheimb@11376
   185
oheimb@11476
   186
declare exec_eval.intros[intro!]
oheimb@11376
   187
oheimb@11565
   188
lemma MGF_Loop: "\<forall>Z. A \<turnstile> {op = Z} c {\<lambda>t. \<exists>n. Z -c-n\<rightarrow> t} \<Longrightarrow> 
oheimb@11565
   189
  A \<turnstile> {op = Z} While (x) c {\<lambda>t. \<exists>n. Z -While (x) c-n\<rightarrow> t}"
oheimb@11565
   190
apply (rule_tac P' = "\<lambda>Z s. (Z,s) \<in> ({(s,t). \<exists>n. s<x> \<noteq> Null \<and> s -c-n\<rightarrow> t})^*"
oheimb@11476
   191
       in hoare_ehoare.Conseq)
oheimb@11376
   192
apply  (rule allI)
oheimb@11476
   193
apply  (rule hoare_ehoare.Loop)
oheimb@11476
   194
apply  (erule hoare_ehoare.Conseq)
oheimb@11376
   195
apply  clarsimp
oheimb@11376
   196
apply  (blast intro:rtrancl_into_rtrancl)
oheimb@11376
   197
apply (erule thin_rl)
oheimb@11376
   198
apply clarsimp
oheimb@11565
   199
apply (erule_tac x = Z in allE)
oheimb@11376
   200
apply clarsimp
oheimb@11376
   201
apply (erule converse_rtrancl_induct)
oheimb@11376
   202
apply  blast
oheimb@11376
   203
apply clarsimp
oheimb@11476
   204
apply (drule (1) exec_exec_max)
oheimb@11376
   205
apply (blast del: exec_elim_cases)
oheimb@11376
   206
done
oheimb@11376
   207
oheimb@11565
   208
lemma MGF_lemma: "\<forall>M Z. A |\<turnstile> {MGT (Impl M) Z} \<Longrightarrow> 
oheimb@11565
   209
 (\<forall>Z. A |\<turnstile> {MGT c Z}) \<and> (\<forall>Z. A |\<turnstile>\<^sub>e MGT\<^sub>e e Z)"
oheimb@11486
   210
apply (simp add: MGT_def MGTe_def)
oheimb@11476
   211
apply (rule stmt_expr.induct)
oheimb@11476
   212
apply (rule_tac [!] allI)
oheimb@11376
   213
oheimb@11476
   214
apply (rule Conseq1 [OF hoare_ehoare.Skip])
oheimb@11376
   215
apply blast
oheimb@11376
   216
oheimb@11476
   217
apply (rule hoare_ehoare.Comp)
oheimb@11376
   218
apply  (erule spec)
oheimb@11476
   219
apply (erule hoare_ehoare.Conseq)
oheimb@11376
   220
apply clarsimp
oheimb@11476
   221
apply (drule (1) exec_exec_max)
oheimb@11376
   222
apply blast
oheimb@11376
   223
oheimb@11476
   224
apply (erule thin_rl)
oheimb@11476
   225
apply (rule hoare_ehoare.Cond)
oheimb@11476
   226
apply  (erule spec)
oheimb@11476
   227
apply (rule allI)
oheimb@11476
   228
apply (simp)
oheimb@11476
   229
apply (rule conjI)
oheimb@11476
   230
apply  (rule impI, erule hoare_ehoare.Conseq, clarsimp, drule (1) eval_exec_max,
oheimb@11476
   231
        erule thin_rl, erule thin_rl, force)+
oheimb@11376
   232
oheimb@11376
   233
apply (erule MGF_Loop)
oheimb@11376
   234
oheimb@11476
   235
apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.LAss])
oheimb@11476
   236
apply fast
oheimb@11376
   237
oheimb@11476
   238
apply (erule thin_rl)
oheimb@11565
   239
apply (rule_tac Q = "\<lambda>a s. \<exists>n. Z -expr1\<succ>Addr a-n\<rightarrow> s" in hoare_ehoare.FAss)
oheimb@11476
   240
apply  (drule spec)
oheimb@11476
   241
apply  (erule eConseq2)
oheimb@11476
   242
apply  fast
oheimb@11476
   243
apply (rule allI)
oheimb@11476
   244
apply (erule hoare_ehoare.eConseq)
oheimb@11476
   245
apply clarsimp
oheimb@11476
   246
apply (drule (1) eval_eval_max)
oheimb@11376
   247
apply blast
oheimb@11376
   248
oheimb@11507
   249
apply (simp only: split_paired_all)
oheimb@11476
   250
apply (rule hoare_ehoare.Meth)
oheimb@11376
   251
apply (rule allI)
oheimb@11476
   252
apply (drule spec, drule spec, erule hoare_ehoare.Conseq)
oheimb@11376
   253
apply blast
oheimb@11376
   254
oheimb@11497
   255
apply (simp add: split_paired_all)
oheimb@11476
   256
oheimb@11476
   257
apply (rule eConseq1 [OF hoare_ehoare.NewC])
oheimb@11476
   258
apply blast
oheimb@11476
   259
oheimb@11476
   260
apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.Cast])
oheimb@11476
   261
apply fast
oheimb@11476
   262
oheimb@11476
   263
apply (rule eConseq1 [OF hoare_ehoare.LAcc])
oheimb@11476
   264
apply blast
oheimb@11476
   265
oheimb@11476
   266
apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.FAcc])
oheimb@11476
   267
apply fast
oheimb@11476
   268
oheimb@11565
   269
apply (rule_tac R = "\<lambda>a v s. \<exists>n1 n2 t. Z -expr1\<succ>a-n1\<rightarrow> t \<and> t -expr2\<succ>v-n2\<rightarrow> s" in
oheimb@11476
   270
                hoare_ehoare.Call)
oheimb@11476
   271
apply   (erule spec)
oheimb@11476
   272
apply  (rule allI)
oheimb@11476
   273
apply  (erule hoare_ehoare.eConseq)
oheimb@11476
   274
apply  clarsimp
oheimb@11476
   275
apply  blast
oheimb@11476
   276
apply (rule allI)+
oheimb@11476
   277
apply (rule hoare_ehoare.Meth)
oheimb@11476
   278
apply (rule allI)
oheimb@11476
   279
apply (drule spec, drule spec, erule hoare_ehoare.Conseq)
oheimb@11476
   280
apply (erule thin_rl, erule thin_rl)
oheimb@11476
   281
apply (clarsimp del: Impl_elim_cases)
oheimb@11476
   282
apply (drule (2) eval_eval_exec_max)
oheimb@11565
   283
apply (force del: Impl_elim_cases)
oheimb@11376
   284
done
oheimb@11376
   285
oheimb@11565
   286
lemma MGF_Impl: "{} |\<turnstile> {MGT (Impl M) Z}"
oheimb@11376
   287
apply (unfold MGT_def)
oheimb@12934
   288
apply (rule Impl1')
oheimb@11376
   289
apply  (rule_tac [2] UNIV_I)
oheimb@11376
   290
apply clarsimp
oheimb@11476
   291
apply (rule hoare_ehoare.ConjI)
oheimb@11376
   292
apply clarsimp
oheimb@11376
   293
apply (rule ssubst [OF Impl_body_eq])
oheimb@11376
   294
apply (fold MGT_def)
oheimb@11476
   295
apply (rule MGF_lemma [THEN conjunct1, rule_format])
oheimb@11476
   296
apply (rule hoare_ehoare.Asm)
oheimb@11376
   297
apply force
oheimb@11376
   298
done
oheimb@11376
   299
oheimb@11376
   300
theorem hoare_relative_complete: "\<Turnstile> {P} c {Q} \<Longrightarrow> {} \<turnstile> {P} c {Q}"
oheimb@11376
   301
apply (rule MGF_implies_complete)
oheimb@11376
   302
apply  (erule_tac [2] asm_rl)
oheimb@11376
   303
apply (rule allI)
oheimb@11476
   304
apply (rule MGF_lemma [THEN conjunct1, rule_format])
oheimb@11476
   305
apply (rule MGF_Impl)
oheimb@11476
   306
done
oheimb@11476
   307
oheimb@11486
   308
theorem ehoare_relative_complete: "\<Turnstile>\<^sub>e {P} e {Q} \<Longrightarrow> {} \<turnstile>\<^sub>e {P} e {Q}"
oheimb@11476
   309
apply (rule eMGF_implies_complete)
oheimb@11476
   310
apply  (erule_tac [2] asm_rl)
oheimb@11476
   311
apply (rule allI)
oheimb@11476
   312
apply (rule MGF_lemma [THEN conjunct2, rule_format])
oheimb@11376
   313
apply (rule MGF_Impl)
oheimb@11376
   314
done
oheimb@11376
   315
oheimb@11565
   316
lemma cFalse: "A \<turnstile> {\<lambda>s. False} c {Q}"
oheimb@11565
   317
apply (rule cThin)
oheimb@11565
   318
apply (rule hoare_relative_complete)
oheimb@11565
   319
apply (auto simp add: valid_def)
oheimb@11565
   320
done
oheimb@11565
   321
oheimb@11565
   322
lemma eFalse: "A \<turnstile>\<^sub>e {\<lambda>s. False} e {Q}"
oheimb@11565
   323
apply (rule eThin)
oheimb@11565
   324
apply (rule ehoare_relative_complete)
oheimb@11565
   325
apply (auto simp add: evalid_def)
oheimb@11565
   326
done
oheimb@11565
   327
oheimb@11376
   328
end