src/ZF/OrderArith.thy
author wenzelm
Sun Apr 15 23:25:52 2007 +0200 (2007-04-15)
changeset 22710 f44439cdce77
parent 16417 9bc16273c2d4
child 24893 b8ef7afe3a6b
permissions -rw-r--r--
read prop as prop, not term;
clasohm@1478
     1
(*  Title:      ZF/OrderArith.thy
lcp@437
     2
    ID:         $Id$
clasohm@1478
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
lcp@437
     4
    Copyright   1994  University of Cambridge
lcp@437
     5
lcp@437
     6
*)
lcp@437
     7
paulson@13356
     8
header{*Combining Orderings: Foundations of Ordinal Arithmetic*}
paulson@13356
     9
haftmann@16417
    10
theory OrderArith imports Order Sum Ordinal begin
paulson@13140
    11
constdefs
lcp@437
    12
lcp@437
    13
  (*disjoint sum of two relations; underlies ordinal addition*)
paulson@13140
    14
  radd    :: "[i,i,i,i]=>i"
paulson@13140
    15
    "radd(A,r,B,s) == 
clasohm@1155
    16
                {z: (A+B) * (A+B).  
clasohm@1478
    17
                    (EX x y. z = <Inl(x), Inr(y)>)   |   
clasohm@1478
    18
                    (EX x' x. z = <Inl(x'), Inl(x)> & <x',x>:r)   |      
clasohm@1155
    19
                    (EX y' y. z = <Inr(y'), Inr(y)> & <y',y>:s)}"
lcp@437
    20
lcp@437
    21
  (*lexicographic product of two relations; underlies ordinal multiplication*)
paulson@13140
    22
  rmult   :: "[i,i,i,i]=>i"
paulson@13140
    23
    "rmult(A,r,B,s) == 
clasohm@1155
    24
                {z: (A*B) * (A*B).  
clasohm@1478
    25
                    EX x' y' x y. z = <<x',y'>, <x,y>> &         
clasohm@1155
    26
                       (<x',x>: r | (x'=x & <y',y>: s))}"
lcp@437
    27
lcp@437
    28
  (*inverse image of a relation*)
paulson@13140
    29
  rvimage :: "[i,i,i]=>i"
paulson@13140
    30
    "rvimage(A,f,r) == {z: A*A. EX x y. z = <x,y> & <f`x,f`y>: r}"
paulson@13140
    31
paulson@13140
    32
  measure :: "[i, i\<Rightarrow>i] \<Rightarrow> i"
paulson@13140
    33
    "measure(A,f) == {<x,y>: A*A. f(x) < f(y)}"
paulson@13140
    34
paulson@13140
    35
paulson@13356
    36
subsection{*Addition of Relations -- Disjoint Sum*}
paulson@13140
    37
paulson@13512
    38
subsubsection{*Rewrite rules.  Can be used to obtain introduction rules*}
paulson@13140
    39
paulson@13140
    40
lemma radd_Inl_Inr_iff [iff]: 
paulson@13140
    41
    "<Inl(a), Inr(b)> : radd(A,r,B,s)  <->  a:A & b:B"
paulson@13356
    42
by (unfold radd_def, blast)
paulson@13140
    43
paulson@13140
    44
lemma radd_Inl_iff [iff]: 
paulson@13140
    45
    "<Inl(a'), Inl(a)> : radd(A,r,B,s)  <->  a':A & a:A & <a',a>:r"
paulson@13356
    46
by (unfold radd_def, blast)
paulson@13140
    47
paulson@13140
    48
lemma radd_Inr_iff [iff]: 
paulson@13140
    49
    "<Inr(b'), Inr(b)> : radd(A,r,B,s) <->  b':B & b:B & <b',b>:s"
paulson@13356
    50
by (unfold radd_def, blast)
paulson@13140
    51
paulson@13823
    52
lemma radd_Inr_Inl_iff [simp]: 
paulson@13823
    53
    "<Inr(b), Inl(a)> : radd(A,r,B,s) <-> False"
paulson@13356
    54
by (unfold radd_def, blast)
paulson@13140
    55
paulson@13823
    56
declare radd_Inr_Inl_iff [THEN iffD1, dest!] 
paulson@13823
    57
paulson@13512
    58
subsubsection{*Elimination Rule*}
paulson@13140
    59
paulson@13140
    60
lemma raddE:
paulson@13140
    61
    "[| <p',p> : radd(A,r,B,s);                  
paulson@13140
    62
        !!x y. [| p'=Inl(x); x:A; p=Inr(y); y:B |] ==> Q;        
paulson@13140
    63
        !!x' x. [| p'=Inl(x'); p=Inl(x); <x',x>: r; x':A; x:A |] ==> Q;  
paulson@13140
    64
        !!y' y. [| p'=Inr(y'); p=Inr(y); <y',y>: s; y':B; y:B |] ==> Q   
paulson@13140
    65
     |] ==> Q"
paulson@13356
    66
by (unfold radd_def, blast) 
paulson@13140
    67
paulson@13512
    68
subsubsection{*Type checking*}
paulson@13140
    69
paulson@13140
    70
lemma radd_type: "radd(A,r,B,s) <= (A+B) * (A+B)"
paulson@13140
    71
apply (unfold radd_def)
paulson@13140
    72
apply (rule Collect_subset)
paulson@13140
    73
done
paulson@13140
    74
paulson@13140
    75
lemmas field_radd = radd_type [THEN field_rel_subset]
paulson@13140
    76
paulson@13512
    77
subsubsection{*Linearity*}
paulson@13140
    78
paulson@13140
    79
lemma linear_radd: 
paulson@13140
    80
    "[| linear(A,r);  linear(B,s) |] ==> linear(A+B,radd(A,r,B,s))"
paulson@13356
    81
by (unfold linear_def, blast) 
paulson@13140
    82
paulson@13140
    83
paulson@13512
    84
subsubsection{*Well-foundedness*}
paulson@13140
    85
paulson@13140
    86
lemma wf_on_radd: "[| wf[A](r);  wf[B](s) |] ==> wf[A+B](radd(A,r,B,s))"
paulson@13140
    87
apply (rule wf_onI2)
paulson@13140
    88
apply (subgoal_tac "ALL x:A. Inl (x) : Ba")
paulson@13512
    89
 --{*Proving the lemma, which is needed twice!*}
paulson@13140
    90
 prefer 2
paulson@13140
    91
 apply (erule_tac V = "y : A + B" in thin_rl)
paulson@13140
    92
 apply (rule_tac ballI)
paulson@13784
    93
 apply (erule_tac r = r and a = x in wf_on_induct, assumption)
paulson@13269
    94
 apply blast 
paulson@13512
    95
txt{*Returning to main part of proof*}
paulson@13140
    96
apply safe
paulson@13140
    97
apply blast
paulson@13784
    98
apply (erule_tac r = s and a = ya in wf_on_induct, assumption, blast) 
paulson@13140
    99
done
paulson@13140
   100
paulson@13140
   101
lemma wf_radd: "[| wf(r);  wf(s) |] ==> wf(radd(field(r),r,field(s),s))"
paulson@13140
   102
apply (simp add: wf_iff_wf_on_field)
paulson@13140
   103
apply (rule wf_on_subset_A [OF _ field_radd])
paulson@13140
   104
apply (blast intro: wf_on_radd) 
paulson@13140
   105
done
paulson@13140
   106
paulson@13140
   107
lemma well_ord_radd:
paulson@13140
   108
     "[| well_ord(A,r);  well_ord(B,s) |] ==> well_ord(A+B, radd(A,r,B,s))"
paulson@13140
   109
apply (rule well_ordI)
paulson@13140
   110
apply (simp add: well_ord_def wf_on_radd)
paulson@13140
   111
apply (simp add: well_ord_def tot_ord_def linear_radd)
paulson@13140
   112
done
paulson@13140
   113
paulson@13512
   114
subsubsection{*An @{term ord_iso} congruence law*}
lcp@437
   115
paulson@13140
   116
lemma sum_bij:
paulson@13140
   117
     "[| f: bij(A,C);  g: bij(B,D) |]
paulson@13140
   118
      ==> (lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) : bij(A+B, C+D)"
paulson@13356
   119
apply (rule_tac d = "case (%x. Inl (converse(f)`x), %y. Inr(converse(g)`y))" 
paulson@13356
   120
       in lam_bijective)
paulson@13140
   121
apply (typecheck add: bij_is_inj inj_is_fun) 
paulson@13140
   122
apply (auto simp add: left_inverse_bij right_inverse_bij) 
paulson@13140
   123
done
paulson@13140
   124
paulson@13140
   125
lemma sum_ord_iso_cong: 
paulson@13140
   126
    "[| f: ord_iso(A,r,A',r');  g: ord_iso(B,s,B',s') |] ==>      
paulson@13140
   127
            (lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z))             
paulson@13140
   128
            : ord_iso(A+B, radd(A,r,B,s), A'+B', radd(A',r',B',s'))"
paulson@13140
   129
apply (unfold ord_iso_def)
paulson@13140
   130
apply (safe intro!: sum_bij)
paulson@13140
   131
(*Do the beta-reductions now*)
paulson@13140
   132
apply (auto cong add: conj_cong simp add: bij_is_fun [THEN apply_type])
paulson@13140
   133
done
paulson@13140
   134
paulson@13140
   135
(*Could we prove an ord_iso result?  Perhaps 
paulson@13140
   136
     ord_iso(A+B, radd(A,r,B,s), A Un B, r Un s) *)
paulson@13140
   137
lemma sum_disjoint_bij: "A Int B = 0 ==>      
paulson@13140
   138
            (lam z:A+B. case(%x. x, %y. y, z)) : bij(A+B, A Un B)"
paulson@13140
   139
apply (rule_tac d = "%z. if z:A then Inl (z) else Inr (z) " in lam_bijective)
paulson@13140
   140
apply auto
paulson@13140
   141
done
paulson@13140
   142
paulson@13512
   143
subsubsection{*Associativity*}
paulson@13140
   144
paulson@13140
   145
lemma sum_assoc_bij:
paulson@13140
   146
     "(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))  
paulson@13140
   147
      : bij((A+B)+C, A+(B+C))"
paulson@13140
   148
apply (rule_tac d = "case (%x. Inl (Inl (x)), case (%x. Inl (Inr (x)), Inr))" 
paulson@13140
   149
       in lam_bijective)
paulson@13140
   150
apply auto
paulson@13140
   151
done
paulson@13140
   152
paulson@13140
   153
lemma sum_assoc_ord_iso:
paulson@13140
   154
     "(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))  
paulson@13140
   155
      : ord_iso((A+B)+C, radd(A+B, radd(A,r,B,s), C, t),     
paulson@13140
   156
                A+(B+C), radd(A, r, B+C, radd(B,s,C,t)))"
paulson@13356
   157
by (rule sum_assoc_bij [THEN ord_isoI], auto)
paulson@13140
   158
paulson@13140
   159
paulson@13356
   160
subsection{*Multiplication of Relations -- Lexicographic Product*}
paulson@13140
   161
paulson@13512
   162
subsubsection{*Rewrite rule.  Can be used to obtain introduction rules*}
paulson@13140
   163
paulson@13140
   164
lemma  rmult_iff [iff]: 
paulson@13140
   165
    "<<a',b'>, <a,b>> : rmult(A,r,B,s) <->        
paulson@13140
   166
            (<a',a>: r  & a':A & a:A & b': B & b: B) |   
paulson@13140
   167
            (<b',b>: s  & a'=a & a:A & b': B & b: B)"
paulson@13140
   168
paulson@13356
   169
by (unfold rmult_def, blast)
paulson@13140
   170
paulson@13140
   171
lemma rmultE: 
paulson@13140
   172
    "[| <<a',b'>, <a,b>> : rmult(A,r,B,s);               
paulson@13140
   173
        [| <a',a>: r;  a':A;  a:A;  b':B;  b:B |] ==> Q;         
paulson@13140
   174
        [| <b',b>: s;  a:A;  a'=a;  b':B;  b:B |] ==> Q  
paulson@13140
   175
     |] ==> Q"
paulson@13356
   176
by blast 
paulson@13140
   177
paulson@13512
   178
subsubsection{*Type checking*}
paulson@13140
   179
paulson@13140
   180
lemma rmult_type: "rmult(A,r,B,s) <= (A*B) * (A*B)"
paulson@13356
   181
by (unfold rmult_def, rule Collect_subset)
paulson@13140
   182
paulson@13140
   183
lemmas field_rmult = rmult_type [THEN field_rel_subset]
paulson@13140
   184
paulson@13512
   185
subsubsection{*Linearity*}
paulson@13140
   186
paulson@13140
   187
lemma linear_rmult:
paulson@13140
   188
    "[| linear(A,r);  linear(B,s) |] ==> linear(A*B,rmult(A,r,B,s))"
paulson@13356
   189
by (simp add: linear_def, blast) 
paulson@13140
   190
paulson@13512
   191
subsubsection{*Well-foundedness*}
paulson@13140
   192
paulson@13140
   193
lemma wf_on_rmult: "[| wf[A](r);  wf[B](s) |] ==> wf[A*B](rmult(A,r,B,s))"
paulson@13140
   194
apply (rule wf_onI2)
paulson@13140
   195
apply (erule SigmaE)
paulson@13140
   196
apply (erule ssubst)
paulson@13269
   197
apply (subgoal_tac "ALL b:B. <x,b>: Ba", blast)
paulson@13784
   198
apply (erule_tac a = x in wf_on_induct, assumption)
paulson@13140
   199
apply (rule ballI)
paulson@13784
   200
apply (erule_tac a = b in wf_on_induct, assumption)
paulson@13140
   201
apply (best elim!: rmultE bspec [THEN mp])
paulson@13140
   202
done
paulson@13140
   203
paulson@13140
   204
paulson@13140
   205
lemma wf_rmult: "[| wf(r);  wf(s) |] ==> wf(rmult(field(r),r,field(s),s))"
paulson@13140
   206
apply (simp add: wf_iff_wf_on_field)
paulson@13140
   207
apply (rule wf_on_subset_A [OF _ field_rmult])
paulson@13140
   208
apply (blast intro: wf_on_rmult) 
paulson@13140
   209
done
paulson@13140
   210
paulson@13140
   211
lemma well_ord_rmult:
paulson@13140
   212
     "[| well_ord(A,r);  well_ord(B,s) |] ==> well_ord(A*B, rmult(A,r,B,s))"
paulson@13140
   213
apply (rule well_ordI)
paulson@13140
   214
apply (simp add: well_ord_def wf_on_rmult)
paulson@13140
   215
apply (simp add: well_ord_def tot_ord_def linear_rmult)
paulson@13140
   216
done
paulson@9883
   217
paulson@9883
   218
paulson@13512
   219
subsubsection{*An @{term ord_iso} congruence law*}
paulson@13140
   220
paulson@13140
   221
lemma prod_bij:
paulson@13140
   222
     "[| f: bij(A,C);  g: bij(B,D) |] 
paulson@13140
   223
      ==> (lam <x,y>:A*B. <f`x, g`y>) : bij(A*B, C*D)"
paulson@13140
   224
apply (rule_tac d = "%<x,y>. <converse (f) `x, converse (g) `y>" 
paulson@13140
   225
       in lam_bijective)
paulson@13140
   226
apply (typecheck add: bij_is_inj inj_is_fun) 
paulson@13140
   227
apply (auto simp add: left_inverse_bij right_inverse_bij) 
paulson@13140
   228
done
paulson@13140
   229
paulson@13140
   230
lemma prod_ord_iso_cong: 
paulson@13140
   231
    "[| f: ord_iso(A,r,A',r');  g: ord_iso(B,s,B',s') |]      
paulson@13140
   232
     ==> (lam <x,y>:A*B. <f`x, g`y>)                                  
paulson@13140
   233
         : ord_iso(A*B, rmult(A,r,B,s), A'*B', rmult(A',r',B',s'))"
paulson@13140
   234
apply (unfold ord_iso_def)
paulson@13140
   235
apply (safe intro!: prod_bij)
paulson@13140
   236
apply (simp_all add: bij_is_fun [THEN apply_type])
paulson@13140
   237
apply (blast intro: bij_is_inj [THEN inj_apply_equality])
paulson@13140
   238
done
paulson@13140
   239
paulson@13140
   240
lemma singleton_prod_bij: "(lam z:A. <x,z>) : bij(A, {x}*A)"
paulson@13784
   241
by (rule_tac d = snd in lam_bijective, auto)
paulson@13140
   242
paulson@13140
   243
(*Used??*)
paulson@13140
   244
lemma singleton_prod_ord_iso:
paulson@13140
   245
     "well_ord({x},xr) ==>   
paulson@13140
   246
          (lam z:A. <x,z>) : ord_iso(A, r, {x}*A, rmult({x}, xr, A, r))"
paulson@13140
   247
apply (rule singleton_prod_bij [THEN ord_isoI])
paulson@13140
   248
apply (simp (no_asm_simp))
paulson@13140
   249
apply (blast dest: well_ord_is_wf [THEN wf_on_not_refl])
paulson@13140
   250
done
paulson@13140
   251
paulson@13140
   252
(*Here we build a complicated function term, then simplify it using
paulson@13140
   253
  case_cong, id_conv, comp_lam, case_case.*)
paulson@13140
   254
lemma prod_sum_singleton_bij:
paulson@13140
   255
     "a~:C ==>  
paulson@13140
   256
       (lam x:C*B + D. case(%x. x, %y.<a,y>, x))  
paulson@13140
   257
       : bij(C*B + D, C*B Un {a}*D)"
paulson@13140
   258
apply (rule subst_elem)
paulson@13140
   259
apply (rule id_bij [THEN sum_bij, THEN comp_bij])
paulson@13140
   260
apply (rule singleton_prod_bij)
paulson@13269
   261
apply (rule sum_disjoint_bij, blast)
paulson@13140
   262
apply (simp (no_asm_simp) cong add: case_cong)
paulson@13140
   263
apply (rule comp_lam [THEN trans, symmetric])
paulson@13140
   264
apply (fast elim!: case_type)
paulson@13140
   265
apply (simp (no_asm_simp) add: case_case)
paulson@13140
   266
done
paulson@13140
   267
paulson@13140
   268
lemma prod_sum_singleton_ord_iso:
paulson@13140
   269
 "[| a:A;  well_ord(A,r) |] ==>  
paulson@13140
   270
    (lam x:pred(A,a,r)*B + pred(B,b,s). case(%x. x, %y.<a,y>, x))  
paulson@13140
   271
    : ord_iso(pred(A,a,r)*B + pred(B,b,s),               
paulson@13140
   272
                  radd(A*B, rmult(A,r,B,s), B, s),       
paulson@13140
   273
              pred(A,a,r)*B Un {a}*pred(B,b,s), rmult(A,r,B,s))"
paulson@13140
   274
apply (rule prod_sum_singleton_bij [THEN ord_isoI])
paulson@13140
   275
apply (simp (no_asm_simp) add: pred_iff well_ord_is_wf [THEN wf_on_not_refl])
paulson@13140
   276
apply (auto elim!: well_ord_is_wf [THEN wf_on_asym] predE)
paulson@13140
   277
done
paulson@13140
   278
paulson@13512
   279
subsubsection{*Distributive law*}
paulson@13140
   280
paulson@13140
   281
lemma sum_prod_distrib_bij:
paulson@13140
   282
     "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))  
paulson@13140
   283
      : bij((A+B)*C, (A*C)+(B*C))"
paulson@13356
   284
by (rule_tac d = "case (%<x,y>.<Inl (x),y>, %<x,y>.<Inr (x),y>) " 
paulson@13356
   285
    in lam_bijective, auto)
paulson@13140
   286
paulson@13140
   287
lemma sum_prod_distrib_ord_iso:
paulson@13140
   288
 "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))  
paulson@13140
   289
  : ord_iso((A+B)*C, rmult(A+B, radd(A,r,B,s), C, t),  
paulson@13140
   290
            (A*C)+(B*C), radd(A*C, rmult(A,r,C,t), B*C, rmult(B,s,C,t)))"
paulson@13356
   291
by (rule sum_prod_distrib_bij [THEN ord_isoI], auto)
paulson@13140
   292
paulson@13512
   293
subsubsection{*Associativity*}
paulson@13140
   294
paulson@13140
   295
lemma prod_assoc_bij:
paulson@13140
   296
     "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) : bij((A*B)*C, A*(B*C))"
paulson@13356
   297
by (rule_tac d = "%<x, <y,z>>. <<x,y>, z>" in lam_bijective, auto)
paulson@13140
   298
paulson@13140
   299
lemma prod_assoc_ord_iso:
paulson@13140
   300
 "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>)                    
paulson@13140
   301
  : ord_iso((A*B)*C, rmult(A*B, rmult(A,r,B,s), C, t),   
paulson@13140
   302
            A*(B*C), rmult(A, r, B*C, rmult(B,s,C,t)))"
paulson@13356
   303
by (rule prod_assoc_bij [THEN ord_isoI], auto)
paulson@13140
   304
paulson@13356
   305
subsection{*Inverse Image of a Relation*}
paulson@13140
   306
paulson@13512
   307
subsubsection{*Rewrite rule*}
paulson@13140
   308
paulson@13140
   309
lemma rvimage_iff: "<a,b> : rvimage(A,f,r)  <->  <f`a,f`b>: r & a:A & b:A"
paulson@13269
   310
by (unfold rvimage_def, blast)
paulson@13140
   311
paulson@13512
   312
subsubsection{*Type checking*}
paulson@13140
   313
paulson@13140
   314
lemma rvimage_type: "rvimage(A,f,r) <= A*A"
paulson@13784
   315
by (unfold rvimage_def, rule Collect_subset)
paulson@13140
   316
paulson@13140
   317
lemmas field_rvimage = rvimage_type [THEN field_rel_subset]
paulson@13140
   318
paulson@13140
   319
lemma rvimage_converse: "rvimage(A,f, converse(r)) = converse(rvimage(A,f,r))"
paulson@13269
   320
by (unfold rvimage_def, blast)
paulson@13140
   321
paulson@13140
   322
paulson@13512
   323
subsubsection{*Partial Ordering Properties*}
paulson@13140
   324
paulson@13140
   325
lemma irrefl_rvimage: 
paulson@13140
   326
    "[| f: inj(A,B);  irrefl(B,r) |] ==> irrefl(A, rvimage(A,f,r))"
paulson@13140
   327
apply (unfold irrefl_def rvimage_def)
paulson@13140
   328
apply (blast intro: inj_is_fun [THEN apply_type])
paulson@13140
   329
done
paulson@13140
   330
paulson@13140
   331
lemma trans_on_rvimage: 
paulson@13140
   332
    "[| f: inj(A,B);  trans[B](r) |] ==> trans[A](rvimage(A,f,r))"
paulson@13140
   333
apply (unfold trans_on_def rvimage_def)
paulson@13140
   334
apply (blast intro: inj_is_fun [THEN apply_type])
paulson@13140
   335
done
paulson@13140
   336
paulson@13140
   337
lemma part_ord_rvimage: 
paulson@13140
   338
    "[| f: inj(A,B);  part_ord(B,r) |] ==> part_ord(A, rvimage(A,f,r))"
paulson@13140
   339
apply (unfold part_ord_def)
paulson@13140
   340
apply (blast intro!: irrefl_rvimage trans_on_rvimage)
paulson@13140
   341
done
paulson@13140
   342
paulson@13512
   343
subsubsection{*Linearity*}
paulson@13140
   344
paulson@13140
   345
lemma linear_rvimage:
paulson@13140
   346
    "[| f: inj(A,B);  linear(B,r) |] ==> linear(A,rvimage(A,f,r))"
paulson@13140
   347
apply (simp add: inj_def linear_def rvimage_iff) 
paulson@13269
   348
apply (blast intro: apply_funtype) 
paulson@13140
   349
done
paulson@13140
   350
paulson@13140
   351
lemma tot_ord_rvimage: 
paulson@13140
   352
    "[| f: inj(A,B);  tot_ord(B,r) |] ==> tot_ord(A, rvimage(A,f,r))"
paulson@13140
   353
apply (unfold tot_ord_def)
paulson@13140
   354
apply (blast intro!: part_ord_rvimage linear_rvimage)
paulson@13140
   355
done
paulson@13140
   356
paulson@13140
   357
paulson@13512
   358
subsubsection{*Well-foundedness*}
paulson@13140
   359
paulson@13140
   360
lemma wf_rvimage [intro!]: "wf(r) ==> wf(rvimage(A,f,r))"
paulson@13140
   361
apply (simp (no_asm_use) add: rvimage_def wf_eq_minimal)
paulson@13140
   362
apply clarify
paulson@13140
   363
apply (subgoal_tac "EX w. w : {w: {f`x. x:Q}. EX x. x: Q & (f`x = w) }")
paulson@13140
   364
 apply (erule allE)
paulson@13140
   365
 apply (erule impE)
paulson@13269
   366
 apply assumption
paulson@13140
   367
 apply blast
paulson@13269
   368
apply blast 
paulson@13140
   369
done
paulson@13140
   370
paulson@13544
   371
text{*But note that the combination of @{text wf_imp_wf_on} and
wenzelm@22710
   372
 @{text wf_rvimage} gives @{prop "wf(r) ==> wf[C](rvimage(A,f,r))"}*}
paulson@13140
   373
lemma wf_on_rvimage: "[| f: A->B;  wf[B](r) |] ==> wf[A](rvimage(A,f,r))"
paulson@13140
   374
apply (rule wf_onI2)
paulson@13140
   375
apply (subgoal_tac "ALL z:A. f`z=f`y --> z: Ba")
paulson@13140
   376
 apply blast
paulson@13140
   377
apply (erule_tac a = "f`y" in wf_on_induct)
paulson@13140
   378
 apply (blast intro!: apply_funtype)
paulson@13140
   379
apply (blast intro!: apply_funtype dest!: rvimage_iff [THEN iffD1])
paulson@13140
   380
done
paulson@13140
   381
paulson@13140
   382
(*Note that we need only wf[A](...) and linear(A,...) to get the result!*)
paulson@13140
   383
lemma well_ord_rvimage:
paulson@13140
   384
     "[| f: inj(A,B);  well_ord(B,r) |] ==> well_ord(A, rvimage(A,f,r))"
paulson@13140
   385
apply (rule well_ordI)
paulson@13140
   386
apply (unfold well_ord_def tot_ord_def)
paulson@13140
   387
apply (blast intro!: wf_on_rvimage inj_is_fun)
paulson@13140
   388
apply (blast intro!: linear_rvimage)
paulson@13140
   389
done
paulson@13140
   390
paulson@13140
   391
lemma ord_iso_rvimage: 
paulson@13140
   392
    "f: bij(A,B) ==> f: ord_iso(A, rvimage(A,f,s), B, s)"
paulson@13140
   393
apply (unfold ord_iso_def)
paulson@13140
   394
apply (simp add: rvimage_iff)
paulson@13140
   395
done
paulson@13140
   396
paulson@13140
   397
lemma ord_iso_rvimage_eq: 
paulson@13140
   398
    "f: ord_iso(A,r, B,s) ==> rvimage(A,f,s) = r Int A*A"
paulson@13356
   399
by (unfold ord_iso_def rvimage_def, blast)
paulson@13140
   400
paulson@13140
   401
paulson@13634
   402
subsection{*Every well-founded relation is a subset of some inverse image of
paulson@13634
   403
      an ordinal*}
paulson@13634
   404
paulson@13634
   405
lemma wf_rvimage_Ord: "Ord(i) \<Longrightarrow> wf(rvimage(A, f, Memrel(i)))"
paulson@13634
   406
by (blast intro: wf_rvimage wf_Memrel)
paulson@13634
   407
paulson@13634
   408
paulson@13634
   409
constdefs
paulson@13634
   410
  wfrank :: "[i,i]=>i"
paulson@13634
   411
    "wfrank(r,a) == wfrec(r, a, %x f. \<Union>y \<in> r-``{x}. succ(f`y))"
paulson@13634
   412
paulson@13634
   413
constdefs
paulson@13634
   414
  wftype :: "i=>i"
paulson@13634
   415
    "wftype(r) == \<Union>y \<in> range(r). succ(wfrank(r,y))"
paulson@13634
   416
paulson@13634
   417
lemma wfrank: "wf(r) ==> wfrank(r,a) = (\<Union>y \<in> r-``{a}. succ(wfrank(r,y)))"
paulson@13634
   418
by (subst wfrank_def [THEN def_wfrec], simp_all)
paulson@13634
   419
paulson@13634
   420
lemma Ord_wfrank: "wf(r) ==> Ord(wfrank(r,a))"
paulson@13634
   421
apply (rule_tac a=a in wf_induct, assumption)
paulson@13634
   422
apply (subst wfrank, assumption)
paulson@13634
   423
apply (rule Ord_succ [THEN Ord_UN], blast)
paulson@13634
   424
done
paulson@13634
   425
paulson@13634
   426
lemma wfrank_lt: "[|wf(r); <a,b> \<in> r|] ==> wfrank(r,a) < wfrank(r,b)"
paulson@13634
   427
apply (rule_tac a1 = b in wfrank [THEN ssubst], assumption)
paulson@13634
   428
apply (rule UN_I [THEN ltI])
paulson@13634
   429
apply (simp add: Ord_wfrank vimage_iff)+
paulson@13634
   430
done
paulson@13634
   431
paulson@13634
   432
lemma Ord_wftype: "wf(r) ==> Ord(wftype(r))"
paulson@13634
   433
by (simp add: wftype_def Ord_wfrank)
paulson@13634
   434
paulson@13634
   435
lemma wftypeI: "\<lbrakk>wf(r);  x \<in> field(r)\<rbrakk> \<Longrightarrow> wfrank(r,x) \<in> wftype(r)"
paulson@13634
   436
apply (simp add: wftype_def)
paulson@13634
   437
apply (blast intro: wfrank_lt [THEN ltD])
paulson@13634
   438
done
paulson@13634
   439
paulson@13634
   440
paulson@13634
   441
lemma wf_imp_subset_rvimage:
paulson@13634
   442
     "[|wf(r); r \<subseteq> A*A|] ==> \<exists>i f. Ord(i) & r <= rvimage(A, f, Memrel(i))"
paulson@13634
   443
apply (rule_tac x="wftype(r)" in exI)
paulson@13634
   444
apply (rule_tac x="\<lambda>x\<in>A. wfrank(r,x)" in exI)
paulson@13634
   445
apply (simp add: Ord_wftype, clarify)
paulson@13634
   446
apply (frule subsetD, assumption, clarify)
paulson@13634
   447
apply (simp add: rvimage_iff wfrank_lt [THEN ltD])
paulson@13634
   448
apply (blast intro: wftypeI)
paulson@13634
   449
done
paulson@13634
   450
paulson@13634
   451
theorem wf_iff_subset_rvimage:
paulson@13634
   452
  "relation(r) ==> wf(r) <-> (\<exists>i f A. Ord(i) & r <= rvimage(A, f, Memrel(i)))"
paulson@13634
   453
by (blast dest!: relation_field_times_field wf_imp_subset_rvimage
paulson@13634
   454
          intro: wf_rvimage_Ord [THEN wf_subset])
paulson@13634
   455
paulson@13634
   456
paulson@13544
   457
subsection{*Other Results*}
paulson@13544
   458
paulson@13544
   459
lemma wf_times: "A Int B = 0 ==> wf(A*B)"
paulson@13544
   460
by (simp add: wf_def, blast)
paulson@13544
   461
paulson@13544
   462
text{*Could also be used to prove @{text wf_radd}*}
paulson@13544
   463
lemma wf_Un:
paulson@13544
   464
     "[| range(r) Int domain(s) = 0; wf(r);  wf(s) |] ==> wf(r Un s)"
paulson@13544
   465
apply (simp add: wf_def, clarify) 
paulson@13544
   466
apply (rule equalityI) 
paulson@13544
   467
 prefer 2 apply blast 
paulson@13544
   468
apply clarify 
paulson@13544
   469
apply (drule_tac x=Z in spec)
paulson@13544
   470
apply (drule_tac x="Z Int domain(s)" in spec)
paulson@13544
   471
apply simp 
paulson@13544
   472
apply (blast intro: elim: equalityE) 
paulson@13544
   473
done
paulson@13544
   474
paulson@13544
   475
subsubsection{*The Empty Relation*}
paulson@13544
   476
paulson@13544
   477
lemma wf0: "wf(0)"
paulson@13544
   478
by (simp add: wf_def, blast)
paulson@13544
   479
paulson@13544
   480
lemma linear0: "linear(0,0)"
paulson@13544
   481
by (simp add: linear_def)
paulson@13544
   482
paulson@13544
   483
lemma well_ord0: "well_ord(0,0)"
paulson@13544
   484
by (blast intro: wf_imp_wf_on well_ordI wf0 linear0)
paulson@13512
   485
paulson@13512
   486
subsubsection{*The "measure" relation is useful with wfrec*}
paulson@13140
   487
paulson@13140
   488
lemma measure_eq_rvimage_Memrel:
paulson@13140
   489
     "measure(A,f) = rvimage(A,Lambda(A,f),Memrel(Collect(RepFun(A,f),Ord)))"
paulson@13140
   490
apply (simp (no_asm) add: measure_def rvimage_def Memrel_iff)
paulson@13269
   491
apply (rule equalityI, auto)
paulson@13140
   492
apply (auto intro: Ord_in_Ord simp add: lt_def)
paulson@13140
   493
done
paulson@13140
   494
paulson@13140
   495
lemma wf_measure [iff]: "wf(measure(A,f))"
paulson@13356
   496
by (simp (no_asm) add: measure_eq_rvimage_Memrel wf_Memrel wf_rvimage)
paulson@13140
   497
paulson@13140
   498
lemma measure_iff [iff]: "<x,y> : measure(A,f) <-> x:A & y:A & f(x)<f(y)"
paulson@13356
   499
by (simp (no_asm) add: measure_def)
paulson@13140
   500
paulson@13544
   501
lemma linear_measure: 
paulson@13544
   502
 assumes Ordf: "!!x. x \<in> A ==> Ord(f(x))"
paulson@13544
   503
     and inj:  "!!x y. [|x \<in> A; y \<in> A; f(x) = f(y) |] ==> x=y"
paulson@13544
   504
 shows "linear(A, measure(A,f))"
paulson@13544
   505
apply (auto simp add: linear_def) 
paulson@13544
   506
apply (rule_tac i="f(x)" and j="f(y)" in Ord_linear_lt) 
paulson@13544
   507
    apply (simp_all add: Ordf) 
paulson@13544
   508
apply (blast intro: inj) 
paulson@13544
   509
done
paulson@13544
   510
paulson@13544
   511
lemma wf_on_measure: "wf[B](measure(A,f))"
paulson@13544
   512
by (rule wf_imp_wf_on [OF wf_measure])
paulson@13544
   513
paulson@13544
   514
lemma well_ord_measure: 
paulson@13544
   515
 assumes Ordf: "!!x. x \<in> A ==> Ord(f(x))"
paulson@13544
   516
     and inj:  "!!x y. [|x \<in> A; y \<in> A; f(x) = f(y) |] ==> x=y"
paulson@13544
   517
 shows "well_ord(A, measure(A,f))"
paulson@13544
   518
apply (rule well_ordI)
paulson@13544
   519
apply (rule wf_on_measure) 
paulson@13544
   520
apply (blast intro: linear_measure Ordf inj) 
paulson@13544
   521
done
paulson@13544
   522
paulson@13544
   523
lemma measure_type: "measure(A,f) <= A*A"
paulson@13544
   524
by (auto simp add: measure_def)
paulson@13544
   525
paulson@13512
   526
subsubsection{*Well-foundedness of Unions*}
paulson@13512
   527
paulson@13512
   528
lemma wf_on_Union:
paulson@13512
   529
 assumes wfA: "wf[A](r)"
paulson@13512
   530
     and wfB: "!!a. a\<in>A ==> wf[B(a)](s)"
paulson@13512
   531
     and ok: "!!a u v. [|<u,v> \<in> s; v \<in> B(a); a \<in> A|] 
paulson@13512
   532
                       ==> (\<exists>a'\<in>A. <a',a> \<in> r & u \<in> B(a')) | u \<in> B(a)"
paulson@13512
   533
 shows "wf[\<Union>a\<in>A. B(a)](s)"
paulson@13512
   534
apply (rule wf_onI2)
paulson@13512
   535
apply (erule UN_E)
paulson@13512
   536
apply (subgoal_tac "\<forall>z \<in> B(a). z \<in> Ba", blast)
paulson@13512
   537
apply (rule_tac a = a in wf_on_induct [OF wfA], assumption)
paulson@13512
   538
apply (rule ballI)
paulson@13512
   539
apply (rule_tac a = z in wf_on_induct [OF wfB], assumption, assumption)
paulson@13512
   540
apply (rename_tac u) 
paulson@13512
   541
apply (drule_tac x=u in bspec, blast) 
paulson@13512
   542
apply (erule mp, clarify)
paulson@13784
   543
apply (frule ok, assumption+, blast) 
paulson@13512
   544
done
paulson@13512
   545
paulson@14120
   546
subsubsection{*Bijections involving Powersets*}
paulson@14120
   547
paulson@14120
   548
lemma Pow_sum_bij:
paulson@14120
   549
    "(\<lambda>Z \<in> Pow(A+B). <{x \<in> A. Inl(x) \<in> Z}, {y \<in> B. Inr(y) \<in> Z}>)  
paulson@14120
   550
     \<in> bij(Pow(A+B), Pow(A)*Pow(B))"
paulson@14120
   551
apply (rule_tac d = "%<X,Y>. {Inl (x). x \<in> X} Un {Inr (y). y \<in> Y}" 
paulson@14120
   552
       in lam_bijective)
paulson@14120
   553
apply force+
paulson@14120
   554
done
paulson@14120
   555
paulson@14120
   556
text{*As a special case, we have @{term "bij(Pow(A*B), A -> Pow(B))"} *}
paulson@14120
   557
lemma Pow_Sigma_bij:
paulson@14120
   558
    "(\<lambda>r \<in> Pow(Sigma(A,B)). \<lambda>x \<in> A. r``{x})  
skalberg@14171
   559
     \<in> bij(Pow(Sigma(A,B)), \<Pi> x \<in> A. Pow(B(x)))"
paulson@14120
   560
apply (rule_tac d = "%f. \<Union>x \<in> A. \<Union>y \<in> f`x. {<x,y>}" in lam_bijective)
paulson@14120
   561
apply (blast intro: lam_type)
paulson@14120
   562
apply (blast dest: apply_type, simp_all)
paulson@14120
   563
apply fast (*strange, but blast can't do it*)
paulson@14120
   564
apply (rule fun_extension, auto)
paulson@14120
   565
by blast
paulson@14120
   566
paulson@13512
   567
paulson@13140
   568
ML {*
paulson@13140
   569
val measure_def = thm "measure_def";
paulson@13140
   570
val radd_Inl_Inr_iff = thm "radd_Inl_Inr_iff";
paulson@13140
   571
val radd_Inl_iff = thm "radd_Inl_iff";
paulson@13140
   572
val radd_Inr_iff = thm "radd_Inr_iff";
paulson@13140
   573
val radd_Inr_Inl_iff = thm "radd_Inr_Inl_iff";
paulson@13140
   574
val raddE = thm "raddE";
paulson@13140
   575
val radd_type = thm "radd_type";
paulson@13140
   576
val field_radd = thm "field_radd";
paulson@13140
   577
val linear_radd = thm "linear_radd";
paulson@13140
   578
val wf_on_radd = thm "wf_on_radd";
paulson@13140
   579
val wf_radd = thm "wf_radd";
paulson@13140
   580
val well_ord_radd = thm "well_ord_radd";
paulson@13140
   581
val sum_bij = thm "sum_bij";
paulson@13140
   582
val sum_ord_iso_cong = thm "sum_ord_iso_cong";
paulson@13140
   583
val sum_disjoint_bij = thm "sum_disjoint_bij";
paulson@13140
   584
val sum_assoc_bij = thm "sum_assoc_bij";
paulson@13140
   585
val sum_assoc_ord_iso = thm "sum_assoc_ord_iso";
paulson@13140
   586
val rmult_iff = thm "rmult_iff";
paulson@13140
   587
val rmultE = thm "rmultE";
paulson@13140
   588
val rmult_type = thm "rmult_type";
paulson@13140
   589
val field_rmult = thm "field_rmult";
paulson@13140
   590
val linear_rmult = thm "linear_rmult";
paulson@13140
   591
val wf_on_rmult = thm "wf_on_rmult";
paulson@13140
   592
val wf_rmult = thm "wf_rmult";
paulson@13140
   593
val well_ord_rmult = thm "well_ord_rmult";
paulson@13140
   594
val prod_bij = thm "prod_bij";
paulson@13140
   595
val prod_ord_iso_cong = thm "prod_ord_iso_cong";
paulson@13140
   596
val singleton_prod_bij = thm "singleton_prod_bij";
paulson@13140
   597
val singleton_prod_ord_iso = thm "singleton_prod_ord_iso";
paulson@13140
   598
val prod_sum_singleton_bij = thm "prod_sum_singleton_bij";
paulson@13140
   599
val prod_sum_singleton_ord_iso = thm "prod_sum_singleton_ord_iso";
paulson@13140
   600
val sum_prod_distrib_bij = thm "sum_prod_distrib_bij";
paulson@13140
   601
val sum_prod_distrib_ord_iso = thm "sum_prod_distrib_ord_iso";
paulson@13140
   602
val prod_assoc_bij = thm "prod_assoc_bij";
paulson@13140
   603
val prod_assoc_ord_iso = thm "prod_assoc_ord_iso";
paulson@13140
   604
val rvimage_iff = thm "rvimage_iff";
paulson@13140
   605
val rvimage_type = thm "rvimage_type";
paulson@13140
   606
val field_rvimage = thm "field_rvimage";
paulson@13140
   607
val rvimage_converse = thm "rvimage_converse";
paulson@13140
   608
val irrefl_rvimage = thm "irrefl_rvimage";
paulson@13140
   609
val trans_on_rvimage = thm "trans_on_rvimage";
paulson@13140
   610
val part_ord_rvimage = thm "part_ord_rvimage";
paulson@13140
   611
val linear_rvimage = thm "linear_rvimage";
paulson@13140
   612
val tot_ord_rvimage = thm "tot_ord_rvimage";
paulson@13140
   613
val wf_rvimage = thm "wf_rvimage";
paulson@13140
   614
val wf_on_rvimage = thm "wf_on_rvimage";
paulson@13140
   615
val well_ord_rvimage = thm "well_ord_rvimage";
paulson@13140
   616
val ord_iso_rvimage = thm "ord_iso_rvimage";
paulson@13140
   617
val ord_iso_rvimage_eq = thm "ord_iso_rvimage_eq";
paulson@13140
   618
val measure_eq_rvimage_Memrel = thm "measure_eq_rvimage_Memrel";
paulson@13140
   619
val wf_measure = thm "wf_measure";
paulson@13140
   620
val measure_iff = thm "measure_iff";
paulson@13140
   621
*}
paulson@13140
   622
lcp@437
   623
end