src/HOL/Tools/meson.ML
author paulson
Tue Feb 28 11:09:29 2006 +0100 (2006-02-28)
changeset 19154 f48e36b7d8d4
parent 19112 f81f8706cd37
child 19204 b8f7de7ef629
permissions -rw-r--r--
fixed but in freeze_spec
wenzelm@9869
     1
(*  Title:      HOL/Tools/meson.ML
paulson@9840
     2
    ID:         $Id$
paulson@9840
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@9840
     4
    Copyright   1992  University of Cambridge
paulson@9840
     5
wenzelm@9869
     6
The MESON resolution proof procedure for HOL.
paulson@9840
     7
paulson@9840
     8
When making clauses, avoids using the rewriter -- instead uses RS recursively
paulson@9840
     9
paulson@9840
    10
NEED TO SORT LITERALS BY # OF VARS, USING ==>I/E.  ELIMINATES NEED FOR
paulson@9840
    11
FUNCTION nodups -- if done to goal clauses too!
paulson@9840
    12
*)
paulson@9840
    13
paulson@15579
    14
signature BASIC_MESON =
paulson@15579
    15
sig
paulson@15579
    16
  val size_of_subgoals	: thm -> int
paulson@15998
    17
  val make_cnf		: thm list -> thm -> thm list
paulson@15579
    18
  val make_nnf		: thm -> thm
paulson@17849
    19
  val make_nnf1		: thm -> thm
paulson@15579
    20
  val skolemize		: thm -> thm
paulson@15579
    21
  val make_clauses	: thm list -> thm list
paulson@15579
    22
  val make_horns	: thm list -> thm list
paulson@15579
    23
  val best_prolog_tac	: (thm -> int) -> thm list -> tactic
paulson@15579
    24
  val depth_prolog_tac	: thm list -> tactic
paulson@15579
    25
  val gocls		: thm list -> thm list
paulson@15579
    26
  val skolemize_prems_tac	: thm list -> int -> tactic
paulson@15579
    27
  val MESON		: (thm list -> tactic) -> int -> tactic
paulson@15579
    28
  val best_meson_tac	: (thm -> int) -> int -> tactic
paulson@15579
    29
  val safe_best_meson_tac	: int -> tactic
paulson@15579
    30
  val depth_meson_tac	: int -> tactic
paulson@15579
    31
  val prolog_step_tac'	: thm list -> int -> tactic
paulson@15579
    32
  val iter_deepen_prolog_tac	: thm list -> tactic
paulson@16563
    33
  val iter_deepen_meson_tac	: thm list -> int -> tactic
paulson@15579
    34
  val meson_tac		: int -> tactic
paulson@15579
    35
  val negate_head	: thm -> thm
paulson@15579
    36
  val select_literal	: int -> thm -> thm
paulson@15579
    37
  val skolemize_tac	: int -> tactic
paulson@15579
    38
  val make_clauses_tac	: int -> tactic
mengj@18194
    39
  val check_is_fol : thm -> thm
mengj@18194
    40
  val check_is_fol_term : term -> term
paulson@15579
    41
end
paulson@9840
    42
paulson@9840
    43
paulson@15579
    44
structure Meson =
paulson@15579
    45
struct
paulson@9840
    46
paulson@15579
    47
val not_conjD = thm "meson_not_conjD";
paulson@15579
    48
val not_disjD = thm "meson_not_disjD";
paulson@15579
    49
val not_notD = thm "meson_not_notD";
paulson@15579
    50
val not_allD = thm "meson_not_allD";
paulson@15579
    51
val not_exD = thm "meson_not_exD";
paulson@15579
    52
val imp_to_disjD = thm "meson_imp_to_disjD";
paulson@15579
    53
val not_impD = thm "meson_not_impD";
paulson@15579
    54
val iff_to_disjD = thm "meson_iff_to_disjD";
paulson@15579
    55
val not_iffD = thm "meson_not_iffD";
paulson@15579
    56
val conj_exD1 = thm "meson_conj_exD1";
paulson@15579
    57
val conj_exD2 = thm "meson_conj_exD2";
paulson@15579
    58
val disj_exD = thm "meson_disj_exD";
paulson@15579
    59
val disj_exD1 = thm "meson_disj_exD1";
paulson@15579
    60
val disj_exD2 = thm "meson_disj_exD2";
paulson@15579
    61
val disj_assoc = thm "meson_disj_assoc";
paulson@15579
    62
val disj_comm = thm "meson_disj_comm";
paulson@15579
    63
val disj_FalseD1 = thm "meson_disj_FalseD1";
paulson@15579
    64
val disj_FalseD2 = thm "meson_disj_FalseD2";
paulson@9840
    65
paulson@16563
    66
val depth_limit = ref 2000;
paulson@9840
    67
paulson@15579
    68
(**** Operators for forward proof ****)
paulson@15579
    69
paulson@18175
    70
(*Like RS, but raises Option if there are no unifiers and allows multiple unifiers.*)
paulson@18175
    71
fun resolve1 (tha,thb) = Seq.hd (biresolution false [(false,tha)] 1 thb);
paulson@18175
    72
paulson@15579
    73
(*raises exception if no rules apply -- unlike RL*)
paulson@18141
    74
fun tryres (th, rls) = 
paulson@18141
    75
  let fun tryall [] = raise THM("tryres", 0, th::rls)
paulson@18175
    76
        | tryall (rl::rls) = (resolve1(th,rl) handle Option => tryall rls)
paulson@18141
    77
  in  tryall rls  end;
paulson@18141
    78
  
paulson@15579
    79
(*Permits forward proof from rules that discharge assumptions*)
paulson@15579
    80
fun forward_res nf st =
paulson@15579
    81
  case Seq.pull (ALLGOALS (METAHYPS (fn [prem] => rtac (nf prem) 1)) st)
paulson@15579
    82
  of SOME(th,_) => th
paulson@15579
    83
   | NONE => raise THM("forward_res", 0, [st]);
paulson@15579
    84
paulson@15579
    85
paulson@15579
    86
(*Are any of the constants in "bs" present in the term?*)
paulson@15579
    87
fun has_consts bs =
paulson@15579
    88
  let fun has (Const(a,_)) = a mem bs
paulson@15579
    89
	| has (Const ("Hilbert_Choice.Eps",_) $ _) = false
paulson@15579
    90
		     (*ignore constants within @-terms*)
paulson@15579
    91
	| has (f$u) = has f orelse has u
paulson@15579
    92
	| has (Abs(_,_,t)) = has t
paulson@15579
    93
	| has _ = false
paulson@15579
    94
  in  has  end;
paulson@17716
    95
  
paulson@9840
    96
paulson@15579
    97
(**** Clause handling ****)
paulson@9840
    98
paulson@15579
    99
fun literals (Const("Trueprop",_) $ P) = literals P
paulson@15579
   100
  | literals (Const("op |",_) $ P $ Q) = literals P @ literals Q
paulson@15579
   101
  | literals (Const("Not",_) $ P) = [(false,P)]
paulson@15579
   102
  | literals P = [(true,P)];
paulson@9840
   103
paulson@15579
   104
(*number of literals in a term*)
paulson@15579
   105
val nliterals = length o literals;
paulson@9840
   106
paulson@18389
   107
paulson@18389
   108
(*** Tautology Checking ***)
paulson@18389
   109
paulson@18389
   110
fun signed_lits_aux (Const ("op |", _) $ P $ Q) (poslits, neglits) = 
paulson@18389
   111
      signed_lits_aux Q (signed_lits_aux P (poslits, neglits))
paulson@18389
   112
  | signed_lits_aux (Const("Not",_) $ P) (poslits, neglits) = (poslits, P::neglits)
paulson@18389
   113
  | signed_lits_aux P (poslits, neglits) = (P::poslits, neglits);
paulson@18389
   114
  
paulson@18389
   115
fun signed_lits th = signed_lits_aux (HOLogic.dest_Trueprop (concl_of th)) ([],[]);
paulson@18389
   116
paulson@18389
   117
(*Literals like X=X are tautologous*)
paulson@18389
   118
fun taut_poslit (Const("op =",_) $ t $ u) = t aconv u
paulson@18389
   119
  | taut_poslit (Const("True",_)) = true
paulson@18389
   120
  | taut_poslit _ = false;
paulson@18389
   121
paulson@18389
   122
fun is_taut th =
paulson@18389
   123
  let val (poslits,neglits) = signed_lits th
paulson@18389
   124
  in  exists taut_poslit poslits
paulson@18389
   125
      orelse
paulson@18389
   126
      exists (fn t => mem_term (t, neglits)) (HOLogic.false_const :: poslits)
paulson@18389
   127
  end;
paulson@18389
   128
paulson@18389
   129
paulson@18389
   130
(*** To remove trivial negated equality literals from clauses ***)
paulson@18389
   131
paulson@18389
   132
(*They are typically functional reflexivity axioms and are the converses of
paulson@18389
   133
  injectivity equivalences*)
paulson@18389
   134
  
paulson@18389
   135
val not_refl_disj_D = thm"meson_not_refl_disj_D";
paulson@18389
   136
paulson@18389
   137
fun refl_clause_aux 0 th = th
paulson@18389
   138
  | refl_clause_aux n th =
paulson@18389
   139
       case HOLogic.dest_Trueprop (concl_of th) of
paulson@18389
   140
	  (Const ("op |", _) $ (Const ("op |", _) $ _ $ _) $ _) => 
paulson@18389
   141
            refl_clause_aux n (th RS disj_assoc)    (*isolate an atom as first disjunct*)
paulson@18389
   142
	| (Const ("op |", _) $ (Const("Not",_) $ (Const("op =",_) $ t $ u)) $ _) => 
paulson@18389
   143
	    if is_Var t orelse is_Var u then (*Var inequation: delete or ignore*)
paulson@18389
   144
		(refl_clause_aux (n-1) (th RS not_refl_disj_D)    (*delete*)
paulson@18389
   145
		 handle THM _ => refl_clause_aux (n-1) (th RS disj_comm))  (*ignore*)
paulson@18389
   146
	    else refl_clause_aux (n-1) (th RS disj_comm)  (*not between Vars: ignore*)
paulson@18389
   147
	| (Const ("op |", _) $ _ $ _) => refl_clause_aux n (th RS disj_comm)
paulson@18752
   148
	| _ => (*not a disjunction*) th;
paulson@18389
   149
paulson@18389
   150
fun notequal_lits_count (Const ("op |", _) $ P $ Q) = 
paulson@18389
   151
      notequal_lits_count P + notequal_lits_count Q
paulson@18389
   152
  | notequal_lits_count (Const("Not",_) $ (Const("op =",_) $ _ $ _)) = 1
paulson@18389
   153
  | notequal_lits_count _ = 0;
paulson@18389
   154
paulson@18389
   155
(*Simplify a clause by applying reflexivity to its negated equality literals*)
paulson@18389
   156
fun refl_clause th = 
paulson@18389
   157
  let val neqs = notequal_lits_count (HOLogic.dest_Trueprop (concl_of th))
paulson@18389
   158
  in  zero_var_indexes (refl_clause_aux neqs th)  end;
paulson@18389
   159
paulson@18389
   160
paulson@18389
   161
(*** The basic CNF transformation ***)
paulson@18389
   162
paulson@19154
   163
(*Generation of unique names -- maxidx cannot be relied upon to increase!
paulson@19154
   164
  Cannot rely on "variant", since variables might coincide when literals
paulson@19154
   165
  are joined to make a clause...
paulson@19154
   166
  19 chooses "U" as the first variable name*)
paulson@19154
   167
val name_ref = ref 19;
paulson@19154
   168
paulson@15579
   169
(*Replaces universally quantified variables by FREE variables -- because
paulson@15579
   170
  assumptions may not contain scheme variables.  Later, call "generalize". *)
paulson@15579
   171
fun freeze_spec th =
paulson@19154
   172
  let val names = add_term_names (prop_of th, [])
paulson@15579
   173
      val newname = (name_ref := !name_ref + 1;
paulson@19154
   174
		     variant names (radixstring(26, "A", !name_ref)))
paulson@19154
   175
      val spec' = read_instantiate [("x", newname)] spec
paulson@19154
   176
  in  th RS spec'  end;
paulson@9840
   177
paulson@15998
   178
(*Used with METAHYPS below. There is one assumption, which gets bound to prem
paulson@15998
   179
  and then normalized via function nf. The normal form is given to resolve_tac,
paulson@15998
   180
  presumably to instantiate a Boolean variable.*)
paulson@15579
   181
fun resop nf [prem] = resolve_tac (nf prem) 1;
paulson@9840
   182
paulson@18389
   183
val has_meta_conn = 
paulson@18389
   184
    exists_Const (fn (c,_) => c mem_string ["==", "==>", "all", "prop"]);
paulson@18389
   185
  
paulson@15998
   186
(*Conjunctive normal form, adding clauses from th in front of ths (for foldr).
paulson@15998
   187
  Strips universal quantifiers and breaks up conjunctions.
paulson@15998
   188
  Eliminates existential quantifiers using skoths: Skolemization theorems.*)
paulson@15998
   189
fun cnf skoths (th,ths) =
paulson@18389
   190
  let fun cnf_aux (th,ths) =
paulson@18389
   191
        if has_meta_conn (prop_of th) then ths (*meta-level: ignore*)
paulson@18389
   192
        else if not (has_consts ["All","Ex","op &"] (prop_of th))  
paulson@15998
   193
	then th::ths (*no work to do, terminate*)
paulson@16588
   194
	else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
paulson@16588
   195
	    Const ("op &", _) => (*conjunction*)
paulson@18389
   196
		cnf_aux (th RS conjunct1,
paulson@18389
   197
			      cnf_aux (th RS conjunct2, ths))
paulson@16588
   198
	  | Const ("All", _) => (*universal quantifier*)
paulson@18389
   199
	        cnf_aux (freeze_spec th,  ths)
paulson@16588
   200
	  | Const ("Ex", _) => 
paulson@16588
   201
	      (*existential quantifier: Insert Skolem functions*)
paulson@18389
   202
	      cnf_aux (tryres (th,skoths), ths)
paulson@16588
   203
	  | Const ("op |", _) => (*disjunction*)
paulson@16588
   204
	      let val tac =
paulson@18389
   205
		  (METAHYPS (resop cnf_nil) 1) THEN
paulson@19154
   206
		   (fn st' => st' |> METAHYPS (resop cnf_nil) 1)
paulson@16588
   207
	      in  Seq.list_of (tac (th RS disj_forward)) @ ths  end 
paulson@16588
   208
	  | _ => (*no work to do*) th::ths 
paulson@19154
   209
      and cnf_nil th = cnf_aux (th,[])
paulson@15998
   210
  in 
paulson@15998
   211
    name_ref := 19;  (*It's safe to reset this in a top-level call to cnf*)
paulson@19112
   212
    cnf_aux (th,ths)
paulson@15998
   213
  end;
paulson@9840
   214
paulson@16012
   215
(*Convert all suitable free variables to schematic variables, 
paulson@16012
   216
  but don't discharge assumptions.*)
paulson@16173
   217
fun generalize th = Thm.varifyT (forall_elim_vars 0 (forall_intr_frees th));
paulson@16012
   218
paulson@18389
   219
fun make_cnf skoths th = 
paulson@18389
   220
  filter (not o is_taut) 
paulson@18389
   221
    (map (refl_clause o generalize) (cnf skoths (th, [])));
paulson@15998
   222
paulson@9840
   223
paulson@15579
   224
(**** Removal of duplicate literals ****)
paulson@9840
   225
paulson@15579
   226
(*Forward proof, passing extra assumptions as theorems to the tactic*)
paulson@15579
   227
fun forward_res2 nf hyps st =
paulson@15579
   228
  case Seq.pull
paulson@15579
   229
	(REPEAT
paulson@15579
   230
	 (METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
paulson@15579
   231
	 st)
paulson@15579
   232
  of SOME(th,_) => th
paulson@15579
   233
   | NONE => raise THM("forward_res2", 0, [st]);
paulson@9840
   234
paulson@15579
   235
(*Remove duplicates in P|Q by assuming ~P in Q
paulson@15579
   236
  rls (initially []) accumulates assumptions of the form P==>False*)
paulson@15579
   237
fun nodups_aux rls th = nodups_aux rls (th RS disj_assoc)
paulson@15579
   238
    handle THM _ => tryres(th,rls)
paulson@15579
   239
    handle THM _ => tryres(forward_res2 nodups_aux rls (th RS disj_forward2),
paulson@15579
   240
			   [disj_FalseD1, disj_FalseD2, asm_rl])
paulson@15579
   241
    handle THM _ => th;
paulson@9840
   242
paulson@15579
   243
(*Remove duplicate literals, if there are any*)
paulson@15579
   244
fun nodups th =
paulson@15579
   245
    if null(findrep(literals(prop_of th))) then th
paulson@15579
   246
    else nodups_aux [] th;
paulson@9840
   247
paulson@9840
   248
paulson@15579
   249
(**** Generation of contrapositives ****)
paulson@9840
   250
paulson@15579
   251
(*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
paulson@15579
   252
fun assoc_right th = assoc_right (th RS disj_assoc)
paulson@15579
   253
	handle THM _ => th;
paulson@9840
   254
paulson@15579
   255
(*Must check for negative literal first!*)
paulson@15579
   256
val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
paulson@9840
   257
paulson@15579
   258
(*For ordinary resolution. *)
paulson@15579
   259
val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
paulson@9840
   260
paulson@15579
   261
(*Create a goal or support clause, conclusing False*)
paulson@15579
   262
fun make_goal th =   (*Must check for negative literal first!*)
paulson@15579
   263
    make_goal (tryres(th, clause_rules))
paulson@15579
   264
  handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
paulson@9840
   265
paulson@15579
   266
(*Sort clauses by number of literals*)
paulson@15579
   267
fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
paulson@9840
   268
paulson@18389
   269
fun sort_clauses ths = sort (make_ord fewerlits) ths;
paulson@9840
   270
paulson@15581
   271
(*True if the given type contains bool anywhere*)
paulson@15581
   272
fun has_bool (Type("bool",_)) = true
paulson@15581
   273
  | has_bool (Type(_, Ts)) = exists has_bool Ts
paulson@15581
   274
  | has_bool _ = false;
paulson@15581
   275
  
paulson@15613
   276
(*Is the string the name of a connective? It doesn't matter if this list is
paulson@15613
   277
  incomplete, since when actually called, the only connectives likely to
paulson@15613
   278
  remain are & | Not.*)  
paulson@15613
   279
fun is_conn c = c mem_string
paulson@17404
   280
    ["Trueprop", "HOL.tag", "op &", "op |", "op -->", "op =", "Not", 
paulson@15613
   281
     "All", "Ex", "Ball", "Bex"];
paulson@15613
   282
paulson@15613
   283
(*True if the term contains a function where the type of any argument contains
paulson@15613
   284
  bool.*)
paulson@15613
   285
val has_bool_arg_const = 
paulson@15613
   286
    exists_Const
paulson@15613
   287
      (fn (c,T) => not(is_conn c) andalso exists (has_bool) (binder_types T));
paulson@15908
   288
      
paulson@16588
   289
(*Raises an exception if any Vars in the theorem mention type bool; they
paulson@16588
   290
  could cause make_horn to loop! Also rejects functions whose arguments are 
paulson@16588
   291
  Booleans or other functions.*)
mengj@18194
   292
fun check_is_fol_term term =
mengj@18194
   293
    if exists (has_bool o fastype_of) (term_vars term)  orelse
mengj@18194
   294
        not (Term.is_first_order ["all","All","Ex"] term) orelse
mengj@18194
   295
        has_bool_arg_const term  orelse  
mengj@18194
   296
        has_meta_conn term
mengj@18194
   297
    then raise TERM("check_is_fol_term",[term]) else term;
mengj@18194
   298
paulson@18508
   299
fun check_is_fol th = (check_is_fol_term (prop_of th); th);
paulson@18508
   300
mengj@18194
   301
paulson@15579
   302
(*Create a meta-level Horn clause*)
paulson@15579
   303
fun make_horn crules th = make_horn crules (tryres(th,crules))
paulson@15579
   304
			  handle THM _ => th;
paulson@9840
   305
paulson@16563
   306
(*Generate Horn clauses for all contrapositives of a clause. The input, th,
paulson@16563
   307
  is a HOL disjunction.*)
paulson@15579
   308
fun add_contras crules (th,hcs) =
paulson@15579
   309
  let fun rots (0,th) = hcs
paulson@15579
   310
	| rots (k,th) = zero_var_indexes (make_horn crules th) ::
paulson@15579
   311
			rots(k-1, assoc_right (th RS disj_comm))
paulson@15862
   312
  in case nliterals(prop_of th) of
paulson@15579
   313
	1 => th::hcs
paulson@15579
   314
      | n => rots(n, assoc_right th)
paulson@15579
   315
  end;
paulson@9840
   316
paulson@15579
   317
(*Use "theorem naming" to label the clauses*)
paulson@15579
   318
fun name_thms label =
paulson@15579
   319
    let fun name1 (th, (k,ths)) =
paulson@15579
   320
	  (k-1, Thm.name_thm (label ^ string_of_int k, th) :: ths)
paulson@9840
   321
paulson@15579
   322
    in  fn ths => #2 (foldr name1 (length ths, []) ths)  end;
paulson@9840
   323
paulson@16563
   324
(*Is the given disjunction an all-negative support clause?*)
paulson@15579
   325
fun is_negative th = forall (not o #1) (literals (prop_of th));
paulson@9840
   326
paulson@15579
   327
val neg_clauses = List.filter is_negative;
paulson@9840
   328
paulson@9840
   329
paulson@15579
   330
(***** MESON PROOF PROCEDURE *****)
paulson@9840
   331
paulson@15579
   332
fun rhyps (Const("==>",_) $ (Const("Trueprop",_) $ A) $ phi,
paulson@15579
   333
	   As) = rhyps(phi, A::As)
paulson@15579
   334
  | rhyps (_, As) = As;
paulson@9840
   335
paulson@15579
   336
(** Detecting repeated assumptions in a subgoal **)
paulson@9840
   337
paulson@15579
   338
(*The stringtree detects repeated assumptions.*)
wenzelm@16801
   339
fun ins_term (net,t) = Net.insert_term (op aconv) (t,t) net;
paulson@9840
   340
paulson@15579
   341
(*detects repetitions in a list of terms*)
paulson@15579
   342
fun has_reps [] = false
paulson@15579
   343
  | has_reps [_] = false
paulson@15579
   344
  | has_reps [t,u] = (t aconv u)
paulson@15579
   345
  | has_reps ts = (Library.foldl ins_term (Net.empty, ts);  false)
paulson@15579
   346
		  handle INSERT => true;
paulson@9840
   347
paulson@15579
   348
(*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
paulson@18508
   349
fun TRYING_eq_assume_tac 0 st = Seq.single st
paulson@18508
   350
  | TRYING_eq_assume_tac i st =
paulson@18508
   351
       TRYING_eq_assume_tac (i-1) (eq_assumption i st)
paulson@18508
   352
       handle THM _ => TRYING_eq_assume_tac (i-1) st;
paulson@18508
   353
paulson@18508
   354
fun TRYALL_eq_assume_tac st = TRYING_eq_assume_tac (nprems_of st) st;
paulson@9840
   355
paulson@15579
   356
(*Loop checking: FAIL if trying to prove the same thing twice
paulson@15579
   357
  -- if *ANY* subgoal has repeated literals*)
paulson@15579
   358
fun check_tac st =
paulson@15579
   359
  if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
paulson@15579
   360
  then  Seq.empty  else  Seq.single st;
paulson@9840
   361
paulson@9840
   362
paulson@15579
   363
(* net_resolve_tac actually made it slower... *)
paulson@15579
   364
fun prolog_step_tac horns i =
paulson@15579
   365
    (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
paulson@18508
   366
    TRYALL_eq_assume_tac;
paulson@9840
   367
paulson@9840
   368
(*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
paulson@15579
   369
fun addconcl(prem,sz) = size_of_term(Logic.strip_assums_concl prem) + sz
paulson@15579
   370
paulson@15579
   371
fun size_of_subgoals st = foldr addconcl 0 (prems_of st);
paulson@15579
   372
paulson@9840
   373
paulson@9840
   374
(*Negation Normal Form*)
paulson@9840
   375
val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
wenzelm@9869
   376
               not_impD, not_iffD, not_allD, not_exD, not_notD];
paulson@15581
   377
paulson@15581
   378
fun make_nnf1 th = make_nnf1 (tryres(th, nnf_rls))
wenzelm@9869
   379
    handle THM _ =>
paulson@15581
   380
        forward_res make_nnf1
wenzelm@9869
   381
           (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
paulson@9840
   382
    handle THM _ => th;
paulson@9840
   383
paulson@18405
   384
(*The simplification removes defined quantifiers and occurrences of True and False, 
paulson@18405
   385
  as well as tags applied to True and False. nnf_ss also includes the one-point simprocs,
paulson@18405
   386
  which are needed to avoid the various one-point theorems from generating junk clauses.*)
paulson@17404
   387
val tag_True = thm "tag_True";
paulson@17404
   388
val tag_False = thm "tag_False";
paulson@17404
   389
val nnf_simps = [Ex1_def,Ball_def,Bex_def,tag_True,tag_False]
paulson@18405
   390
paulson@18405
   391
val nnf_ss =
paulson@18405
   392
    HOL_basic_ss addsimps
paulson@18752
   393
     (nnf_simps @ [if_True, if_False, if_cancel, if_eq_cancel, cases_simp] @
paulson@18752
   394
      thms"split_ifs" @ ex_simps @ all_simps @ simp_thms)
paulson@18752
   395
     addsimprocs [defALL_regroup,defEX_regroup,neq_simproc,let_simproc];
paulson@15872
   396
paulson@15872
   397
fun make_nnf th = th |> simplify nnf_ss
mengj@18194
   398
                     |> make_nnf1
paulson@15581
   399
paulson@15965
   400
(*Pull existential quantifiers to front. This accomplishes Skolemization for
paulson@15965
   401
  clauses that arise from a subgoal.*)
wenzelm@9869
   402
fun skolemize th =
paulson@9840
   403
  if not (has_consts ["Ex"] (prop_of th)) then th
quigley@15773
   404
  else (skolemize (tryres(th, [choice, conj_exD1, conj_exD2,
quigley@15679
   405
                              disj_exD, disj_exD1, disj_exD2])))
wenzelm@9869
   406
    handle THM _ =>
wenzelm@9869
   407
        skolemize (forward_res skolemize
wenzelm@9869
   408
                   (tryres (th, [conj_forward, disj_forward, all_forward])))
paulson@9840
   409
    handle THM _ => forward_res skolemize (th RS ex_forward);
paulson@9840
   410
paulson@9840
   411
paulson@9840
   412
(*Make clauses from a list of theorems, previously Skolemized and put into nnf.
paulson@9840
   413
  The resulting clauses are HOL disjunctions.*)
wenzelm@9869
   414
fun make_clauses ths =
paulson@15998
   415
    (sort_clauses (map (generalize o nodups) (foldr (cnf[]) [] ths)));
quigley@15773
   416
paulson@9840
   417
paulson@16563
   418
(*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
wenzelm@9869
   419
fun make_horns ths =
paulson@9840
   420
    name_thms "Horn#"
wenzelm@19046
   421
      (distinct Drule.eq_thm_prop (foldr (add_contras clause_rules) [] ths));
paulson@9840
   422
paulson@9840
   423
(*Could simply use nprems_of, which would count remaining subgoals -- no
paulson@9840
   424
  discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
paulson@9840
   425
wenzelm@9869
   426
fun best_prolog_tac sizef horns =
paulson@9840
   427
    BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
paulson@9840
   428
wenzelm@9869
   429
fun depth_prolog_tac horns =
paulson@9840
   430
    DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
paulson@9840
   431
paulson@9840
   432
(*Return all negative clauses, as possible goal clauses*)
paulson@9840
   433
fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
paulson@9840
   434
paulson@15008
   435
fun skolemize_prems_tac prems =
paulson@9840
   436
    cut_facts_tac (map (skolemize o make_nnf) prems)  THEN'
paulson@9840
   437
    REPEAT o (etac exE);
paulson@9840
   438
paulson@18141
   439
(*Expand all definitions (presumably of Skolem functions) in a proof state.*)
paulson@18141
   440
fun expand_defs_tac st =
paulson@18141
   441
  let val defs = filter (can dest_equals) (#hyps (crep_thm st))
wenzelm@18817
   442
  in  LocalDefs.def_export false defs st  end;
paulson@18141
   443
paulson@16588
   444
(*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions*)
paulson@16588
   445
fun MESON cltac i st = 
paulson@16588
   446
  SELECT_GOAL
paulson@18141
   447
    (EVERY [rtac ccontr 1,
paulson@16588
   448
	    METAHYPS (fn negs =>
paulson@16588
   449
		      EVERY1 [skolemize_prems_tac negs,
paulson@18141
   450
			      METAHYPS (cltac o make_clauses)]) 1,
paulson@18141
   451
            expand_defs_tac]) i st
paulson@18508
   452
  handle TERM _ => no_tac st;	(*probably from check_is_fol*)		      
paulson@9840
   453
paulson@9840
   454
(** Best-first search versions **)
paulson@9840
   455
paulson@16563
   456
(*ths is a list of additional clauses (HOL disjunctions) to use.*)
wenzelm@9869
   457
fun best_meson_tac sizef =
wenzelm@9869
   458
  MESON (fn cls =>
paulson@9840
   459
         THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
paulson@9840
   460
                         (has_fewer_prems 1, sizef)
paulson@9840
   461
                         (prolog_step_tac (make_horns cls) 1));
paulson@9840
   462
paulson@9840
   463
(*First, breaks the goal into independent units*)
paulson@9840
   464
val safe_best_meson_tac =
wenzelm@9869
   465
     SELECT_GOAL (TRY Safe_tac THEN
paulson@9840
   466
                  TRYALL (best_meson_tac size_of_subgoals));
paulson@9840
   467
paulson@9840
   468
(** Depth-first search version **)
paulson@9840
   469
paulson@9840
   470
val depth_meson_tac =
wenzelm@9869
   471
     MESON (fn cls => EVERY [resolve_tac (gocls cls) 1,
paulson@9840
   472
                             depth_prolog_tac (make_horns cls)]);
paulson@9840
   473
paulson@9840
   474
paulson@9840
   475
(** Iterative deepening version **)
paulson@9840
   476
paulson@9840
   477
(*This version does only one inference per call;
paulson@9840
   478
  having only one eq_assume_tac speeds it up!*)
wenzelm@9869
   479
fun prolog_step_tac' horns =
paulson@9840
   480
    let val (horn0s, hornps) = (*0 subgoals vs 1 or more*)
paulson@9840
   481
            take_prefix Thm.no_prems horns
paulson@9840
   482
        val nrtac = net_resolve_tac horns
paulson@9840
   483
    in  fn i => eq_assume_tac i ORELSE
paulson@9840
   484
                match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
paulson@9840
   485
                ((assume_tac i APPEND nrtac i) THEN check_tac)
paulson@9840
   486
    end;
paulson@9840
   487
wenzelm@9869
   488
fun iter_deepen_prolog_tac horns =
paulson@9840
   489
    ITER_DEEPEN (has_fewer_prems 1) (prolog_step_tac' horns);
paulson@9840
   490
paulson@16563
   491
fun iter_deepen_meson_tac ths =
wenzelm@9869
   492
  MESON (fn cls =>
paulson@16563
   493
           case (gocls (cls@ths)) of
paulson@16563
   494
           	[] => no_tac  (*no goal clauses*)
paulson@16563
   495
              | goes => 
paulson@16563
   496
		 (THEN_ITER_DEEPEN (resolve_tac goes 1)
paulson@16563
   497
				   (has_fewer_prems 1)
paulson@16563
   498
				   (prolog_step_tac' (make_horns (cls@ths)))));
paulson@9840
   499
paulson@16563
   500
fun meson_claset_tac ths cs =
paulson@16563
   501
  SELECT_GOAL (TRY (safe_tac cs) THEN TRYALL (iter_deepen_meson_tac ths));
wenzelm@9869
   502
paulson@16563
   503
val meson_tac = CLASET' (meson_claset_tac []);
wenzelm@9869
   504
wenzelm@9869
   505
paulson@14813
   506
(**** Code to support ordinary resolution, rather than Model Elimination ****)
paulson@14744
   507
paulson@15008
   508
(*Convert a list of clauses (disjunctions) to meta-level clauses (==>), 
paulson@15008
   509
  with no contrapositives, for ordinary resolution.*)
paulson@14744
   510
paulson@14744
   511
(*Rules to convert the head literal into a negated assumption. If the head
paulson@14744
   512
  literal is already negated, then using notEfalse instead of notEfalse'
paulson@14744
   513
  prevents a double negation.*)
paulson@14744
   514
val notEfalse = read_instantiate [("R","False")] notE;
paulson@14744
   515
val notEfalse' = rotate_prems 1 notEfalse;
paulson@14744
   516
paulson@15448
   517
fun negated_asm_of_head th = 
paulson@14744
   518
    th RS notEfalse handle THM _ => th RS notEfalse';
paulson@14744
   519
paulson@14744
   520
(*Converting one clause*)
paulson@15581
   521
fun make_meta_clause th = 
paulson@16588
   522
    negated_asm_of_head (make_horn resolution_clause_rules (check_is_fol th));
paulson@14744
   523
paulson@14744
   524
fun make_meta_clauses ths =
paulson@14744
   525
    name_thms "MClause#"
wenzelm@19046
   526
      (distinct Drule.eq_thm_prop (map make_meta_clause ths));
paulson@14744
   527
paulson@14744
   528
(*Permute a rule's premises to move the i-th premise to the last position.*)
paulson@14744
   529
fun make_last i th =
paulson@14744
   530
  let val n = nprems_of th 
paulson@14744
   531
  in  if 1 <= i andalso i <= n 
paulson@14744
   532
      then Thm.permute_prems (i-1) 1 th
paulson@15118
   533
      else raise THM("select_literal", i, [th])
paulson@14744
   534
  end;
paulson@14744
   535
paulson@14744
   536
(*Maps a rule that ends "... ==> P ==> False" to "... ==> ~P" while suppressing
paulson@14744
   537
  double-negations.*)
paulson@14744
   538
val negate_head = rewrite_rule [atomize_not, not_not RS eq_reflection];
paulson@14744
   539
paulson@14744
   540
(*Maps the clause  [P1,...Pn]==>False to [P1,...,P(i-1),P(i+1),...Pn] ==> ~P*)
paulson@14744
   541
fun select_literal i cl = negate_head (make_last i cl);
paulson@14744
   542
paulson@18508
   543
paulson@14813
   544
(*Top-level Skolemization. Allows part of the conversion to clauses to be
paulson@14813
   545
  expressed as a tactic (or Isar method).  Each assumption of the selected 
paulson@14813
   546
  goal is converted to NNF and then its existential quantifiers are pulled
paulson@14813
   547
  to the front. Finally, all existential quantifiers are eliminated, 
paulson@14813
   548
  leaving !!-quantified variables. Perhaps Safe_tac should follow, but it
paulson@14813
   549
  might generate many subgoals.*)
mengj@18194
   550
paulson@14813
   551
val skolemize_tac = 
paulson@14813
   552
  SUBGOAL
paulson@14813
   553
    (fn (prop,_) =>
paulson@14813
   554
     let val ts = Logic.strip_assums_hyp prop
paulson@14813
   555
     in EVERY1 
paulson@14813
   556
	 [METAHYPS
quigley@15773
   557
	    (fn hyps => (cut_facts_tac (map (skolemize o make_nnf) hyps) 1
paulson@14813
   558
                         THEN REPEAT (etac exE 1))),
paulson@14813
   559
	  REPEAT_DETERM_N (length ts) o (etac thin_rl)]
paulson@14813
   560
     end);
paulson@14813
   561
mengj@18194
   562
paulson@15118
   563
(*Top-level conversion to meta-level clauses. Each clause has  
paulson@15118
   564
  leading !!-bound universal variables, to express generality. To get 
paulson@15118
   565
  disjunctions instead of meta-clauses, remove "make_meta_clauses" below.*)
paulson@15008
   566
val make_clauses_tac = 
paulson@15008
   567
  SUBGOAL
paulson@15008
   568
    (fn (prop,_) =>
paulson@15008
   569
     let val ts = Logic.strip_assums_hyp prop
paulson@15008
   570
     in EVERY1 
paulson@15008
   571
	 [METAHYPS
paulson@15008
   572
	    (fn hyps => 
paulson@15151
   573
              (Method.insert_tac
paulson@15118
   574
                (map forall_intr_vars 
paulson@15118
   575
                  (make_meta_clauses (make_clauses hyps))) 1)),
paulson@15008
   576
	  REPEAT_DETERM_N (length ts) o (etac thin_rl)]
paulson@15008
   577
     end);
paulson@16563
   578
     
paulson@16563
   579
     
paulson@16563
   580
(*** setup the special skoklemization methods ***)
wenzelm@9869
   581
paulson@16563
   582
(*No CHANGED_PROP here, since these always appear in the preamble*)
wenzelm@9869
   583
paulson@16563
   584
val skolemize_meth = Method.SIMPLE_METHOD' HEADGOAL skolemize_tac;
paulson@16563
   585
paulson@16563
   586
val make_clauses_meth = Method.SIMPLE_METHOD' HEADGOAL make_clauses_tac;
paulson@14890
   587
paulson@16563
   588
val skolemize_setup =
wenzelm@18708
   589
  Method.add_methods
wenzelm@18708
   590
    [("skolemize", Method.no_args skolemize_meth, 
wenzelm@18708
   591
      "Skolemization into existential quantifiers"),
wenzelm@18708
   592
     ("make_clauses", Method.no_args make_clauses_meth, 
wenzelm@18708
   593
      "Conversion to !!-quantified meta-level clauses")];
paulson@9840
   594
paulson@9840
   595
end;
wenzelm@9869
   596
paulson@15579
   597
structure BasicMeson: BASIC_MESON = Meson;
paulson@15579
   598
open BasicMeson;