src/HOL/Tools/res_axioms.ML
author paulson
Mon Sep 19 15:12:13 2005 +0200 (2005-09-19)
changeset 17484 f6a225f97f0a
parent 17412 e26cb20ef0cc
child 17819 1241e5d31d5b
permissions -rw-r--r--
simplification of the Isabelle-ATP code; hooks for batch generation of problems
paulson@15347
     1
(*  Author: Jia Meng, Cambridge University Computer Laboratory
paulson@15347
     2
    ID: $Id$
paulson@15347
     3
    Copyright 2004 University of Cambridge
paulson@15347
     4
paulson@15347
     5
Transformation of axiom rules (elim/intro/etc) into CNF forms.    
paulson@15347
     6
*)
paulson@15347
     7
paulson@15997
     8
signature RES_AXIOMS =
paulson@15997
     9
  sig
paulson@15997
    10
  exception ELIMR2FOL of string
paulson@17404
    11
  val tagging_enabled : bool
paulson@15997
    12
  val elimRule_tac : thm -> Tactical.tactic
paulson@16012
    13
  val elimR2Fol : thm -> term
paulson@15997
    14
  val transform_elim : thm -> thm
quigley@16039
    15
  val clausify_axiom_pairs : (string*thm) -> (ResClause.clause*thm) list
paulson@15997
    16
  val cnf_axiom : (string * thm) -> thm list
paulson@15997
    17
  val meta_cnf_axiom : thm -> thm list
paulson@16012
    18
  val rm_Eps : (term * term) list -> thm list -> term list
paulson@15997
    19
  val claset_rules_of_thy : theory -> (string * thm) list
paulson@15997
    20
  val simpset_rules_of_thy : theory -> (string * thm) list
paulson@17484
    21
  val claset_rules_of_ctxt: Proof.context -> (string * thm) list
paulson@17484
    22
  val simpset_rules_of_ctxt : Proof.context -> (string * thm) list
paulson@17484
    23
  val clausify_rules_pairs : 
paulson@17484
    24
        (string*thm) list -> thm list -> (ResClause.clause*thm) list list * thm list
paulson@16563
    25
  val clause_setup : (theory -> theory) list
paulson@16563
    26
  val meson_method_setup : (theory -> theory) list
paulson@15997
    27
  end;
paulson@15347
    28
paulson@15997
    29
structure ResAxioms : RES_AXIOMS =
paulson@15997
    30
 
paulson@15997
    31
struct
paulson@15347
    32
paulson@17404
    33
val tagging_enabled = false (*compile_time option*)
paulson@17404
    34
paulson@15997
    35
(**** Transformation of Elimination Rules into First-Order Formulas****)
paulson@15347
    36
paulson@15390
    37
(* a tactic used to prove an elim-rule. *)
paulson@16009
    38
fun elimRule_tac th =
paulson@16009
    39
    ((rtac impI 1) ORELSE (rtac notI 1)) THEN (etac th 1) THEN
paulson@16588
    40
    REPEAT(fast_tac HOL_cs 1);
paulson@15347
    41
paulson@15347
    42
exception ELIMR2FOL of string;
paulson@15347
    43
paulson@15390
    44
(* functions used to construct a formula *)
paulson@15390
    45
paulson@15347
    46
fun make_disjs [x] = x
paulson@15956
    47
  | make_disjs (x :: xs) = HOLogic.mk_disj(x, make_disjs xs)
paulson@15347
    48
paulson@15347
    49
fun make_conjs [x] = x
paulson@15956
    50
  | make_conjs (x :: xs) =  HOLogic.mk_conj(x, make_conjs xs)
paulson@15956
    51
paulson@15956
    52
fun add_EX tm [] = tm
paulson@15956
    53
  | add_EX tm ((x,xtp)::xs) = add_EX (HOLogic.exists_const xtp $ Abs(x,xtp,tm)) xs;
paulson@15347
    54
paulson@15347
    55
paulson@15347
    56
paulson@15956
    57
fun is_neg (Const("Trueprop",_) $ (Const("Not",_) $ Free(p,_))) (Const("Trueprop",_) $ Free(q,_)) = (p = q)
paulson@15371
    58
  | is_neg _ _ = false;
paulson@15371
    59
paulson@15347
    60
paulson@15347
    61
exception STRIP_CONCL;
paulson@15347
    62
paulson@15347
    63
paulson@15371
    64
fun strip_concl' prems bvs (Const ("==>",_) $ P $ Q) =
paulson@15956
    65
      let val P' = HOLogic.dest_Trueprop P
paulson@15956
    66
  	  val prems' = P'::prems
paulson@15956
    67
      in
paulson@15371
    68
	strip_concl' prems' bvs  Q
paulson@15956
    69
      end
paulson@15371
    70
  | strip_concl' prems bvs P = 
paulson@15956
    71
      let val P' = HOLogic.Not $ (HOLogic.dest_Trueprop P)
paulson@15956
    72
      in
paulson@15371
    73
	add_EX (make_conjs (P'::prems)) bvs
paulson@15956
    74
      end;
paulson@15371
    75
paulson@15371
    76
paulson@15371
    77
fun strip_concl prems bvs concl (Const ("all", _) $ Abs (x,xtp,body))  = strip_concl prems ((x,xtp)::bvs) concl body
paulson@15371
    78
  | strip_concl prems bvs concl (Const ("==>",_) $ P $ Q) =
paulson@15371
    79
    if (is_neg P concl) then (strip_concl' prems bvs Q)
paulson@15371
    80
    else
paulson@15956
    81
	(let val P' = HOLogic.dest_Trueprop P
paulson@15371
    82
	     val prems' = P'::prems
paulson@15371
    83
	 in
paulson@15371
    84
	     strip_concl prems' bvs  concl Q
paulson@15371
    85
	 end)
paulson@15371
    86
  | strip_concl prems bvs concl _ = add_EX (make_conjs prems) bvs;
paulson@15347
    87
 
paulson@15347
    88
paulson@15347
    89
paulson@15371
    90
fun trans_elim (main,others,concl) =
paulson@15371
    91
    let val others' = map (strip_concl [] [] concl) others
paulson@15347
    92
	val disjs = make_disjs others'
paulson@15347
    93
    in
paulson@15956
    94
	HOLogic.mk_imp (HOLogic.dest_Trueprop main, disjs)
paulson@15347
    95
    end;
paulson@15347
    96
paulson@15347
    97
paulson@15390
    98
(* aux function of elim2Fol, take away predicate variable. *)
paulson@15371
    99
fun elimR2Fol_aux prems concl = 
paulson@15347
   100
    let val nprems = length prems
paulson@15347
   101
	val main = hd prems
paulson@15347
   102
    in
paulson@15956
   103
	if (nprems = 1) then HOLogic.Not $ (HOLogic.dest_Trueprop main)
paulson@15371
   104
        else trans_elim (main, tl prems, concl)
paulson@15347
   105
    end;
paulson@15347
   106
paulson@15956
   107
    
paulson@16012
   108
(* convert an elim rule into an equivalent formula, of type term. *)
paulson@15347
   109
fun elimR2Fol elimR = 
paulson@15347
   110
    let val elimR' = Drule.freeze_all elimR
paulson@15347
   111
	val (prems,concl) = (prems_of elimR', concl_of elimR')
paulson@15347
   112
    in
paulson@15347
   113
	case concl of Const("Trueprop",_) $ Free(_,Type("bool",[])) 
paulson@15956
   114
		      => HOLogic.mk_Trueprop (elimR2Fol_aux prems concl)
paulson@15956
   115
                    | Free(x,Type("prop",[])) => HOLogic.mk_Trueprop(elimR2Fol_aux prems concl) 
paulson@15347
   116
		    | _ => raise ELIMR2FOL("Not an elimination rule!")
paulson@15347
   117
    end;
paulson@15347
   118
paulson@15347
   119
paulson@15390
   120
(* check if a rule is an elim rule *)
paulson@16009
   121
fun is_elimR th = 
paulson@16009
   122
    case (concl_of th) of (Const ("Trueprop", _) $ Var (idx,_)) => true
paulson@15347
   123
			 | Var(indx,Type("prop",[])) => true
paulson@15347
   124
			 | _ => false;
paulson@15347
   125
paulson@15997
   126
(* convert an elim-rule into an equivalent theorem that does not have the 
paulson@15997
   127
   predicate variable.  Leave other theorems unchanged.*) 
paulson@16009
   128
fun transform_elim th =
paulson@16009
   129
  if is_elimR th then
paulson@16009
   130
    let val tm = elimR2Fol th
paulson@16009
   131
	val ctm = cterm_of (sign_of_thm th) tm	
paulson@15997
   132
    in
paulson@16009
   133
	prove_goalw_cterm [] ctm (fn prems => [elimRule_tac th])
paulson@15997
   134
    end
paulson@16563
   135
 else th;
paulson@15997
   136
paulson@15997
   137
paulson@15997
   138
(**** Transformation of Clasets and Simpsets into First-Order Axioms ****)
paulson@15997
   139
paulson@15390
   140
(* repeated resolution *)
paulson@15347
   141
fun repeat_RS thm1 thm2 =
paulson@15347
   142
    let val thm1' =  thm1 RS thm2 handle THM _ => thm1
paulson@15347
   143
    in
paulson@15347
   144
	if eq_thm(thm1,thm1') then thm1' else (repeat_RS thm1' thm2)
paulson@15347
   145
    end;
paulson@15347
   146
paulson@15347
   147
paulson@16009
   148
(*Convert a theorem into NNF and also skolemize it. Original version, using
paulson@16009
   149
  Hilbert's epsilon in the resulting clauses.*)
paulson@16009
   150
fun skolem_axiom th = 
paulson@16588
   151
  let val th' = (skolemize o make_nnf o ObjectLogic.atomize_thm o Drule.freeze_all) th
paulson@16588
   152
  in  repeat_RS th' someI_ex
paulson@16588
   153
  end;
paulson@15347
   154
paulson@15347
   155
paulson@16009
   156
fun cnf_rule th = make_clauses [skolem_axiom (transform_elim th)];
paulson@15347
   157
paulson@16563
   158
(*Transfer a theorem into theory Reconstruction.thy if it is not already
paulson@15359
   159
  inside that theory -- because it's needed for Skolemization *)
paulson@15359
   160
paulson@16563
   161
(*This will refer to the final version of theory Reconstruction.*)
paulson@16563
   162
val recon_thy_ref = Theory.self_ref (the_context ());  
paulson@15359
   163
paulson@16563
   164
(*If called while Reconstruction is being created, it will transfer to the
paulson@16563
   165
  current version. If called afterward, it will transfer to the final version.*)
paulson@16009
   166
fun transfer_to_Reconstruction th =
paulson@16563
   167
    transfer (Theory.deref recon_thy_ref) th handle THM _ => th;
paulson@15347
   168
paulson@15955
   169
fun is_taut th =
paulson@15955
   170
      case (prop_of th) of
paulson@15955
   171
           (Const ("Trueprop", _) $ Const ("True", _)) => true
paulson@15955
   172
         | _ => false;
paulson@15955
   173
paulson@15955
   174
(* remove tautologous clauses *)
paulson@15955
   175
val rm_redundant_cls = List.filter (not o is_taut);
paulson@15347
   176
paulson@15347
   177
(* transform an Isabelle thm into CNF *)
paulson@16009
   178
fun cnf_axiom_aux th =
paulson@16173
   179
    map zero_var_indexes
paulson@16009
   180
        (rm_redundant_cls (cnf_rule (transfer_to_Reconstruction th)));
paulson@15997
   181
       
paulson@15997
   182
       
paulson@16009
   183
(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
paulson@16009
   184
paulson@16009
   185
(*Traverse a term, accumulating Skolem function definitions.*)
paulson@16009
   186
fun declare_skofuns s t thy =
paulson@17404
   187
  let fun dec_sko (Const ("Ex",_) $ (xtp as Abs(_,T,p))) (n, (thy, axs)) =
paulson@16009
   188
	    (*Existential: declare a Skolem function, then insert into body and continue*)
paulson@16009
   189
	    let val cname = s ^ "_" ^ Int.toString n
paulson@16012
   190
		val args = term_frees xtp  (*get the formal parameter list*)
paulson@16009
   191
		val Ts = map type_of args
paulson@16009
   192
		val cT = Ts ---> T
wenzelm@16125
   193
		val c = Const (Sign.full_name (Theory.sign_of thy) cname, cT)
paulson@16009
   194
		val rhs = list_abs_free (map dest_Free args, HOLogic.choice_const T $ xtp)
paulson@16012
   195
		        (*Forms a lambda-abstraction over the formal parameters*)
paulson@16009
   196
		val def = equals cT $ c $ rhs
paulson@16009
   197
		val thy' = Theory.add_consts_i [(cname, cT, NoSyn)] thy
paulson@16012
   198
		           (*Theory is augmented with the constant, then its def*)
paulson@17404
   199
		val cdef = cname ^ "_def"
paulson@17404
   200
		val thy'' = Theory.add_defs_i false [(cdef, def)] thy'
paulson@17404
   201
	    in dec_sko (subst_bound (list_comb(c,args), p)) 
paulson@17404
   202
	               (n+1, (thy'', get_axiom thy'' cdef :: axs)) 
paulson@17404
   203
	    end
paulson@17404
   204
	| dec_sko (Const ("All",_) $ (xtp as Abs(a,T,p))) (n, thx) =
paulson@16012
   205
	    (*Universal quant: insert a free variable into body and continue*)
paulson@16009
   206
	    let val fname = variant (add_term_names (p,[])) a
paulson@17404
   207
	    in dec_sko (subst_bound (Free(fname,T), p)) (n, thx) end
paulson@16009
   208
	| dec_sko (Const ("op &", _) $ p $ q) nthy = 
paulson@16009
   209
	    dec_sko q (dec_sko p nthy)
paulson@16009
   210
	| dec_sko (Const ("op |", _) $ p $ q) nthy = 
paulson@16009
   211
	    dec_sko q (dec_sko p nthy)
paulson@17404
   212
	| dec_sko (Const ("HOL.tag", _) $ p) nthy = 
paulson@17404
   213
	    dec_sko p nthy
paulson@16009
   214
	| dec_sko (Const ("Trueprop", _) $ p) nthy = 
paulson@16009
   215
	    dec_sko p nthy
paulson@17404
   216
	| dec_sko t nthx = nthx (*Do nothing otherwise*)
paulson@17404
   217
  in  #2 (dec_sko t (1, (thy,[])))  end;
paulson@16009
   218
paulson@16009
   219
(*cterms are used throughout for efficiency*)
paulson@16009
   220
val cTrueprop = Thm.cterm_of (Theory.sign_of HOL.thy) HOLogic.Trueprop;
paulson@16009
   221
paulson@16009
   222
(*cterm version of mk_cTrueprop*)
paulson@16009
   223
fun c_mkTrueprop A = Thm.capply cTrueprop A;
paulson@16009
   224
paulson@16009
   225
(*Given an abstraction over n variables, replace the bound variables by free
paulson@16009
   226
  ones. Return the body, along with the list of free variables.*)
paulson@16009
   227
fun c_variant_abs_multi (ct0, vars) = 
paulson@16009
   228
      let val (cv,ct) = Thm.dest_abs NONE ct0
paulson@16009
   229
      in  c_variant_abs_multi (ct, cv::vars)  end
paulson@16009
   230
      handle CTERM _ => (ct0, rev vars);
paulson@16009
   231
paulson@16009
   232
(*Given the definition of a Skolem function, return a theorem to replace 
paulson@16009
   233
  an existential formula by a use of that function.*)
paulson@16588
   234
fun skolem_of_def def =  
paulson@16009
   235
  let val (c,rhs) = Drule.dest_equals (cprop_of (Drule.freeze_all def))
paulson@16009
   236
      val (ch, frees) = c_variant_abs_multi (rhs, [])
paulson@16009
   237
      val (chil,cabs) = Thm.dest_comb ch
paulson@16588
   238
      val {sign,t, ...} = rep_cterm chil
paulson@16009
   239
      val (Const ("Hilbert_Choice.Eps", Type("fun",[_,T]))) = t
paulson@16009
   240
      val cex = Thm.cterm_of sign (HOLogic.exists_const T)
paulson@16009
   241
      val ex_tm = c_mkTrueprop (Thm.capply cex cabs)
paulson@16009
   242
      and conc =  c_mkTrueprop (Drule.beta_conv cabs (Drule.list_comb(c,frees)));
paulson@16009
   243
  in  prove_goalw_cterm [def] (Drule.mk_implies (ex_tm, conc))
paulson@16009
   244
	    (fn [prem] => [ rtac (prem RS someI_ex) 1 ])
paulson@16009
   245
  end;	 
paulson@16009
   246
paulson@16009
   247
paulson@16009
   248
(*Converts an Isabelle theorem (intro, elim or simp format) into nnf.*)
paulson@16009
   249
fun to_nnf thy th = 
paulson@16588
   250
    th |> Thm.transfer thy
paulson@16588
   251
       |> transform_elim |> Drule.freeze_all
paulson@16588
   252
       |> ObjectLogic.atomize_thm |> make_nnf;
paulson@16009
   253
paulson@16009
   254
(*The cache prevents repeated clausification of a theorem, 
wenzelm@16800
   255
  and also repeated declaration of Skolem functions*)  (* FIXME better use Termtab!? *)
paulson@15955
   256
val clause_cache = ref (Symtab.empty : (thm * thm list) Symtab.table)
paulson@15955
   257
paulson@16009
   258
(*Declare Skolem functions for a theorem, supplied in nnf and with its name*)
paulson@16009
   259
fun skolem thy (name,th) =
paulson@16588
   260
  let val cname = (case name of "" => gensym "sko" | s => Sign.base_name s)
paulson@17404
   261
      val (thy',axs) = declare_skofuns cname (#prop (rep_thm th)) thy
paulson@17404
   262
  in (map skolem_of_def axs, thy') end;
paulson@16009
   263
paulson@16009
   264
(*Populate the clause cache using the supplied theorems*)
paulson@16009
   265
fun skolemlist [] thy = thy
paulson@16009
   266
  | skolemlist ((name,th)::nths) thy = 
wenzelm@17412
   267
      (case Symtab.lookup (!clause_cache) name of
paulson@16009
   268
	  NONE => 
paulson@16588
   269
	    let val (nnfth,ok) = (to_nnf thy th, true)  
paulson@16588
   270
	                 handle THM _ => (asm_rl, false)
paulson@16588
   271
            in
paulson@16588
   272
                if ok then
paulson@16588
   273
                    let val (skoths,thy') = skolem thy (name, nnfth)
paulson@16588
   274
			val cls = Meson.make_cnf skoths nnfth
wenzelm@17412
   275
		    in change clause_cache (Symtab.update (name, (th, cls)));
paulson@16588
   276
			skolemlist nths thy'
paulson@16588
   277
		    end
paulson@16588
   278
		else skolemlist nths thy
paulson@16588
   279
            end
paulson@16009
   280
	| SOME _ => skolemlist nths thy) (*FIXME: check for duplicate names?*)
paulson@16009
   281
paulson@16009
   282
(*Exported function to convert Isabelle theorems into axiom clauses*) 
paulson@15956
   283
fun cnf_axiom (name,th) =
paulson@15956
   284
    case name of
paulson@15955
   285
	  "" => cnf_axiom_aux th (*no name, so can't cache*)
wenzelm@17412
   286
	| s  => case Symtab.lookup (!clause_cache) s of
paulson@15955
   287
	  	  NONE => 
paulson@15955
   288
		    let val cls = cnf_axiom_aux th
wenzelm@17412
   289
		    in change clause_cache (Symtab.update (s, (th, cls))); cls end
paulson@15955
   290
	        | SOME(th',cls) =>
paulson@15955
   291
		    if eq_thm(th,th') then cls
paulson@15955
   292
		    else (*New theorem stored under the same name? Possible??*)
paulson@15955
   293
		      let val cls = cnf_axiom_aux th
wenzelm@17412
   294
		      in change clause_cache (Symtab.update (s, (th, cls))); cls end;
paulson@15347
   295
paulson@15956
   296
fun pairname th = (Thm.name_of_thm th, th);
paulson@15956
   297
paulson@15956
   298
fun meta_cnf_axiom th = 
paulson@15956
   299
    map Meson.make_meta_clause (cnf_axiom (pairname th));
paulson@15499
   300
paulson@15347
   301
paulson@15347
   302
(* changed: with one extra case added *)
paulson@15956
   303
fun univ_vars_of_aux (Const ("Hilbert_Choice.Eps",_) $ Abs(_,_,body)) vars =    
paulson@15956
   304
      univ_vars_of_aux body vars
paulson@15956
   305
  | univ_vars_of_aux (Const ("Ex",_) $ Abs(_,_,body)) vars = 
paulson@15956
   306
      univ_vars_of_aux body vars (* EX x. body *)
paulson@15347
   307
  | univ_vars_of_aux (P $ Q) vars =
paulson@15956
   308
      univ_vars_of_aux Q (univ_vars_of_aux P vars)
paulson@15347
   309
  | univ_vars_of_aux (t as Var(_,_)) vars = 
paulson@15956
   310
      if (t mem vars) then vars else (t::vars)
paulson@15347
   311
  | univ_vars_of_aux _ vars = vars;
paulson@15347
   312
  
paulson@15347
   313
fun univ_vars_of t = univ_vars_of_aux t [];
paulson@15347
   314
paulson@15347
   315
paulson@15347
   316
fun get_new_skolem epss (t as (Const ("Hilbert_Choice.Eps",_) $ Abs(_,tp,_)))  = 
paulson@15347
   317
    let val all_vars = univ_vars_of t
paulson@15347
   318
	val sk_term = ResSkolemFunction.gen_skolem all_vars tp
paulson@15347
   319
    in
paulson@15347
   320
	(sk_term,(t,sk_term)::epss)
paulson@15347
   321
    end;
paulson@15347
   322
paulson@17404
   323
(*FIXME: use a-list lookup!!*)
skalberg@15531
   324
fun sk_lookup [] t = NONE
skalberg@15531
   325
  | sk_lookup ((tm,sk_tm)::tms) t = if (t = tm) then SOME (sk_tm) else (sk_lookup tms t);
paulson@15347
   326
paulson@15390
   327
(* get the proper skolem term to replace epsilon term *)
paulson@15347
   328
fun get_skolem epss t = 
paulson@15956
   329
    case (sk_lookup epss t) of NONE => get_new_skolem epss t
paulson@15956
   330
		             | SOME sk => (sk,epss);
paulson@15347
   331
paulson@16009
   332
fun rm_Eps_cls_aux epss (t as (Const ("Hilbert_Choice.Eps",_) $ Abs(_,_,_))) = 
paulson@16009
   333
       get_skolem epss t
paulson@15347
   334
  | rm_Eps_cls_aux epss (P $ Q) =
paulson@16009
   335
       let val (P',epss') = rm_Eps_cls_aux epss P
paulson@16009
   336
	   val (Q',epss'') = rm_Eps_cls_aux epss' Q
paulson@16009
   337
       in (P' $ Q',epss'') end
paulson@15347
   338
  | rm_Eps_cls_aux epss t = (t,epss);
paulson@15347
   339
paulson@16009
   340
fun rm_Eps_cls epss th = rm_Eps_cls_aux epss (prop_of th);
paulson@15347
   341
paulson@17404
   342
(* replace the epsilon terms in a formula by skolem terms. *)
paulson@15347
   343
fun rm_Eps _ [] = []
paulson@16009
   344
  | rm_Eps epss (th::thms) = 
paulson@16009
   345
      let val (th',epss') = rm_Eps_cls epss th
paulson@16009
   346
      in th' :: (rm_Eps epss' thms) end;
paulson@15347
   347
paulson@15347
   348
paulson@15347
   349
paulson@15872
   350
(**** Extract and Clausify theorems from a theory's claset and simpset ****)
paulson@15347
   351
paulson@17404
   352
(*Preserve the name of "th" after the transformation "f"*)
paulson@17404
   353
fun preserve_name f th = Thm.name_thm (Thm.name_of_thm th, f th);
paulson@17404
   354
paulson@17404
   355
(*Tags identify the major premise or conclusion, as hints to resolution provers.
paulson@17404
   356
  However, they don't appear to help in recent tests, and they complicate the code.*)
paulson@17404
   357
val tagI = thm "tagI";
paulson@17404
   358
val tagD = thm "tagD";
paulson@17404
   359
paulson@17404
   360
val tag_intro = preserve_name (fn th => th RS tagI);
paulson@17404
   361
val tag_elim  = preserve_name (fn th => tagD RS th);
paulson@17404
   362
paulson@17484
   363
fun rules_of_claset cs =
paulson@17484
   364
  let val {safeIs,safeEs,hazIs,hazEs,...} = rep_cs cs
paulson@17484
   365
      val intros = safeIs @ hazIs
paulson@17484
   366
      val elims  = safeEs @ hazEs
paulson@17404
   367
  in
paulson@17484
   368
     debug ("rules_of_claset intros: " ^ Int.toString(length intros) ^ 
paulson@17484
   369
            " elims: " ^ Int.toString(length elims));
paulson@17404
   370
     if tagging_enabled 
paulson@17404
   371
     then map pairname (map tag_intro intros @ map tag_elim elims)
paulson@17484
   372
     else map pairname (intros @ elims)
paulson@17404
   373
  end;
paulson@15347
   374
paulson@17484
   375
fun rules_of_simpset ss =
paulson@17484
   376
  let val ({rules,...}, _) = rep_ss ss
paulson@17484
   377
      val simps = Net.entries rules
paulson@17484
   378
  in 
paulson@17484
   379
      debug ("rules_of_simpset: " ^ Int.toString(length simps));
paulson@17484
   380
      map (fn r => (#name r, #thm r)) simps
paulson@17484
   381
  end;
paulson@17484
   382
paulson@17484
   383
fun claset_rules_of_thy thy = rules_of_claset (claset_of thy);
paulson@17484
   384
fun simpset_rules_of_thy thy = rules_of_simpset (simpset_of thy);
paulson@17484
   385
paulson@17484
   386
fun claset_rules_of_ctxt ctxt = rules_of_claset (local_claset_of ctxt);
paulson@17484
   387
fun simpset_rules_of_ctxt ctxt = rules_of_simpset (local_simpset_of ctxt);
paulson@15347
   388
paulson@15347
   389
paulson@15872
   390
(**** Translate a set of classical/simplifier rules into CNF (still as type "thm")  ****)
paulson@15347
   391
paulson@15347
   392
(* classical rules *)
paulson@15872
   393
fun cnf_rules [] err_list = ([],err_list)
paulson@16009
   394
  | cnf_rules ((name,th) :: thms) err_list = 
paulson@15872
   395
      let val (ts,es) = cnf_rules thms err_list
paulson@17404
   396
      in  (cnf_axiom (name,th) :: ts,es) handle  _ => (ts, (th::es))  end;  
paulson@15347
   397
paulson@15347
   398
paulson@15872
   399
(**** Convert all theorems of a claset/simpset into clauses (ResClause.clause) ****)
paulson@15347
   400
paulson@17404
   401
fun addclause (c,th) l =
paulson@17404
   402
  if ResClause.isTaut c then l else (c,th) :: l;
paulson@17404
   403
quigley@16156
   404
(* outputs a list of (clause,thm) pairs *)
quigley@16039
   405
fun clausify_axiom_pairs (thm_name,thm) =
paulson@17404
   406
    let val isa_clauses = cnf_axiom (thm_name,thm) 
quigley@16039
   407
        val isa_clauses' = rm_Eps [] isa_clauses
quigley@16039
   408
        val clauses_n = length isa_clauses
quigley@16039
   409
	fun make_axiom_clauses _ [] []= []
paulson@16897
   410
	  | make_axiom_clauses i (cls::clss) (cls'::clss') =
paulson@17404
   411
	      addclause (ResClause.make_axiom_clause cls (thm_name,i), cls') 
paulson@17404
   412
	                (make_axiom_clauses (i+1) clss clss')
paulson@15347
   413
    in
quigley@16039
   414
	make_axiom_clauses 0 isa_clauses' isa_clauses		
paulson@17404
   415
    end
paulson@15347
   416
quigley@16039
   417
fun clausify_rules_pairs [] err_list = ([],err_list)
quigley@16039
   418
  | clausify_rules_pairs ((name,thm)::thms) err_list =
paulson@16897
   419
      let val (ts,es) = clausify_rules_pairs thms err_list
paulson@16897
   420
      in
paulson@16897
   421
	  ((clausify_axiom_pairs (name,thm))::ts, es) 
paulson@17404
   422
	  handle THM (msg,_,_) =>  
paulson@17404
   423
		  (debug ("Cannot clausify " ^ name ^ ": " ^ msg); 
paulson@17404
   424
		   (ts, (thm::es)))
paulson@17404
   425
             |  ResClause.CLAUSE (msg,t) => 
paulson@17404
   426
                  (debug ("Cannot clausify " ^ name ^ ": " ^ msg ^
paulson@17404
   427
                          ": " ^ TermLib.string_of_term t); 
paulson@17404
   428
		   (ts, (thm::es)))
paulson@17404
   429
paulson@16897
   430
      end;
quigley@16039
   431
paulson@15347
   432
paulson@16009
   433
(*Setup function: takes a theory and installs ALL simprules and claset rules 
paulson@16009
   434
  into the clause cache*)
paulson@16009
   435
fun clause_cache_setup thy =
paulson@16009
   436
  let val simps = simpset_rules_of_thy thy
paulson@16009
   437
      and clas  = claset_rules_of_thy thy
paulson@16009
   438
  in skolemlist clas (skolemlist simps thy) end;
paulson@16009
   439
  
paulson@16563
   440
val clause_setup = [clause_cache_setup];  
paulson@16563
   441
paulson@16563
   442
paulson@16563
   443
(*** meson proof methods ***)
paulson@16563
   444
paulson@16563
   445
fun cnf_rules_of_ths ths = List.concat (#1 (cnf_rules (map pairname ths) []));
paulson@16563
   446
paulson@16563
   447
fun meson_meth ths ctxt =
paulson@16563
   448
  Method.SIMPLE_METHOD' HEADGOAL
paulson@16563
   449
    (CHANGED_PROP o Meson.meson_claset_tac (cnf_rules_of_ths ths) (local_claset_of ctxt));
paulson@16563
   450
paulson@16563
   451
val meson_method_setup =
paulson@16563
   452
 [Method.add_methods
paulson@16563
   453
  [("meson", Method.thms_ctxt_args meson_meth, 
paulson@16563
   454
    "The MESON resolution proof procedure")]];
paulson@15347
   455
paulson@15347
   456
end;